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The heuristic Path Space Measure of a pure
Chern-Simons Model

Fix
e M : oriented differentiable 3-manifold.

o (7: compact connected Lie subgroup of U(N), N > 2
(Lie algebra will be denoted by g)

o kb € R\{0} (“charge’; A := 1 is called “coupling
constant” )

“Path Space” A: Space of g-valued 1-forms on M
with compact support.

“Action function”
Scs: A A ﬁ/Tr(A/\dA—r%(A/\A)/\A) cC
“Path space measure”

pos(dA) = 7 exp(iScs(A)) DA,

where DA is the “Lebesgue measure” on A and Z =
“f eXp(’l;SCS(A))DA”



Wilson Loop Observables and Knot Theory

Let L := (l1,...,l,), n € N, be a sufficiently regular
link in M.

“Wilson Loop Observable (WLQO) associated
to L”

WLO(L) = /WLF(L) ducs,  where

WLF(L)(A) := H Tr (7? exp ( /l A>>

Here P exp( ‘flz A) denotes the holonomy of A around

Literature

e Witten '89: Wilson loop observables for M = S3 and
G = SU(N) are related to the Homfly polynomial

e Guadagnini/Marellini/Mintchev '90: Computation
of the WLOs for M € {5 R3} using Lorentz Gauge

e Frohlich/King '89: Computation of the WLOs for
M = R3 and G = SU(N) using Light-cone Gauge



Open Questions

Q1 Can one also work with other gauge like, e.g., axial
gauge?” Problem with axial Gauge: very singular
expressions arise on a formal level

Q2 Can one define the WLOs rigorously in any of the
gauges mentioned above?

Partial Answers

1. If M = R? it is indeed possible to work with axial
gauge using the approach of Albeverio/Sengupta '97.
In particular, the WLOs can be defined rigorously in
their setting

2. The values of the WLOs can be expressed explicitly;
state models arise in a natural way.



1. Step: Axial Gauge Fixing
Set A% ={A€c A| Ay=0} (A=3", Adaz;)
Ac A = (ANANA=0=
Scs(A) = £ [Tr(dA A A)
= £ < Ay, DA > 12(R3)
= oh < (40, A1), S (Ao, A1) >
with S := ( 082 %2)
(scalar product g x g 5 (A, B) — —Tr(AB) € R)
On the other hand
WLO(L) = [ WLF(L)ducs = [ WLF(L)dug

with p&s exp(iScs(A)) DA ez,

Za.'l)

”

where “DA)4e” is the heuristic “Lebesgue measure
on A% and “Z%” a normalization constant.



2. Step: Making sense of [ - du¥
pé's 1s formally Gaussian with covariance operator

L 0 &)\ "
C’.—27rz/\-<_82 O)

If one can make sense of C' as a contingaus operator

Sgag(R?) —= Syeg(IR?) then

<t [ dut

can be defined rigorously as a generalized distribution on

Aw =8 (R®)  instead of A = CX(R?, g @ g)
1 -1
Ansatz: (—082 %2> = (_221 88 > where

8y =787 +(1—r)-05, (r € R fixed but arbitrary)
and where 0y 1,05 1 84(R?) — C(R?, g) are given

by
9
= / f(zg, z1, 8)ds

32 1f / f Lo, L1, S



Summary of Steps 1 + 2

“WLO(L)" «— Knot polynomials

_ / WLF(L)ducs "

1Step “/WLF d’uaa: "

2. Step «

< WLF(L) >%, "
P2 lim < WLF(L, ¢) >,

e—0

3. Step: Regularize WLF (L) by using “smeared loops”

4. Step: Introduce “deformations” < - >g% of < - >
w.r.t. afamily (¢s)sso of dlffeomorphlsms of R3 such
that ¢ — idgs as s — 0 in a certain sense (“Fram-
ing”)

5. Step + 6. Step: Existence proof and computation
of limgyolimeo < WLF(L, €) >§7



3. Step: Loop Smearing
Recall WLF(L)(A) = [T, Te(P exp(f, A
with P exp( [, A) = P/(A) where
4 PI(A) + A ((9) - PI(A) = 0, PU(A) =

Problem: The expression Ay (l'(t)) does not make

sense for a general element A of A% = 8/ (R?).

