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Matrix Models in Physics

There are many random systems in physics where the

dynamical variables are matrices:

Yang-Mills theory

Chern-Simons gauge theory

Nonlinear Sigma Model

Euler’s equations of hydrodynamics

Rigid body

All these systems are believed to simplify as the dimen-

sion of the matrices go to infinity: the basis independent

observables have small fluctuations.

It is useful to start by recalling the simplification in

the large dimension limit of vector models.
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The Hydrogen Atom in n-dimensions

Consider the familiar hamiltonian of the hydrogen atom

but generalized to n dimensional space:

H = − h̄2

2m

∂

∂xi

∂

∂xi
+ V (|x|), V (x) = −Ze

2

|x| . (1)

The classical limit h̄ → 0 is a terrible approximation:

there is no ground state.

But the limit n → ∞ is also a kind of classical limit:

fluctuations in rotation invariant observables are of order

O( 1
n
). Define ρ2 = 1

n
xixi. The norm of the ground state

||ψ||2 =
∫
|ψ(x)|2dnx = Kn

∫ ∞
0
ρn−1|ψ(ρ)|2dρ (2)

can be written more neatly in terms of the radial wave-

function Ψ(ρ) =
√
Knρ

n−1
2 ψ(ρ) so that

||Ψ||2 =
∫ ∞
0

|Ψ(ρ)|2dρ,HeffΨ =
E

n
Ψ (3)

where

Heff =
h̄2

2m
π2
ρ+

h̄2

8mρ2

(n− 1)(n− 3)

n2
− Zα

ρ
, πρ = − i

n

∂

∂ρ
.

(4)

4



The Large n-limit for the Hydrogen Atom

If we let n → ∞ keeping h̄ and α = e2

n
3
2

fixed, we get

a classical limit , since [πρ, ρ] = − i
n.

Unlike the usual classical limit this ‘neoclassical limit’

has a ground state. It is not a good approximation ( off

by about 30%) but is qualitatively correct.

Expansion in powers of 1
n and use of Pade approxi-

mants can get quantitatively correct answers. This method

is not any more complicated for multi-electron atoms and

gives a remarkably effective method for understanding all

atoms. (Hershbach).This might give a useful approach

to understanding the shapes of molecules: a notoriously

hard problem.

The competition between the centrifugal repulsion and

the attractive potential leads to the existence of the ground

state. This repulsion can be thought of as a sort of en-

tropy ( more precisely ‘information’) due to the averaging

over the angular variables.
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Static Matrix Models

Let Ai, i = 1, · · · r be a collection of hermitean N ×
N matrices. Also let S(A) be a real-valued polynomial

invariant under the action of the unitary group, Ai �→
gAig

†, specifically

S(A) = Si1···ik tr Ai1 · · ·Aik . (5)

We assume that the integral
∫
eNS(A)dA converges; a con-

stant can then be added to S(A) so that the integral is

then equal to one. Such an ‘action’ defines a probability

distribution on the space of multi-matrices.

The basic problem is, given S(A), to find the expec-

tation value of an arbitrary polynomial w.r.t. this distri-

bution.

< f(A) >=
∫
eNS(A)f(A)dA. (6)

( We will for now assume that it exists.)
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Large N -limit of Static Matrix Models

The basic simplification of the largeN limit is that the

expectation values of invariant polynomials factorize:

< f(A)h(A) > − < f(A) >< h(A) >

< f(A) >< h(A) >
= O(

1

N2
). (7)

Thus it is enough to know the ‘moments’

Gi1···ik =
1

N
tr Ai1 · · ·Aik . (8)

These tensors are not symmetric: only cyclically sym-

metric. A ‘generating function’

Z(J) =
∞∑
k=0

Gi1···ikJ
i1 · · ·Jik (9)

captures all this data if it is regarded as a formal power

series in non-commuting variables J1, · · · Jr. It satisfies

the ‘factorized Schwinger-Dyson’ equations:

S i(D)Z(J)+Z(J)JiZ(J) = 0,S i =
∑
k=0

Sii1···ikDi1 · · ·Dik

(10)

and the operator Di is defined by

Di

[
Ji1 · · · Jik

]
= δi1i J

i2 · · · Jik. (11)
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The Wigner Distribution

The simplest case is when S(A) is quadratic:

S(A) = −1

2
tr AiAjK

ij, K > 0. (12)

This example ( due to Wigner) is the analogue of a Gaus-

sian; all odd moments are zero and even moments are

determined by products of the covariance matrix:

Gi1···i2k
=

∑
non−crossingpartitions

∏
pairsab

Kiaib, KijK
jl = δli.

