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1. Fourier-Wiener Transforms (FWT's).

|_et
(1.1) Cp = Cpl0,T] = {z : = is a continuous
R-valued function on [0,T] with z(0) = 0},

and let
(1.2) Kg = Kp[0,T] = {z : z is a continuous
C-valued function on [0,T] with z(0) = O}.

Note. z € Kg < 3 a,b € Cp such that z(t) =
a(t) + ib(t) on [0, T].

Definition(Cameron-1945). Let I': Ko — C
be such that F(z + iy) is Wiener integrable in
z over Cpl0,T] for each fixed y € Kq[0,T].



Then

(1.3) F(F)W) = [

Col0TH F(x +1iy)m(dz),y € Ko

and

(1.4) F~H(F)(y) = / F(z —iy)m(dz),y € Ko

Co[0,T]

are called the FWT and the inverse FWT of
F, respectively.



T+ =

Fw= =

3 /s

S _Q, {Cx) dx
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Definition. Let E,, be the class of functionals
I defined on K which are

(a) mean continuous, i.e., |[zn — z|lo — 0 =

(b) entire, i.e., F(z 4 Ay) is an entire function
of X for all z,y € Ko,

and
(c) of mean exponential type , i.e., | F(z) [<
Aexp{Bl||z||o} for all z € Kp.

Note. E, is dense in Lo(Cp[0,T]).



Theorem (Cameron and Martin - 1945).
F . Eym — By is ONnto.

Theorem (Cameron and Martin - 1946).

F : L>(Cyl[0,T]) — L>(Cpl0,T]) is onto. Fur-
thermore,

/Co \ F(x) 12 m(dx) = /CO l F(F)(y) .2 m(dy).

They also point out that F € Lo(Cp[0,T]) only
needs to be defined a.e. on Cy[0,T] and not
on Ko[O,T].



In 1965, James Yeh (Convolution in FWT -
Pacific J. of Math.) gave the following defini-
tion of a convolution product:

(F1x Fo)(y) = /Co Fy <:c\—/|r-§y> > <x\;§y> m(dx)

for all y € Ky.

Note that (Fy * F5)(y) = (Fo = F1)(—y).

Main Result. For Fy,F5 € En, (F1* Fo)(y)
exists for every y € Kg. Furthermore,

F((F1* F2))(y) = F(F1) <7y_§> F(F) (%)

for all y € Kqg .



3. Fourier-Feynman Transforms (FFT's).

The basic idea is to use the "i"” in the analytic
Feynman integral to define an integral trans-
form on Cyl0,T1].

e 1972 - Brue : an Li-FFT

e 1976 - Cameron and Storvick @ an Lo-FFET

e 1979 - Johnson and Skoug : an Lp-FFT

e 1979 - Johnson and Skoug : scale-invariant
measurability in Weiner space.

Assume that
F :Cpl0,T] — C is defined s-a.e. and is s.i.m.,

| f h
/CO[O,T] |F'(pz)|m(dx) < oo for each p > 0,

and that for each A € C,

dNW

T(F)W) = [ 0 Fla+y)m(de)

exists for s-a.e. y € Cp[0,T].



(a) For 1 <p<2andge€R—-{0}, the Ly-FFT,
Tq(p) (F) of I, is defined by the formula

T () = § T W

for s-a.e. y € Cp[0,T]) whenever this limit ex-
ists (scale-invariant limit in the mean of order

p').

(b) For p=1,
T () ) = | im, T @)
anfy
= |/ o F@+v)m(ds)

Note. For all p € [1, 2], Tq(p) (F) exists for func-
tionals of the form

T
F(z) = exp {/O 6(s. x(s))ds}

for appropriate 6.



4. In a unifying paper, Yuh Jia Lee (J. of
Functional Analysis - 1982) defined an integral
transform ]—"aﬁ of analytic functionals on ab-
stract Wiener space which included the Gauss
transform, the FWT, and the FFT, as special
cases.

Recently, Byoung Soo Kim and Skoug obtained
a necessary and suficient condition that a func-

tional F in L>(Cp[0,T]) has an integral trans-
form

FagF@) = [ o Floz+ fy)m(da),

y € Cpl0,T], also belonging to Lo(Cpl0,T1).



5. Convolution Products (1993).

For g € R — {0}, we define the CP,

(FxG)q = (F*G)_4q, of F and G by the formula
(if it exists)

_[anfg v+ y —
(FxQ)q(y) = /CO[QT]F( - >G< 7 >m(da:).

Then (F*xG)q = (G * F)q. Also under reason-
able conditions on F and G,

TP (F+G)o)(y) = TP (F) (%) 7:7(G) (v%)

for s-a.e. y € Cpl0,T7].
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A tempting conjecture:

(5.1) T (F + Do) () =

(1) (1)
T <F>< >T <>< )
2u9 " T\V2) 42 \V2

But in general, the equality (5.1) holds if and
only if g1 = g»> = q. However,

TV (F) ) = T8, (@)

q1+4ao2

=TSV () ().
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6. First Variation.

Let ' be a Wiener measurable (s.i.m.) func-
tional on Cp[0,T], and let w € Cp[0,T]. Then

SF(x|w) = %F(w + kw)
k=0

(if it exists) is called the first variation of F(z).