Solution: We “smear” the loops:
1. We replace Al( )(l’( )) by

Agery Z A(I5()); - L(t)
where [¢(t ) = ° ( — (1)), (v° )6>0 being a suitable
“Dirac-family” (see below)

2. Set WLF(L, €)(A) = [[; Tr(P exp(,c A
where P exp( [, A) := P} (4),
G (A) + A (U(1) - PH(A) =0, Fi(A)=1

3. Replace < WLF(L) > by lim.,o < WLF(L, €) >&%



Remark: Naive approach ¢(z) := %(%) with fixed
Y € C°(R* Ry) fulfilling [¢(z)dz = 1, supp(v) C
B4(0) does not work. Instead take

Pi(a) = Fa¥(Fa+ S b+ T2 - e)

where (a,0) is a fixed oriented ONB of R? (a: “loop-
smearing axis”) and 0 < ¢ < 3 (“smearing exponent”)

>




4. Step: Framing

Already in the simple case G = U(1) “Framing” is nec-
essary to avoid the so-called “Self-Linking Problem”:

Let G = U(1). It can be shown that
WLO(L, €) :=< WLF(L, €) >&s
= HeXp miAQy 7, (€))

for suitable expressions Qli,lj( ¢) with the property

However, lim._,o Q7% (€) is not related to a link invari-
171
ant.

Remedy: Additional Regularization: “Framing”:

1. Choose a family (¢,)s0 of diffeomorphisms of R3
with ¢s — idgs as s — 0 in a certain (very weak)
sense and certain additional natural properties

2. Deform < - >%. by ¢, in a natural way and denote
the deformatlon by < - >3

3. Define regularized WLOs by
WLO(L; (¢s)s) := lim lim < WLF(L, €) >3!

s—0e—0



5. Step: Existence of lim_,lim,.,y < WLF(L, ¢) >4t

Theorem 1 For every admissible link L in R® and
every admissible framing ¢ == (¢s)s>o of L

WLO(L; ¢) = lim lim < WLF(L, ¢) >%°

s—0e—0

exists

6. Step: Computation of lim, ,olim. .o < WLF(L, ¢) >4t

Before we state the main result (Theorem 2 below) let us
first look at two examples:

1. Example Let G = U(1). Then for every admissi-
ble link L and every admissible framing ¢ := (¢s)s>0 we
have

WLO(L; ¢) = exp(Ami Y lkj)exp(Ami » ~ LK (L), Iy))
J J#k
with lkj - hms_m LK(ZJ, q/)s o l]>

Here LK (1,1") is the “linking number” of [ and [’



€(p) € {—1,1} for p € V(L) where V(L) is the set
of all crossings of L:

:;>;//ﬂ @//7
<‘S(p)-"="l\A {)-: 1

o LK(Ll) =1 D _peer(y) €(p) where cr(l,1') is the set
of all crossings of [ and 1.

% ¢ k()= [etpy+660 ]
£4
<:i::i> A 4] =4
A

e w(L) = ZpeV(L)E(p) Wfa'“‘LL‘” )( L )

o twist(l,l'): Number of “twists” of the ribbon ob-
tained by interpolating {(¢) and I'(¢) for every t €
0, 1] (defined if [ is sufficiently close to )

hoigh (£4') = 1




2. Example Let G = SU(N). Then WLO(L; ¢) is
independent of (a, b) for every admissible link L and every

admissible framing ¢ = (¢s)s>o if and only if A € 2Z. In
this case

WLO(L; ¢) = N*& [ [ exp(—22tt;) exp(—22 w(L))
Jj<n

for all L and ¢ = (¢s)s>0 as above where #L is the
number of components of L and ¢; := lim,_,q twist(l;, ¢

lj).

Comparison of Example 2 with the standard
physics literature:

Standard literature expects (1) for A € A == {£ =, £

N+1? 7= N+427

WLO(L; ¢) L Homfly, (exp(AmiN), 26 sin(A))

H exp(Ami %tj) exp(Ami % w(L))
Jj<n

(%) i i
= N#L HeXp(~’\Tt]~) exp(—2ZL w(L))

Jj<n

(%) holds if A € 2Z =

Example 2 suggests that A should be replaced by 2Z.

3



States and State Models

For a sufficiently regular link L in R? consider

o (V(L),E(L)): Planar graph obtained by projecting
L onto the plane R* = R? x {0}.

