Fourier-Feynman Transforms,

Convolution Products and

First Variations in Function Space

by

David Skoug

1. Fourier-Wiener Transforms (FWT's).

Let

(1.1) $C_0 \equiv C_0[0,T] = \{x : x \text{ is a continuous } \mathbb{R}\text{-valued function on } [0,T] \text{ with } x(0)=0\},$

and let

(1.2) $K_0 \equiv K_0[0,T] = \{z : z \text{ is a continuous } \mathbb{C}\text{-valued function on } [0,T] \text{ with } z(0)=0\}.$

Note. $z \in K_0 \Leftrightarrow \exists \ a,b \in C_0$ such that z(t) = a(t) + ib(t) on [0,T].

<u>Definition</u>(Cameron-1945). Let $F: K_0 \to \mathbb{C}$ be such that F(x+iy) is Wiener integrable in x over $C_0[0,T]$ for each fixed $y \in K_0[0,T]$.

Then

(1.3)
$$\mathcal{F}(F)(y) \equiv \int_{C_0[0,T]} F(x+iy)m(dx), y \in K_0$$

and

(1.4)
$$\mathcal{F}^{-1}(F)(y) \equiv \int_{C_0[0,T]} F(x-iy)m(dx), y \in K_0$$

are called the FWT and the inverse FWT of F, respectively.

$$7(4) = \frac{1}{\sqrt{20}} \int_{-\infty}^{\infty} e^{-ix} f(x) dx$$

<u>Definition</u>. Let E_m be the class of functionals F defined on K_0 which are

(a) mean continuous, i.e., $||z_n - z||_2 \to 0 \Rightarrow F(z_n) \to F(z)$,

(b) entire, i.e., $F(z + \lambda y)$ is an entire function of λ for all $z, y \in K_0$,

and

(c) of mean exponential type , i.e., $|F(z)| \le A \exp\{B||z||_2\}$ for all $z \in K_0$.

Note. E_m is <u>dense</u> in $L_2(C_0[0,T])$.

Theorem (Cameron and Martin - 1945). $\mathcal{F}: E_m \to E_m$ is onto.

Theorem (Cameron and Martin - 1946). $\mathcal{F}: L_2(C_0[0,T]) \to L_2(C_0[0,T])$ is onto. Furthermore,

$$\int_{C_0} |F(x)|^2 m(dx) = \int_{C_0} |\mathcal{F}(F)(y)|^2 m(dy).$$

They also point out that $F \in L_2(C_0[0,T])$ only needs to be defined a.e. on $C_0[0,T]$ and not on $K_0[0,T]$.

In 1965, James Yeh (Convolution in FWT - Pacific J. of Math.) gave the following definition of a convolution product:

$$(F_1*F_2)(y) \equiv \int_{C_0} F_1\left(\frac{x+y}{\sqrt{2}}\right) F_2\left(\frac{x-y}{\sqrt{2}}\right) m(dx)$$
 for all $y \in K_0$.

Note that $(F_1 * F_2)(y) = (F_2 * F_1)(-y)$.

Main Result. For $F_1, F_2 \in E_m$, $(F_1 * F_2)(y)$ exists for every $y \in K_0$. Furthermore,

$$\mathcal{F}((F_1*F_2))(y) = \mathcal{F}(F_1)\left(\frac{y}{\sqrt{2}}\right)\mathcal{F}(F_2)\left(\frac{-y}{\sqrt{2}}\right)$$
 for all $y \in K_0$.

3. Fourier-Feynman Transforms (FFT's).

The basic idea is to use the "i" in the analytic Feynman integral to define an integral transform on $C_0[0,T]$.

- ullet 1972 Brue : an L_1 -FFT
- ullet 1976 Cameron and Storvick : an L_2 -FFT
- ullet 1979 Johnson and Skoug : an $L_p ext{-}\mathsf{FFT}$
- 1979 Johnson and Skoug: scale-invariant measurability in Weiner space.

