Some Geometrical / topological aspects of **slow / fast coupled** dynamical systems in **quantum / classical** dynamics.

1) Introduction

A small molecule:

group of interacting (quantum) nuclei and electrons. with fast electrons ($\tau_e \simeq 10^{-15} \rightarrow 10^{-16}s.$), slower vibrations of the nuclei ($\tau_v \simeq 10^{-14} \rightarrow 10^{-15}s.$,) slower rotation of the molecule ($\tau_{rot} \simeq 10^{-10} \rightarrow 10^{-12}s.$). Characteristics:

- Fast-Slow coupled, quantum, Hamiltonian system with finite number of degree of freedom.
- We will be concerned with Topological properties of the spectrum, (crude properties but robust against perturbations).
 Collaboration with Boris Zhilinskii (Dunkerque).

Geometrical and topological aspects:

They concern **fiber bundles** with **connections** which naturally occur in the previous situations.

Topology of the bundle due to possible twists:

Slow \ Fast	Classical, Integrable in <i>P</i> _{Fast}	Quantum in \mathcal{H}_{Fast}	
Classical in <i>P</i> _{Slow}	(<i>Classical</i>)	(Semi-Quantum)	
	Function $H_{tot}(X_{slow}, X_{fast})$	Matrix Symbol $X_{slow} \to \hat{H}_{fast}(X_{slow})$	
	Topology of tori bundle	Topology of eigenstates bundle	
	Hannay's connection	Berry's connection	
Quantum in \mathcal{H}_{Slow}	No meaning (?)	(<i>Quantum</i>)	
		$\hat{H}_{tot} ext{ in } \mathcal{H}_{slow} \otimes \mathcal{H}_{fast}$	
		Number of states in group of levels	
		Density of states	
Fiber = Fast Phase space or Fast Hilbert Space Fine structure: slow motion			

Large structure: fast motion

 $\Delta E \sim h \omega$

Base space =

Slow Phase space (A) or Parameter space (B)

Contents

- Correspondances between the <u>semi-quantum</u> and <u>quantum description</u>:
 - <u>Slow motion on S^2 </u>: rotation coupled with fast fibrations. Line bundles with C_1 Chern index.
 - <u>Slow motion on \mathbb{CP}^2 </u>: degenerate vibrations coupled with fast electronic motion.

Vector bundles with C_1, C_2 Chern indices.

Non-decomposable vector bundles. The index formula.

• Correspondances between the <u>classical</u> and <u>semi-quantum description</u>: Monodromy and bifurcation of eigenstate bundles.

<u>References</u>

Ro-Vibrationnal coupling:

- B. Zhilinskii, L. Michel , *"Symmetry, Invariants, and Topology"*, Phys. report, 2001.
- R.G. Littlejohn, and W.G. Flynn *"semi-classical theory of spin-orbit coupling"*, Phys. Rev. A ,1992.

Semi-classical Theory of Slow-Fast systems:

- R.G.Littlejohn, W.G.Flynn *"Geometric phases in the asymptotic theory of coupled wave equations"* Phys.Rev. A,44 (1991).
- C. Emmrich, A. Weinstein *"Geometry of the transport equation in multicomponents WKB approximations"* Comm.Math.Phys., 209, p691 (1996).

Index formula and geometric quantization:

- B. Fedosov, *"The Atiyah-Bott-Patodi Method in deformation quantization"*, Commun. Math. Phys.,**209**, p691,2000.
- E. Hawkins, *"Geometric quantization of vector bundles and the correspondence with deformation quantization"* Commun. Math. Phys., 215, p409, (2000).

Index formula and topology in molecular spectra:

- F.Faure, B.Zhilinskii, *"Topological Chern indices in molecular spectra"*. Phys.Rev.Lett.
 85, p.960, 2000.
- F. Faure, B. Zhilinskii, *"Topological properties of the Born-Oppenheimer approx-imation and implications for the exact spectrum"*, Lett. in Math. Phys., 2001.
- F. Faure, B. Zhilinskii, *"Topologically coupled energy bands in molecules"* Phys.Letters A, 302, p. 242, 2002.

