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1. Evolution Processes

e S: semigroup of continuous linear opera-
tors acting on a Banach space X. S(t+ s) =
S(t)S(s), s,t >0, S(0) = Ix.

e (): spectral measure acting on X. (X,€)
measurable space. Q : £ — L(X), Q(ANB) =
Q(A)Q(B), forall A, Be€ &, Q(X) =Ix.

o Q: ¥[0:) s,: algebra generated by all sets
E={we:w(t]) €By,...,w(tn) € Bn}

forall 0 <t; < - <tp <t all By,...,Bp €€,
and alln=1,2,...

Set Mi(FE) € £(X) equal to

S(t—tn)Q(Bn)S(tn—tn_1) - S(to—t1)Q(B1)S(t1).
This defines an additive set function
My . S — ﬁ(X)

called the (S, Q,t)-set function on &;
[Kluvanek, C. '78].



2. Dirac equation in 1 space dimension

Example (1-D Dirac). Let X = L?(R,C?)

1
Hgo = a—.g"‘mﬁ, m € R
v Ox

1 0 01
(0 %) o=(70)
a? = B2 =1Id, af + Ba = 0.

° S(S) — e—iHoS’

e (): multiplication by ch'istic functions.
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Then the (S, Q,t)-set function M; is bounded
on S; for each ¢ > 0 and defines a o-additive
operator valued measure acting on X.

The space 2 C R[0:>) can be taken to be all
functions w : [0,00) — R with speed +1 and
only finitely many changes in direction in any
bounded interval.

The matrix valued measures
Vt,SU(E)ej — Mt(E)(5$€j)7 IS St7 ] = 1,2

were constructed by T. Ichinose ['82].



The Feynman-Kac formula

o—it(Ho+V) — /Q e—z'fg\/(w(s))ddet(w)

works for locally integrable V.

Hy+V is a first order matrix-valued differential
operator which is essentially selfadjoint.

The 1-D Coulomb potential
V(m)Zﬁ, xR, x #0,
xr
is not integrable about 0 and the symmetric
differential operator Hg+ V has a 4-parameter
family of selfadjoint extensions.

The Feynman-Kac formula becomes

e~ it(Ho+rV) — /Q e~ {Jo V(D) gr ().

Here I is a unitary matrix prescribing boundary
conditions at O and Hg 4 V is the associated
selfadjoint extension.



3. Multiplicative functionals
The integral (J§V(w(s))ds)r is “renormalised”
so that
Fi(w) = e o V@®dsr  ,cq t>o0
IS @ multiplicative functional:
(Ft O 93).F3 — FS‘I—t
where Osw : r — w(r + s) defines a shift map
95 . Q — Q

For an integrable multiplicative function F} :
Q2 — C, t>0, the operators

R(t) = | Fi(w)dMy(w), ¢>0,
form a semigroup:
Ris+1) = [ Fopi(@)dMyps(w)
— /Q Fy(sw). Fs(w) dMy 4 (w)

— ( /Q F(w) th(w)) /Q Fs(w) dMs(w)
= R(t)R(s).

The generator of the semigroup R is a “pertur-
bation” of the generator of the original unitary
group S(t) = e~ Ho ¢ ¢ R.

The Coulomb potential |Z—| x % 0, is a singular
perturbation of Hy.



3. Zero mass: m =20

10 (1 0

IfIT=n (g —aﬁ> IS a unitary matrix, with o, 8,1 €

C, |oz|2 + |ﬁ|2 =1 and |n| =1,
’LL(CE, t) _ (_—it(Ho+rV)
(U(CIZ,t)) = (e d)) (z), z€R,
satisfies the boundary conditions

(”mx—>0—|— |¢|17u(33)> —r (”mx—>0—— |£I:|_7”7u(x)>

limg; _o- |w|Z’Y'U(x) My _0+ l:l:l_i%u(a:)

and
u(x,t) =
(e et V) sy (o 1),
forall x >t, <O,
ne~ YN[zl z=t)[0p1 (z — t) — Bpo(—(z — 1))],
\ for all 0 <z < t.
v(z,t) =

. rx+t
( e_zfm V(S)d8¢2(az—|—‘t),
for all x < —t, £ > O,

ne=V(Inlzl+ING@+) (81 (—(z + 1)) + apo(x + )]
for all —t < x <O.

