Quantum Algorithms
and

Feynman Integrals

Samuel J. Lomonaco, Jr.

Dept. of Comp. Sci. & Electrical Engineering
University of Maryland Baltimore County

Baltimore, MD 21250

Email: Lomonaco@UMBC.EDU )

WebPage: http://www.csee.umbc.edu/~lomonaco




This work is Iin collaboration with

Louis H. Kauffman

University of lllinois at Chicago



&This work supported by Defense Advance
Research Projects Agency (DARPA) & Air
Force Research Laboratory, Air Force
Materiel Command, USAF Agreement Number

F30602-01-2-0522.

 This work also supported by National
Institute for Standards and Technology
(NIST).



The quantum algorithmic
schema to be discussed in this
talk were developed to be tools
and aids for the creation of
future quantum algorithms.



This talk is based on:

- Lomonaco & Kauffman, Quantum Hidden
Subgroup Algorithms: A Mathematical
Perspective, AMS, CONM/305, (2002).
http://xxx.lanl.gov/abs/quant-ph/0201095

 Lomonaco & Kauffman, A Continuous
Variable Shor Algorithm,
http://xxx.lanl.gov/abs/quant-ph/0210141

Lomonaco & Kauffman, Continuous Variable
Quantum Algorithm Schema, (in preparation).
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Part1. A quantum algorithm on the reals R

Part 2a. A quantum algorithm on the circle]R / 7

Part 2b. The dual quantum algorithm

Part 3. Quantum algorithms based on Feynman
path integrals.



Part 1

Lomonaco & Kauffman, A Continuous
Variable Shor Algorithm,
http://xxXx.lanl.gov/abs/quant-ph/0210141




A Continuous Variable
Shor Algorithm



Continuous Variable Quantum Algorithms

e Continuous Variable Grover Algorithm
Pati, Braunstein, & Lloyd
Quant-ph/0002082

 Continuous Variable Deutsch-Jozsa
Algorithm

Pati & Braunstein
Quant-ph/0207108



This Talk 1s Related to

* Hallgren, Sean, Polynomial-Time
Quantum Algorithm for Pell’s equation
and the Principal Ideal Problem

 Hales, Lisa, thesis



The Quantum Hidden Subgroup Paper
Shows how to create a Meta Algorithm

Input Output

0 Metla
A5 Algorithm Alg(p



We now create a

Continuous Variable Shor Algorithm

Recall that Shor’s algorithm reduces to the
task of finding the period P of a function

¢:7 —» Zmod N

So a CV Shor algorithm should be a HSG
algorithm that finds the period P of a
function of the form

p:R - C



Needed

Mathematical Machinery

On the reals Q ., we need

« The Dirac Delta function J(x)

 We will also need the generalized

funchon
6 _
% (%)= p 2 ("’ )

n——00



Rigged Hilbert Spaces, a.k.a., Gelfand Triplets

. HR denotes the rigged Hilbert space with
orthonormal basis

{x>:x R} e, (xy =0(x-y)

The elements of H,, are formal integrals of the
form

_]gdxf(x)x>



. Hcc denotes the rigged Hilbert space with
orthonormal basis

{y):y0OC]

» H, LI H.denotes the rigged Hilbert
space with orthonormal basis

{x)]y :xOR& ¥ C}




If X, is a constant, we define

‘x0> = ]3 dx J(x - x,)|x)

Hence,

r

1 if x,=y,

<y0 ‘x0> - iO otherwise




(xo|ve)

= ([axa(x - x)(x)([dyray - y)|»))
- jdxa(x - x(,)(jdy o(y - yo)<y|x>)

= [dx 5 (x - xo)(jdy O(y = yy)o(y ‘x))
= jdx d(x - xo)(jdy O(y = y,)o(x -yo))
= [dx d(x - x,)d0(x - y,)[dy d(y - »,)

:de Jx() 5(x—x0)jdy5(y_y0)=5x

Y0 070



Fourier Analysis on R

Let ¢ :R - C pe an admissible periodic
function of minimum period P :

1 2
Problem: In general,¢ IS neither L norL
nor of compact support. So the usual literature
on Fourier analysis does not apply

Remark: One definition of admissible function is one
that is Lebesgue integrable on every closed subinterval
of [R . But there are other definitions that also will
work.