Assume that

 $F: C_0[0,T] \to \mathbb{C}$ is defined s-a.e. and is s.i.m.,

$$\int_{C_0[0,T]} |F(\rho x)| m(dx) < \infty \text{ for each } \rho > 0,$$

and that for each $\lambda \in \mathbb{C}_+$,

$$T_{\lambda}(F)(y) = \int_{C_0[0,T]}^{\mathsf{anw}_{\lambda}} F(x+y) m(dx)$$

exists for s-a.e. $y \in C_0[0,T]$.

(a) For $1 and <math>q \in \mathbb{R} - \{0\}$, the L_p -FFT, $T_q^{(p)}(F)$ of F, is defined by the formula

$$T_q^{(p)}(F)(y) \equiv \begin{array}{l} \text{l.i.m. } T_{\lambda}(F)(y) \\ \lambda \to -iq \end{array}$$

for s-a.e. $y \in C_0[0,T]$) whenever this limit exists (scale-invariant limit in the mean of order p').

(b) For p = 1,

$$T_q^{(1)}(F)(y) \equiv \lim_{\lambda \to -iq} T_{\lambda}(F)(y)$$
$$= \int_{C_0[0,T]}^{\operatorname{anf}_q} F(x+y) m(dx)$$

Note. For all $p \in [1,2]$, $T_q^{(p)}(F)$ exists for functionals of the form

$$F(x) = \exp\left\{ \int_0^T \theta(s, x(s)) ds \right\}$$

for appropriate θ .

4. In a unifying paper, Yuh Jia Lee (J. of Functional Analysis - 1982) defined an integral transform $\mathcal{F}_{\alpha,\beta}$ of analytic functionals on abstract Wiener space which included the Gauss transform, the FWT, and the FFT, as special cases.

Recently, Byoung Soo Kim and Skoug obtained a necessary and sufficient condition that a functional F in $L_2(C_0[0,T])$ has an integral transform

$$\mathcal{F}_{\alpha,\beta}F(y) = \int_{C_0[0,T]} F(\alpha x + \beta y) m(dx),$$

 $y \in C_0[0,T]$, also belonging to $L_2(C_0[0,T])$.

5. Convolution Products (1993).

For $q \in \mathbb{R} - \{0\}$, we define the CP, $(F*G)_q \equiv (F*G)_{-iq}$, of F and G by the formula (if it exists)

$$(F*G)_q(y) \equiv \int_{C_0[0,T]}^{\mathsf{anf}_q} F\left(\frac{y+x}{\sqrt{2}}\right) G\left(\frac{y-x}{\sqrt{2}}\right) m(dx).$$

Then $(F * G)_q = (G * F)_q$. Also under reasonable conditions on F and G,

$$T_q^{(p)}((F*G)_q)(y) = T_q^{(p)}(F)\left(\frac{y}{\sqrt{2}}\right)T_q^{(p)}(G)\left(\frac{y}{\sqrt{2}}\right)$$
 for s-a.e. $y \in C_0[0,T]$.

A tempting conjecture:

(5.1)
$$T_{q_1}^{(1)}((F*G)_{q_2})(y) =$$

$$T_{\frac{2q_1q_2}{q_1+q_2}}^{(1)}(F)\left(\frac{y}{\sqrt{2}}\right)T_{\frac{2q_1q_2}{q_1+q_2}}^{(1)}(G)\left(\frac{y}{\sqrt{2}}\right).$$

But in general, the equality (5.1) holds if and only if $q_1=q_2=q$. However,

$$T_{q_2}^{(1)}(T_{q_1}^{(1)}(F))(y) = T_{\frac{q_1q_2}{q_1+q_2}}^{(1)}(F)(y)$$
$$= T_{q_1}^{(1)}(T_{q_2}^{(1)}(F))(y).$$

6. First Variation.

Let F be a Wiener measurable (s.i.m.) functional on $C_0[0,T]$, and let $w \in C_0[0,T]$. Then

$$\delta F(x|w) = \frac{\partial}{\partial k} F(x+kw) \Big|_{k=0}$$

(if it exists) is called the <u>first variation</u> of F(x).