@

e St(L): Set of all mappings E(L) — {1,2,... ,N}
. Forp € V(L) define e;(p) € E(L), 1 <7 <4, by

& ( =
\.‘}:\_ P ) P J//_,—’L;{q (P)

e For RY, R~ € ®*Mat(N,C) we set

f(e1(p))f(e2(p))
o(r+,R)(L ZfeSt HpEV f(e3(p)) f(ea(p))

where (R%) .54 for R € {R*, R} is given by

(after identification ®2 Mat(N,C) & @CM)



Set,
¢:=>" , Faa ® By € ® Mat(N, C)
P = Z B ® By € ®°Mat(N, C)

where Ey, € Mat(V, C) is given by (Eup)ij = 0a:0p;-
Theorem (Kauffman): Let A € C\{0} such that
A%+ A2 = — N and set

Rt =A.¢+ A1,
R=A1¢4+A4-9

Then

_ e(p)\/ (e1(p)) f(e2(p))
U(R+7R")(L) o ZfeSt(L) Hpev(L)(R )f(€3(P))f(€4(P))

= Jonesp(A™Y) - (=A%)~



Main Result

Theorem 2 In the special case where (¢s)s>o is “ver-
tical” we have for arbitrary G

oo = 3 11 Bl iaiis)
feSt(L) peV (L
with
R = exp(FAmi()| T,®T,) T
Ry = Z(exp(FAmi-E(Y | T,®T,)) T
where

® (T4)a<dim(g) 28 an arbitrary (-,-)g-orthonormal ba-
sis of g

e = is the linear automorphism of ®* Mat(N, C) given
by Z2(A® B) = A® B* for all A, B € Mat(N,C)

e T:=3 B ® Ey € ® Mat(N,C)

o type(p) = 1 if the tangent vectors of ei(p) and
ea(p) in the point p lie both in H, or both in H_
where Hy == {z € R* | +x-b > 0}

o type(p) = 2 otherwise



Comparison with Kauffman’s State Models

For the special case G = SO(N) and A =n+ 3, n € Z,
we have

Rf=A-¢+B- %, Ry = (R)™!

R; =B-¢€+ A, Ry = (Ry)™!

with certain A, B € C. It is easy to see that
A#0,B=A1 A2+ A?*=-N <<= R{=R;

However, RY # Ry (A=1, B = z#—l if n is even)



When does R = Ry hold?

e G abelian = R = Ry holds.
e G=SU(N), N>20G=SON), N =3,
Rf = Rfholds <= A€2Z

In both situations the WLOs can be expressed by linking
numbers, w(L), and twist expressions.




Comparison with State Models of Jones/Turaev

State Models of Jones/Turaev can be used to give an ex-

plicit representation of Homfly; (exp(AmiN), 24 sin(Ar))
. 1 1 1

for A e A=Aty q Ty Tvg -}

State sums are of the form

2 sesiiny L v B
with
RU=44) , Buu®Euat ) E® B
(=9 ) _ Eu®Ey
R = +4q¢! Za Eow @ Fog + Za# Eu @ By
+(g—q7) Za>b Eu ® By,

e2(p))
ear)) V()

q = ™, and where U(f) depends on the “turning
points” of (V(L), E(L)) w.rt. a fixed “time axis”.

R*, R~ are related to quantum group SU,(N)

Note: A € 2Z < ¢ =1 (ie. SU,(N) = SU(N))



Hypothesis: It is not original Chern-Simons theory
on R’ with structure group G = SU(N) that is related to
non-trivial HOMFLY polynomial expressions but a suit-
able deformation of this theory:.

What kind of deformation?

e Deformation involving Quantum Groups?
e Quantum Chern-Simons Models?
e Deformation involving Quantum Probability?

e Or do we simply have to “deform” the base mani-
fold, i.e. replace M = R3 by S® or another compact
manifold?



Conclusions

Results:

o If M = R’ it is possible to work with axial gauge
using the approach of Albeverio/Sengupta '97. In
particular, the WLOs can be defined rigorously.

e The values of the WLOs can be expressed explicitly;
state models arise in a natural way.

Issues open for Discussion/Open Questions:

ols \ c {:i:Nil,iNer,j:Ni?), ... } really the “cor-

rect” charge quantization condition if M = R? and
G'= SU(N) or should it be replaced by A € 277

e Is the Hypothesis on the previous slide true?