To circumvent this problem we extend the definition of the
Fourier transform to period PP admissible functions ) as

follows: oo
p(y) = [ dxe™™ @ (x)
= 0,(y)| dxe™™ g(x)
where 0
0p(y) = ‘P Z J(J’ __j

It can be verified that @(X) = J- dx eZi‘[ixy¢(y)



Motivation for above Definition

. n+1P

j dee™™ f(x) = Z j dee™ ™ P (x)

= Z I de TPl @(x+nP) = Ze‘mnpy I dxe” ™ P(x)

n=-—oo () n=—00

] Z \ié(y -%jf dee™™ §(x) =5, (y) [ de™™ gx)



Motivation (Cont.)

where, In the context of distributions, we have
used the fact that

(00

=2 7minP
2 e

IS, for every m, the Fourier series expansion
of 1 m

— ol v=-=

P (y Pj

on the interval

m m+1 m m+1
{P P ) {y P P}




Let ® : R — C be an admissible function of
minimum period P .

We will now create a continuous variable
Shor algorithm to find the period P when P
IS an integer.

After that, we will extend the algorithm to
one that can determine the period P when P
Is rational. Finally, we will extend the
algorithm to one that finds irrational
periods.



Let ¢ R - C be an admissible function of
minimum period P .

We will assume that @ is one-to one on its
fundamental domain [O,P)



e Step 0. Initialize W
0

Step 1. Apply F'[]1







«Step 4. Measure

with respect to the observable

A=_°j°dy L%”yxy

to produce a random eigenvalue m/Q :
where \_Q);J Is the greatest integer

<Qy



Spectral Decomposition of Observable A




Meas. always produces an eigenvalue 12/
for which there exists an integer 77 such that

m n m+l
— < —<
Q P 0

We seek the unknown n/ P

Unknown multiples of
the reciprocal periﬁd

IEigenvalues|




If Q=2P° ,then n/P is aconvergent of
the continued fraction expansion of the
known eigenvalue m/Q .

Thus, the continued fraction recursion can
be used to determine the period P



Finding Rational Periods

The above algorithm can be extended to an algorithm for
finding rational periods

P=alb, ged(a,b)=1
Key Ideas:

*‘Run the quantum part of the above algorithm (Steps 0 —4)
twice to produce two eigenvalues

m /Q and m,/Q

o If Q > 2a 2, then these eigenvalues respectively will
have unique convergents of the form

n.b

1,0

and
a a



Key Ideas (Cont.):

- If the following Condition A is satisfied

ged(n, ,n,)=1,gcd(n,,a)=1, ged(n,,a) =1

then the reciprocal period is

1 ged (nlb, nzb)

P a

This expression can be computed as follows:

-Step A. For each convergent P19, ofm, /Q,
select (if it exists) a convergent p, /g, of
m, /Q which has the same denominator

(q — 4 =%e)



Key Ideas (Cont.):

- Step B. After making this selection, construct the
corresponding rational

ged (plk 9pze)
q

« Step C. Test to see if it is a reciprocal period.

* If not, repeat Steps A through C until the reciprocal
period is found, output the reciprocal period, and STOP.



Key Ideas (Cont.):
* The probability that Condition A is satisfied is

(1 )

Q

\lglgQ )/

 Hence, on average, all of the above need to be repeated
2
0((1g1gQ)’)

times to find the reciprocal period.



Finding Irrational Periods

If we assume that the map @ is

continuous, then the same procedure
can be used fo find an irrational period to
any degree of desired precision.

Continuity is needed for determining
whether or not a rational is sufficiently
close to the unknown irrational period.



Implementation

P97



Double Dare!l

Implement This



Part 2a

Lomonaco & Kauffman, Continuous
Variable Quantum Algorithm Schema,
(in preparation).



Schema for Continuous Variable
Quantum Algorithms

on the

Circle



Rigged Hilbert Space

. Hy,, denotes the rigged Hilbert space on
R /7, with orthonormal basis

{x):x0OR/Z} ,ie, x|y =0(x-y)

- The elements of H, ,, are formal integrals of
the form

(j)dxf(x)x>



Finally, let H, denote the space of formal
sums

<iann>:an CUl Z;

\1——00 y

with orthonormal basis

{‘n>n Z}




Periodic Admissible Functions on R/ 7,

Letf :R/Z - C pe an admissible periodic
function of minimum rational period @ L1 Q/ Z

Proposition: If 0 = a, /612 with gcd(al,az) =1,
then 1/a2 is also a period of f :