(13)

The number of terms in this sum is the Catalan num-

ber: ( 2k+1
k

) ∼ 4k as k → ∞. This solution can also be

expressed as a continued fraction, generalizing to the non-

commutative case the usual method of solving a quadratic

equation: Zs+1(J) = [1−KijJ
iZs(J)JjZs(J)]−1, Z0(J) =

1.

The Schwinger-Dyson equation of a some static matrix models can be

solved by an algorithm that can be implemented on a push down automaton.

(S. G. Rajeev, paper in preparation.)
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Variational Principle for the Schwinger-Dyson Equations

Beyond the Wigner ( Gaussian) models, there are very

few cases for which the Schwinger-Dyson equations can

be solved exactly. If we could think of the SD equa-

tions as the conditions for the minimization of a function

the space of probability distributions, then we could find

variational approximations.

We found such a variational principle ( also found in-

dependently by D. V. Voiculescu). The (enthalpy)

Ω(G) =
∞∑
k=0

Si1···ikGi1···ik + χ(G) (14)

which is the sum of the action S(G) and the free entropy

of Voiculescu χ(G) of the distribution is an extremum at

a solution of the SD equations. This entropy arises in

previous studies of matrix models by L. Yaffe and A.

Jevicki-B. Sakita as a collective potential.
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Variational approximations

We showed that it cannot be written as a formal power

series of the moments ( even one that doesnt converge): it

is a non-trivial element of the cohomology of variations of

the moments. But we do have an explicit expression for

it as a formal power series in a larger space of variables.

In the special case of a Wigner (noncommutative Gaus-

sian) of covariance there is an explicit formula ( upto some

uninteresting constants)

χ(G) = log detK. (15)

Even when S(A) is not a quadratic function, we can use

a Wigner(Gaussian) ansatz to get an approximate solu-

tion: find the minimum of Ω restricted to this subspace

parametrized by K. MOre accurate answers can be ob-

tained by expanding around this point. This way have

solved approximately several previously intractable mod-

els. This method is analogous to mean field theory.
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Path Integrals over Non-Commutative Variables

Adynamical matrix model is defined by the path in-

tegral in the space of hermitean matrices

< f(A) >=
∫
eN

∫
[−1

2ȦiȦkK
ij+V (A)]dtf(A)D[A]. (16)

Again, f(A) is an invariant polynomial of matrix ele-

ments such as 1
N tr Ai1(t1)Ai2(t2). There is again a fac-

torization of amplitudes so that it is sufficient to find the

Green’s functions

Gi1···ik(t1, · · · tk) =<
1

N
tr Ai1(t1) · · ·Aik(tk) > . (17)

The expectation value at equal time are of interest. They

are also determined by a variational principle: they are

an extremum of a effective potential

V(G) = V (G) + I ij(G)Kij (18)

where I is the free Fisher Information of Voiculescu. (

We thus relate the ideas of Voiculescu to those of Yaffe ,

Jevicki and Sakita.)
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Free Fischer Information

In commutative probability theory, the Fisher Infor-

mation is the change in entropy when a random variable

ξ is pertrurbed by a Gaussian random variable ηof small

covariance. This change is proportional to the covariance

matrix Kij :

I ij(ξ)Kij = lim
ε→0

χ(ξ + εη) − χ(ξ)

ε
. (19)

The very same idea applies to noncommutative random

variables, except that instead of the Gaussian variable

we use a Wigner variable. This is the non-commutative

analogue of the Fischer information was discovered by

Voiculescu. We find it remarkable that it appears so nat-

urally in the solution of dynamical matrix models.

Our derivation of this result uses the hamiltonian picture, following earlier

ideas of L. Yaffe and A. Jevicki-B. Sakita. A less rigorous but heuristic

(‘physicists’) derivation using path integrals over non-commutative variable

can also be given. It would be interesting to derive this result rigorously

using the techniques of A. Nica and R. Speicher on such path integrals.
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Matrix Field Theories

The next step is to understand the ground state of

matrix field theories defined by an integral over matrix

valued fields with action

∫ 
−1

2
∂µAi∂νAjK

ij + V (A)


 d2x. (20)

There should be a variational principle that determines

the low momentum limit of the Green’s functions. What

is the quantity that generalizes entropy and information?

Entropy→ Fisher Information→ ??? .
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