Semi-classical computation of Chern indices

• F.Faure *"Topological properties of quantum periodic Hamiltonians"* Jour. of phys. A: math and general, 33 , 531-555 (2000)

Classical and Quantum Monodromy in integrable systems

- J.J. Duistermaat, *"On Global action-angle coordinates"*, Pure Appl. Math., 33, p.687-706, (1980).
- R.H. Cushman and L.M. Bates, *"Global Aspects of classical integrable systems"*, Birkauser, Basel, (1997).
- Vu Ngoc San, *"Quantum Monodromy and Bohr-Sommerfeld Rules"*, Letters in Mathematical Physics 55, p. 205-217, (2001)
- D.A. Sadovskii, B.I. Zhilinskii, *"Monodromy, diabolic points, and angular mo-mentum coupling"* Physics Letter A, **256**, p235 (1999).

2) Slow rotation coupled with fast vibrations of the nuclei

Observations:

- Group of rotational levels
- Restructuration of groups and exchange of levels with external parameter.

These qualitative phenomena are very common in molecular spectra.

Objectives: Understand these qualitative phenomena

2.1) Angular momentum of a molecule

Isolated molecule

 \rightarrow the total angular momentum $\vec{J} = \sum_i \vec{x_i} \wedge \vec{p_i}$

is conserved in any inertial frame.

Rotational motion of a *rigid* **molecule:**

• <u>In classical dynamics</u>, In the body frame $\vec{J}(t)$ moves on the sphere phase space S_J^2 , with energy: $H(\vec{J}) = \frac{J_x^2}{I_x} + \frac{J_y^2}{I_y} + \frac{J_z^2}{I_z}$.

• In quantum dynamics

 $j = |\vec{J}| \in \mathbb{N}$ fixed, and angular momentum operators $[\hat{J}_x, \hat{J}_y] = i\hat{J}_z$ of so(3) acting in Hilbert space \mathcal{H}_j with dimension (2j + 1).

• **Semi-classical limit** is

$$\hbar_{eff} = 1/(2j) \to 0$$

• We will use:

$$\hat{\vec{J}}_{new} = \frac{1}{j}\hat{\vec{J}},$$
 and write $\hat{\vec{J}}$ instead of $\hat{\vec{J}}_{new}$

• **<u>Berezin symbol</u>** of the operator of \hat{O} (or Normal symbol):

$$\hat{O} \in L(\mathcal{H}_j) \rightarrow O(\vec{J}) = <\vec{J}|\hat{O}|\vec{J}> \in C^{\infty}$$

Operator Symbol

with

$$|\vec{J}\rangle = \hat{R}(\vec{\alpha})|m = -j\rangle, : \text{ coherent state}, \quad \vec{\alpha} = (0, \theta - \pi, \varphi): \text{Euler angles}$$
$$\hat{R}(\vec{\alpha}) = \exp\left(-i\alpha_3 j \hat{J}_z\right) \exp\left(-i\alpha_2 j \hat{J}_y\right) \exp\left(-i\alpha_1 j \hat{J}_z\right) : \text{ Rotation operator}$$
(1)

Example:

$$<\vec{J}|\hat{J}_{z}|\vec{J}> = J_{z} = \cos\theta, \qquad <\vec{J}|\hat{J}_{x}|\vec{J}> = J_{x}, \qquad <\vec{J}|\hat{J}_{z}^{2}|\vec{J}> = (J_{z})^{2} + \frac{1}{2j}\left(1 - J_{z}^{2}\right),$$

One consider operators with symbols such that:

 $O(\vec{J}) = O_0(\vec{J}) + \hbar_{eff} O_1(\vec{J}) + \dots$ principal symbol

The map $\hat{O} \rightarrow O$ is injective. \Rightarrow allows to work (as possible) with symbols on phase space instead of operators.

 $\widehat{a \ast b} = \hat{a}\,\hat{b}$

•Define the **star product** of two symbols:

Function on phase space

Property:

$$a * b = ab + \frac{i}{2}\hbar_{eff} \{a, b\} + o\left(\hbar_{eff}\right)$$

2.2) Model for coupling between:

slow rotation and *n* quantum vibrational levels:

•In the <u>quantum description</u>: Suppose

 \hat{H}_{tot} acts in $\mathcal{H}_{tot} = \mathcal{H}_{slow} \otimes \mathcal{H}_{fast} = \mathcal{H}_{j} \otimes \mathbb{C}^{n}$

Schrödinger equation is:

$$i\frac{d|\psi\rangle}{dt} = \hat{H}_{tot}|\psi\rangle$$

$$\Leftrightarrow \quad i\hbar_{eff}\frac{d|\psi\rangle}{d\tilde{t}} = \hat{H}_{tot}|\psi\rangle, \quad \text{with } \tilde{t} = \hbar_{eff} t \to 0$$

So semi-classical limit $\hbar_{eff} \rightarrow 0$ gives slow (adiabatic) motion for $\vec{J}(\tilde{t})$.