Usually we will take w to be of the form

$$w(t) = \int_0^t z(s)ds, \quad 0 \le t \le T$$

for some $z \in L_2[0,T]$. Note that for F of the form

$$F(x) = f(\langle \alpha_1, x \rangle, \langle \alpha_2, x \rangle)$$

where $\{\alpha_1, \alpha_2\}$ are orthonormal functions in $L_2[0,T]$,

$$\delta F(x|w) = \langle \alpha_1, w \rangle f_1(\langle \alpha_1, x \rangle, \langle \alpha_2, x \rangle)$$
$$+ \langle \alpha_2, w \rangle f_2(\langle \alpha_1, x \rangle, \langle \alpha_2, x \rangle)$$

where

$$\langle \alpha, x \rangle = \int_0^T \alpha_1(t) dx(t)$$

and

$$\langle \alpha, w \rangle = \int_0^T \alpha_1(t) dw(t) = \int_0^T \alpha_1(t) z(t) dt.$$

7. The basic formula

$$\int_{C_0[0,T]}^{\operatorname{anf}_q} \delta F(x|w) m(dx) = -iq \int_{C_0[0,T]}^{\operatorname{anf}_q} F(x) \langle z, x \rangle m(dx)$$

has led to many interesting results; for example, the parts formula

$$\int_{C_0[0,T]}^{\operatorname{anf}_q} [F(x)\delta G(x|w) + G(x)\delta F(x|w)] m(dx)$$

$$= -iq \int_{C_0[0,T]}^{\operatorname{anf}_q} F(x)G(x)\langle z, x \rangle m(dx).$$

- 8. Relationships among the First Variation $\delta F(x|w)$, the Fourier-Feynman Transform $T_q(F)$, and the Convolution Product $(F*G)_q$.
- (a) There are seven relationships involving exactly two of the three concepts of "transform", "convolution", and "first variation", including:
- $T_q(\delta F(\cdot|w))(y) = \delta T_q(F)(y|w)$
- $T_q(\delta F(y|\cdot))(w) = \delta(F)(y|w)$
- $T_q((F*G)_q)(y) = T_q(F)\left(\frac{y}{\sqrt{2}}\right)T_q(G)\left(\frac{y}{\sqrt{2}}\right)$

- (b) There are nine distinct relationships involving all three concepts where each concept is used exactly once. One such example is:
- $T_q(\delta(F*G)_q(\cdot \mid w))(y) = \delta T_q((F*G)_q)(y|w)$

$$= T_q(F) \left(\frac{y}{\sqrt{2}}\right) T_q(\delta G(\cdot \mid w/\sqrt{2})) \left(\frac{y}{\sqrt{2}}\right)$$

+
$$T_q(\delta F(\cdot \mid w/\sqrt{2})) \left(\frac{y}{\sqrt{2}}\right) T_q(G) \left(\frac{y}{\sqrt{2}}\right)$$

- 9. Other Gaussian Processes.
- (a) The Wiener Process

$$W(x,t) = x(t)$$

is free of drift and is stationary in time with mean function zero and covariance function $s \wedge t$.

(b) Let $h \in L_2[0,T]$ with $||h||_2 > 0$. Then the Gaussian process

$$Z(x,t) = \int_0^t h(s)dx(s)$$

is free of drift and is nonstationary in time with mean function zero and covariance function

$$\int_0^{s \wedge t} h^2(u) du.$$

(c) Let a(t) be an absolutely continuous function on [0,T] with a(0)=0 and with a'(t) belonging to $L_2[0,T]$. Then the Gaussian process

$$X_a(x,t) = \int_0^t h(s)dx(s) + a(t)$$

is subject to the drift a(t) and is nonstationary in time with mean function a(t) and covariance function

$$\int_0^{s \wedge t} h^2(u) du.$$

Note. If $h(t) \equiv 1$ and $a(t) \equiv 0$, then

$$X_a(x,t) = Z(x,t) = W(x,t) = x(t).$$

Next defining

$${}_aT_{\lambda}(F)(y) = \int_{C_0[0,T]}^{\mathsf{anw}_{\lambda}} F(y + X_a(x, \cdot)) m(dx),$$

etc., we can study the relationships among ${}_aT_q(F)(y), \ {}_a(F*G)_q(y), \ {}_a$ and $\delta F(y|w).$