Usually we will take w to be of the form

w(t) = /Otz(s)ds, 0<t<T

for some z € L»[0,T]. Note that for F of the
form

F($> — f(<a1,33‘>, <042,£B>)

where {aq,ap} are orthonormal functions in
L>[0,T],

SF(z|w) = (o, w) f1((c1, 2), (@2, Z))

+ (o, w) fo({a1, ), (@, x))
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where

(o, ) = /OTozl(t)dm(t)

and

(o, w) = /OT a1 (D) dw(t) = /OTal(t)z(t)dt.
7. The basic formula

anfy ST g ~ ranfg P ]
/C’O[O,T] (zlw)m(de) = —iq Col0.T] (z)(z, z)m(dz)

has led to many interesting results; for exam-
ple, the parts formula

anfy
/C’Q[O,T] [F(z)6G(z|w) + G(z)6F(x|w)]m(dz)

_ anfy
= i | o F@G(@)(z z)m(do).
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8. Relationships among the First Variation
§F(x|w), the Fourier-Feynman Transform Ty(F),
and the Convolution Product (F x G)g.

(a) There are seven relationships involving ex-
actly two of the three concepts of " transform’,
"convolution”, and " first variation”, including:

o T4(8F(|w))(y) = 6Tg(F)(ylw)

o Ty(6F(y|))(w) = §(F)(ylw)

. T((F+ @) ) = Ty(F) ( ﬁ> T4(G) ( \@>
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(b) There are nine distinct relationships involv-
ing all three concepts where each concept is
used exactly once. One such example is:

o Ty(6(F*G)g(-|w))(y) = 6T4((F*G)g)(ylw)

— T,(F) ( f> To(6G( - | w/v/2)) ( f>

bOTFC- w3 ( H (&) ( ﬁ)
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9. Other Gaussian Processes.

(a) The Wiener Process

W(z,t) = z(t)

is free of drift and is stationary in time with

mean function zero and covariance function
AR A

(b) Let h € L[0,T] with ||h]lo > 0. Then the
Gaussian process

Z(x,t) = /O " h(s)dz(s)

is free of drift and is nonstationary in time with
mean function zero and covariance function

/S/\t h2(w)du.

0

16



(c) Let a(t) be an absolutely continuous func-
tion on [0,T] with a(0) = 0 and with a/(t) be-
longing to L»[0,T]. Then the Gaussian process
t
Xa(a,t) = [ h(s)de(s) + alt)

is subject to the drift a(t) and is nonstationary
in time with mean function a(¢) and covariance
function

/ ™ r2 () du,

0

Note. If h(¢t) =1 and a(t) = 0, then

Xao(z,t) = Z(z,t) = W(x,t) = z(t).
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Next defining

ANW

DAEYW) = [ 0 Fly+ Xae, - ))m(da)

etc., we can study the relationships among

oTq(F) (W), o(F * G)g(y), and 6F(y|lw).

For example,

o Ty (a(F % Ggly) = Ty(F) (y j;"j T,(C) (7>

o Ty(a(F x G)q(y) = Ty(F) (y\—/g_ ) Tq(G) < ﬁa)

o Ty(a(6F(y |- )*6G(y |- ))g)(w)
. w + 2a w
—5(F)<yl 7 >5G<yl\/§>
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Let D = [0,7)] and let (2, B, P) be a probability measure space. A real-valued
stochastic process Y on (Q,B, P) and D is called a generalized Brownian motion
process if Y (0,w)=0 almost everywhere and for 0 = tg < t; < -+ <ip < T, the

n-dimensional random vector (Y (t1,w), -+ ,Y (tn,w)) is normally distributed with
density function

K@ = (@) [ - b)) "
2.1) J=nl
| | exp{“l s {0 = alt) = (= = altia))) }
24 b(t;) — b(tj—1)

where 7 = (71, M), M0 = 0, £ = (t1, -+ ,tn), a(t) is an absolutely continuous
real-valued function on [0,T] with a(0) = 0, o’(t) € L?[0,T], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and '(t) >
0 for each t € [0,T].

As explained in [13, p.18-20], Y induces a probability measure u on the measur-
able space (RD, BP) where RP is the space of all real valued functions z(t), te D,
and BP is the smallest o-algebra of subsets of RY with respect to which all the
coordinate evaluation maps e;(x) = z(t) defined on RP are measurable. The triple
(RP,BP, 1) is a probability measure space. This measure space is called the func-
tion space induced by the generalized Brownian motion process Y determined by
a(-) and b(-).

We note that the generalized Brownian motion process Y determined by a(-) and
b(-) is a Gaussian process with mean function a(t) and covariance function r(s,t) =
min{b(s), b(t)}. By Theorem 14.2 [13, p.187], the probability measure 4 induced
by Y, taking a separable version, is supported by Cu4{0,T] (which is equivalent
to the Banach space of continuous functions z on [0,T] with z(0) = 0 under the
sup norm). Hence (Ca5[0,7), B(Capl0,T]), 1) is the function space induced by ¥’
where B(C, 5[0, T]) is the Borel o-algebra of C; 5[0, T).

A subset B of Cq [0, T] is said to be scale-invariant measurable (9] provided pB
is B(Ca [0, T))-measurable for all p > 0, and a scale-invariant measurable set N is
said to be scale-invariant null set provided pu(poN) = 0 for all p > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere(s-a.e.).

Let L2 ,[0,7] be the Hilbert space of functions on [0,7] which are Lebesgue
measurable and square integrable with respect to the Lebesgue Stieltjes measures

on [0,7T) induced by a(-) and b(-); e,

(2.2) LZ,0,T) = {v : /T v?(s)db(s) < oo and / v2(s)d|al(s) < oo}
0 0

where |a|(t) denotes the total variation of the function a on the interval [0,t].
For u,v € L?L’b[O,T], let
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