•In the <u>semi-quantum description</u>, its **symbol** is:

$$\hat{H}_{fast}(\vec{J}) = \langle \vec{J} | \hat{H}_{tot} | \vec{J} \rangle = \hat{H}_0(\vec{J}) + \hbar_{eff} \hat{H}_1(\vec{J}) + \dots$$

Symbol $\hat{H}_{fast}(\vec{J})$ is a operator valued symbol:

$$\begin{cases} \vec{J} \to \hat{H}_{fast} \left(\vec{J} \right) \\ S_J^2 \to \operatorname{Herm} \left(\mathcal{H}_{fast} = \mathbb{C}^n \right) \\ Slow & Fast \end{cases}$$

(This is the Born-Oppenheimer Approximation)

•Simple example: (n = 2) the Spin-Orbit coupling $(\lambda \in [0, 1])$:

$$\hat{H}_{fast}\left(\vec{J}\right) = (1-\lambda)\frac{1}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} + (\lambda)\frac{1}{2}\begin{pmatrix} J_z & J_x + iJ_y\\ J_x - iJ_y & -J_z \end{pmatrix}$$
$$= (1-\lambda)\hat{S}_z + \lambda\vec{J}.\hat{\vec{S}}.$$

• Eigenvalues of the symbol $\hat{H}_0\left(\vec{J}\right)$:

are $E_1\left(\vec{J}\right), E_2\left(\vec{J}\right), E_3\left(\vec{J}\right), \dots, E_n\left(\vec{J}\right)$, form *n* bands, *provided there is no degeneracy.*

Property about degeneracies:

If $\lambda \in \mathbb{R}^n \to \hat{H}(\lambda)$ is generic family of hermitian operators, then

degeneracies between 2 eigenvalues occur with codimension 3. More generally degeneracies with multiplicity k = 2, 3, ...occur with codimension $k^2 - 1 = 3, 8, ...$

Proof:

Because the space of $k \times k$ Hermitian matrices is k^2 dimensional. Matrices with multiplicity k are: $\lambda \hat{I}$ with $\lambda \in \mathbb{R}$. <u>The eigenspaces of $\hat{H}_0(\vec{J})$:</u>

 $\vec{J} \to F_i\left(\vec{J}\right) = \operatorname{Ker}\left(\hat{H}_0(\vec{J}) - E_i\left(\vec{J}\right)\hat{I}\right) \subset \mathbb{C}^n$

define *n* Complex Vector Bundle of rank 1: $F_1, F_2, ..., F_n$.

Clutching function

Their **topology** is characterized by **Chern indices:**

 $C_1, C_2, \ldots, C_n \in \mathbb{Z}$

<u>Additivity of the indices:</u> $\sum_i C_i =$ $\sum_{i} c_1(L_i) = c_1(\bigoplus_{i} L_i) = c_1(\mathcal{H}_{fast}) = 0.$

<u>Simple Example of :</u> (n = 2) the Spin-Orbit coupling:

$$\hat{H}_{fast}\left(\vec{J}\right) = (1-\lambda)\hat{S}_z + \lambda\vec{J}.\hat{\vec{S}}, \qquad \lambda \in [0,1]$$

$$-\underline{\operatorname{For} \lambda = 0}, \hat{H}_{fast} \left(\vec{J} \right) = \hat{S}_{z} = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}, \quad E_{\pm} \left(\vec{J} \right) = \pm 1/2, \quad C_{\pm} = 0.$$
$$-\underline{\operatorname{For} \lambda = 1}, \hat{H}_{fast} \left(\vec{J} \right) = \vec{J}.\hat{\vec{S}}. \quad E_{\pm} \left(\vec{J} \right) = \pm 1/2, \quad C_{\pm} = \mp 1.$$

- <u>At $\lambda = 1/2$ </u>, $\vec{J} = (0, 0, -1)$, gives H = 0; an isolated degeneracy between the two bands.