For example,

•
$$_aT_q(_a(F*G)_q(y) = T_q(F)\left(\frac{y+2a}{\sqrt{2}}\right)T_q(G)\left(\frac{y}{\sqrt{2}}\right)$$

•
$$T_q(a(F*G)_q(y) = T_q(F)\left(\frac{y+a}{\sqrt{2}}\right)T_q(G)\left(\frac{y-a}{\sqrt{2}}\right)$$

•
$$_aT_q(_a(\delta F(y \mid \cdot) * \delta G(y \mid \cdot))_q)(w)$$

$$= \delta(F) \left(y \mid \frac{w + 2a}{\sqrt{2}} \right) \delta G \left(y \mid \frac{w}{\sqrt{2}} \right)$$

Let D = [0,T] and let (Ω, \mathcal{B}, P) be a probability measure space. A real-valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a generalized Brownian motion process if $Y(0,\omega)=0$ almost everywhere and for $0=t_0 < t_1 < \cdots < t_n \leq T$, the n-dimensional random vector $(Y(t_1,\omega),\cdots,Y(t_n,\omega))$ is normally distributed with density function

(2.1)
$$K(\vec{t}, \vec{\eta}) = \left((2\pi)^n \prod_{j=1}^n (b(t_j) - b(t_{j-1})) \right)^{-1/2} \\ \cdot \exp \left\{ -\frac{1}{2} \sum_{j=1}^n \frac{\left((\eta_j - a(t_j)) - (\eta_{j-1} - a(t_{j-1})) \right)^2}{b(t_j) - b(t_{j-1})} \right\}$$

where $\vec{\eta} = (\eta_1, \dots, \eta_n)$, $\eta_0 = 0$, $\vec{t} = (t_1, \dots, t_n)$, a(t) is an absolutely continuous real-valued function on [0, T] with a(0) = 0, $a'(t) \in L^2[0, T]$, and b(t) is a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b'(t) > 0 for each $t \in [0, T]$.

As explained in [13, p.18-20], Y induces a probability measure μ on the measurable space (\mathbb{R}^D , \mathcal{B}^D) where \mathbb{R}^D is the space of all real valued functions x(t), $t \in D$, and \mathcal{B}^D is the smallest σ -algebra of subsets of \mathbb{R}^D with respect to which all the coordinate evaluation maps $e_t(x) = x(t)$ defined on \mathbb{R}^D are measurable. The triple (\mathbb{R}^D , \mathcal{B}^D , μ) is a probability measure space. This measure space is called the function space induced by the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$.

We note that the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function a(t) and covariance function $r(s,t) = \min\{b(s),b(t)\}$. By Theorem 14.2 [13, p.187], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a,b}[0,T]$ (which is equivalent to the Banach space of continuous functions x on [0,T] with x(0)=0 under the sup norm). Hence $(C_{a,b}[0,T],\mathcal{B}(C_{a,b}[0,T]),\mu)$ is the function space induced by Y where $\mathcal{B}(C_{a,b}[0,T])$ is the Borel σ -algebra of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable [9] provided ρB is $\mathcal{B}(C_{a,b}[0,T])$ -measurable for all $\rho > 0$, and a scale-invariant measurable set N is said to be scale-invariant null set provided $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).

Let $L^2_{a,b}[0,T]$ be the Hilbert space of functions on [0,T] which are Lebesgue measurable and square integrable with respect to the Lebesgue Stieltjes measures on [0,T] induced by $a(\cdot)$ and $b(\cdot)$; i.e.,

(2.2)
$$L_{a,b}^{2}[0,T] = \left\{ v : \int_{0}^{T} v^{2}(s)db(s) < \infty \text{ and } \int_{0}^{T} v^{2}(s)d|a|(s) < \infty \right\}$$

where |a|(t) denotes the total variation of the function a on the interval [0,t]. For $u,v\in L^2_{a,b}[0,T]$, let