Remark: Hence, the minimum rational period is the
reciprocal of an integer modulo 1.




e Step 0. Initialize

Step 1. Apply F'[]1

g =ddee™ " x0 =Pdx x 0

«Step 2. Apply U¢ :x>u>Hx>u+¢(x)>

W, = pdx x) P(x)



= ’;ZCJ‘)dx e ™ n) d(x))
’%:Znﬂj‘)dx e ™ @ (x))OHO Hg




m

Letting x = x ——, we have
a
m+1
a-1 a
@dx e—ZlTinx ¢(x)> — I dx e—271nx
m=0 m

1
a-l a —ZITin(xm +)
— a
= Idxm e
m=0
1
a—1 _27Tinm a
o e Idx e
m=0 0




2 mnm

But Ze a =gq

T
|

nlZ

nlZ

17

Any/

> n
> la

n =0moda

n =0moda

( j‘ dx o 27l

=5

Zn><j>dx o 27nx

1/a

j dx e—Z Jlinx

2 ta) Q(la),

‘a ifn=0moda

0 otherwise

#(x);

#(x),

(=)



«Step 4. Measure

with respect to the observable

A=) ninn

nl1Z

to produce a random eigenvalue ‘a



Part 2b

The

Dual

Algorithm



Needed

Mathematical Machinery

«Dirac Delta function J(x) onR /7

For P a non-zero integer, we will also
need on R/ Z the generalized function

()= p 20 =)



Periodic Functions on 7,

Let ¢ 7, - C  bpe periodic function of
minimum period P .







« Step 3. Apply F 1

- stdxx>ZD:Ze_2”inx¢(”)>DHR/zD He
i x 3 5 o glnpan)

mUZ ng 0

P-1

@dx x>£,Zme_2mnlpxj Z e—Zm'nox ¢ (n0)>

ng 0

4‘>dx x)0, (x):z;; e g(n, )

1

( 1 -— =2 7Tinyx
\one ' ¢(n0)>j




*Step 4. Measure

with respect to the observable

A:quyLQQ”yxy

to produce a random eigenvalue m /() and
then proceed to find the corresponding 5/ P
using the continued fraction recursion.

(We assume () > 2 P*)




Part 3
0%

Quantum Algorithms
based on Feynman path
Integrals

Calels



Caveat Emptor

The functional integral quantum algorithm
given in the following slides was developed in
the spirit of Feynman’s non-mathematically
rigorous description of functional integrals.
Many of the steps given below are yet to be

justified with the cutting edge of mathematical
rigor.



he Space Paths

Paths = all continuous paths X - [091] - R”
which are I’ with respect to the inner product

xey = [ dsx(5)(s)

Paths is a vector space over [R with respect
to

- (Ax)(s) Ax(s)

(x+p)(s) = x(s)+y(s)



The Problem to be Solved

Let @ : Paths — C pe a functional with a
hidden subspace } of Pqgths such that

¢(x+v)=¢(x) wl vV

ODbjective. create a quantum algorithm that
finds the hidden subspace } .



The Ambient Rigged Hilbert Space

Let Hpa,hs be the rigged Hilbert space with
orthonormal basis ,

{\x): x0O Paths)

and with bracket product

x|y =d(x-y)



Parenthetical Remark

Please note that Paths can be written as the
following disjoint union:

Paths = U (v +VD)

vV



«Step 2. Apply U >u>Hx>u+¢(x)>

W, = j Dx |x) §(x);






But

ijeZ”xw jDv j Dxe™” ¢(x)
IDI D™ g{v-+x)

(Do | Dxe™™ o)



However, J'Dv 2rivey jDud(y—u)

So,
Y, = j Dyly jDveZ” ijxe””(b( x)
I Dy jDuJy u ijeZ”“y¢( x))

_‘;Du I_,[Dxez”’x P(x);
- [ Duw Q)



«Step 4. Measure

@y = | DuluQ(u)

with respect to the observable
A= j Dwww)w
Paths

to produce a random element of VD



Question

Can the above path integral quantum algorithm
be modified in such a way as to create a
quantum algorithm for the Jones polynomial ?

l.e., can it be modified by replacing Paths by the
space of gauge connections, and by making

suitable modifications? J‘ D A (/j(A) W (A)

where I/ A) is the Wilson loop

W,

[ (A4) = tr(Pexp(chKA))
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