Quantum model: (rotation \vec{J} is quantized)

Operator
$$\hat{H}_{tot} = \hat{H}_{fast}(\hat{\vec{J}})$$
 on $\mathcal{H}_j \otimes \mathbb{C}^n$

Theorem :(C.Emmrich-A.Weinstein, CMP 176, p.701, 1998),

Construct projectors in \mathcal{H}_{tot} , $\hat{P}_1, \hat{P}_2, \hat{P}_3, \dots, \hat{P}_n$ associated with bands $1, 2, 3, \dots, n$, such that $\left[\hat{H}_{tot}, \hat{P}_i\right] = O(\hbar_{eff}^{\infty})$. $(\hat{P}_i \text{ is given by its symbol } \hat{P}_{i,0}(\vec{J}) + \hbar_{eff}\hat{P}_{i,1}(\vec{J}) + \dots$, with $\hat{P}_{i,0}(\vec{J})$: spectral projector on level $n^\circ i$ of $\hat{H}_0(\vec{J})$.) So define: $\mathcal{N}_i = Rank(\hat{P}_i)$: number of levels in band i

Remarks:

- •This result is no so obvious **if bands overlap** in energy; (figure above).
- •Corrections are due to possible **tunnelling effect** between bands.

Summary:

1/2 Quantum (Born.Opp.)	Quantum	
$\vec{J} \rightarrow H_{fast} \left(\vec{J} \right)$ $S_j^2 \rightarrow Herm\left(\mathbb{C}^n \right)$	Operator $\hat{H} = H_{fast}(\hat{\vec{J}})$ sur $\mathcal{H}_j \otimes \mathbb{C}^n$	
Chern indices <i>C_i</i> for bands	Number of levels in bands: \mathcal{N}_i	

Question: relation between band topology C_i and N_i ?

Simple Example of : (n = 2) the Spin-Orbit coupling: $\hat{H}_{fast}\left(\vec{J}\right) = (1 - \lambda)\hat{S}_z + \lambda\vec{J}.\hat{\vec{S}}, \quad \lambda \in [0, 1].$ $-\underline{\text{For } \lambda = 0, H = S_z: \quad \mathcal{N}_{\pm} = (2j + 1) \text{ levels.}}$ $-\underline{\text{For } \lambda = 1, H = \vec{J}.\vec{S}: \quad \mathcal{N}_{\pm} = (2j + 1) \pm 1 \text{ levels.}}$

Property (proof below): (F.Faure, B.Zhilinskii, Phys.Rev.Lett. 85, p.960, 2000)

 $\mathcal{N}_i = (2j+1) - C_i \quad \Leftrightarrow \quad \Delta \mathcal{N}_i = -\Delta C_i :$ at degeneracies

This is a simple case of the Index formula for the sphere (angular momentum) Chern Class of a line bundle on Sphere is $C(F^*) = 1 - Cx \in H^*(S^2, \mathbb{Z})$, with $C \in \mathbb{Z}$.

Introduce

 $Ch(F^*) = 1 - Cx$: Chern Character of the band $Ch(Quant_j) = \exp((2j)x) = 1 + 2jx$: coherent states line bundle

 $Todd(TS^2) = 1 + (1 - g)x$: Base space, genre g = 0

Index formula:

 $\mathcal{N}(F) = \left[Ch(F^*) \wedge Ch(Quant_j) \wedge Todd(TS^2) \right]_{/\operatorname{coef} \operatorname{of} x}$

gives

$$\mathcal{N}(F) = [(1 - Cx) \land (1 + (2j)x) \land (1 + (1 - g)x)]_{/x} = (2j) + (1 - g) - C$$
$$= (2j + 1) - C$$

Modifications of bands by an external parameter λ . Proof of the formula $\mathcal{N}_i = (2j+1) - C_i$.

<u>Remark: for molecules</u> $\lambda = \left| \vec{J} \right|$,

the external parameters are:

$$\vec{J} = \left(\frac{\vec{J}}{\left|\vec{J}\right|}, \left|\vec{J}\right|\right) \in \left(S_J^2 \times \mathbb{R}^+\right) = \mathbb{R}^3$$

Modification of Chern index at a generic degeneracy:

 $\Delta C_2 = C_2' - C_2 = \pm 1$

Local model near an isolated degeneracy:

$$\hat{H}_{\lambda}(q,p) = \begin{pmatrix} \pm \lambda & q+ip \\ q-ip & \mp \lambda \end{pmatrix}, \quad \Delta E = 2\sqrt{\lambda^2 + q^2 + p^2}$$

giving (Berry 84)

$$\Delta C = \mp 1$$

Its quantization:

Generic deformation of the given symbol $\hat{H}(\vec{J})$ from the trivial (uncoupled) situation $\hat{H}_0 = \hat{S}_z$, where $\mathcal{N}_i = (2j + 1), C_i = 0$:

What is particular here:

•Dim(*phase space* S²)=2 < Codim(*degeneracies*)=3.