N




Suppose that 3 = 0 and na = e™1, na = e~ "2
for numbers 0 < k; < 2.

e 2: all w for which 3z ¢ R s.t. w(s) =z + s
or w(s) =x—3s, s>0. Xs(w) =w(s), we .

If Xo(w)X¢(w) <0, set

</OtVoX3(w) d3>|_ =

{ v(In|w(0)| + Inw(®)]) + K1 If W/(s) =1, s> 0,
y(n |w(O)| 4+ Injw(®)|) + ko if W'(s) = -1, s>

If 0 <z <t and w(s) =x — s, then

v d
/[O,t]ﬂ{lw(s)l>e} (ws)) ds
_ [ d +/x ) ds
- a:—l—e|sv—s| i |:c—s|

= v(In |w(0)| + Infw(?)[) —27Ine,

as e — 0+, so we are subtracting a logarithmic
divergence.

Then F} : Q — C is defined by

—1 fg VoXs —z(fé VoXsds)

r_ d
Iy = X{Xox,;>0}-€ "+ X{XpX:<0}€

and e—it(Ho—l—rV) = fQ Ftr dMy.



4. Nonzero mass: m #= 0

10
Ho:oz—,g—-l—mﬁ, m e R, m # 0.
x

7

e (2. paths w : [0,0) — R with speed =1
and finitely many changes in direction in any
bounded interval.

Suppose w changes direction at consecutive
times Tk(w), k=1,..., K(w) with TK_|_1(w) = 1.
On the set of w with K(w) = n, set

- L Tk+1
Ff = exXp| =i, X{XyXr,, >0} /Tk VoXsds
k=0

Tk+1
FX (X7 Xy, 1 <O} < [ vex, dsH.

Tk

The expression <fTTzf+1 Vo X ds>|_ is given by

Cy(In |w(m)| + In|w(tes1)]) + &1,
if W(s) =1, p(w) <s < 7pp1(w),
]
y(In [w(mg)| + Injw(Tr41)]) + K2,

if W'(s) = -1, 7(w) < s < 1pp1(w).

\

and
e~ t(Ho+rV) — /Q Fl dM;.



Sketch of proof.

S(t) = —'Lt(a 5——|—m,3) — e ztaz (% 4 Z (—im)"Rp(t)

with
Rn(t)

t
/ . /82 o~ (t—sn)a 3%56—(871—871—1)& 2
0 0

9 _ _ 9
. .136_(32—31)& 9z e 513 dsi...dsn

converges absolutely in the operator norm of
L(L2(R,C2)). Put Ro(t) = e @ 5% for t > 0.

For each cylinder set

E = {th € Bq,... ,th € Bn}, set

M™(E) =

> Rn, (t — t1)Q(Br)Rn;,_ (tg, — tp_1) -+

no+--+np=n
nQ,-..,ng>0

Q(B2)Rn,(t2 — t1)Q(B1)Rng(t1).
Then M; = Y% (—im)"M™ and Jq FJ dM{™ =
/ ‘o /O 2 —i(t=sn)(A+rV) go—ilsn—sn-1)(A+rV) ..
Bet(s2=s1)(A+rV) ge—is1(A+rV) gq. ... ds,,

where A = a—g—

o=t



5. Suggestions

e T he Feynman-Kac functional

Fi(w) = =i o Vs, eq

may not be the appropriate multiplicative func-
tional (MF) for singular interactions V: bound-
ary conditions at the singularities may need to
be incorporated via ‘renormalisation’.

e Construction of MF F; with |Fy(w)| = 1 only
requires a notion of measurability e.g. scale
invariant measurability.

e Dynamics given by a ‘Feynman integral’

e—itH — /Q FrdM, t>0.

. rt
e The Feynman integral [o et JoVoXsds dM; need
not be a unitary operator [Nelson '64].

e Construction of MF F;, t > 0O representing
an interaction in quantum field theory requires
‘renormalisation’ in phase everywhere, but still

[F ()| = 1.