So Vector bundles have **rank 1**. An external parameter $\lambda \in \mathbb{R}$, gives isolated degeneracies; a unique local model (sign ± 1).

•Rank 1 vector bundles over S^2 are characterized by

Chern Index : $C \in H^2(S^2, \mathbb{Z}) \equiv \mathbb{Z}$

Question: what happends with **4-dimensional** compact slow phase space?

3) Model with more interesting topological phenomena: Slow motion on $\mathbb{C}P^2$, **dimension 4**.

<u>Classical mechanics</u>: Three vibrations in 1:1:1 resonance on $T^*\mathbb{R}^3 = \mathbb{R}^6$:

q3 /

q2

 $[\mathbf{Z}]$

$$H_{vib} = \sum_{i=1}^{3} \frac{1}{2} \left(p_i^2 + q_i^2 \right) = \sum_{i=1}^{3} |Z_i|^2 = \langle Z | Z \rangle,$$

with $Z_i = \frac{1}{\sqrt{2}} \left(q_i + i p_i \right) \in \mathbb{C}, \quad Z = (Z_1, Z_2, Z_3) \in \mathbb{C}^3$
(classical trajectory q1)

so $Z(t) = Z(0)e^{-it}$.

For a fixed energy $E = \langle Z | Z \rangle$, a trajectory is associated to a point [Z] in **reduced phase space (dim 4)**

 $\mathbb{C}P^2 = (\mathbb{C}^3 \setminus \{0\}) / \sim, \quad with Z \sim \lambda Z, \quad \lambda \in \mathbb{C}$

Quantum mechanics: on $L^2(\mathbb{R}^3)$, operators $\hat{q}_i : \psi(\vec{q}) \to q_i \psi(\vec{q})$ $\hat{p}_i : \psi(\vec{q}) \to -i \frac{\partial \psi(\vec{q})}{\partial q_i}$, $\hat{H} = \sum_{i=1}^3 \frac{1}{2} \left(\hat{p}_i^2 + \hat{q}_i^2 \right)$,

<u>Semi-classical limit:</u> $\hbar_{eff} = 1/N \rightarrow 0$

Slow Vibrations coupled with 3 electronic states:

<u>Matrix symbol</u>: with parameter $\lambda \in [0, 1]$ *":magnetic field",*

$$\begin{cases} [Z] \rightarrow \hat{H}_{fast,\lambda}(Z) = (1-\lambda) \hat{H}_{fast,0} + \lambda \hat{H}_{fast,1}(Z) \\ \mathbb{C}P^2 \rightarrow & Herm\left(\mathbb{C}^3_{fast}\right) \\ \text{Slow} & \text{Fast} \end{cases}$$

•For $\lambda = 0$,

No dependence on $[Z] \in \mathbb{C}P^2$: $\hat{H}_{fast,0} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, giving three trivial fibers bundles, rank 1, on $\mathbb{C}P^2$: T_1, T_2, T_3 .

•For $\lambda = 1$,

 $\hat{H}_{fast,1}(Z) \equiv |Z\rangle\langle Z| = \frac{1}{\langle Z|Z\rangle} \left(\overline{Z_i}Z_j\right)_{i,j}$: Projector onto line $[Z] \subset \mathbb{C}^3_{fast}$ Eigenvalue ($E_3 = 1$): rank 1 fiber bundle V_{line} :"the canonical bundle" Eigenvalue ($E_1 = 0, E_2 = 0$): rank 2 fiber bundle V_{orth} .

Band spectrum in the Semi-quantum description

One compute $E_1(\lambda, [Z]) \leq E_2(\lambda, [Z]) \leq E_3(\lambda, [Z]), \ \lambda \in \mathbb{R}, [Z] \in \mathbb{C}P^2.$

represents the decomposition of the trivial bundle $\mathbb{C}P^2 \times \mathbb{C}^3$:

 $T_1 \oplus T_2 \oplus T_3 = \mathbb{C}^3 = V_{line} \oplus V_{orth}$

 $Rank 1, trivial = Rank 3, trivial = Rank 1 \oplus Rank 2$

Topology of a vector fiber bundle F **over** $\mathbb{C}P^2$: Characterized by its **Chern Class** $C(F) \in H^*(\mathbb{C}P^2, \mathbb{Z})$

 $C(F) = 1 + Ax + Bx^2, \qquad A, B \in \mathbb{Z}$

and its rank: $r \in \mathbb{N}^*$, (B = 0 if r = 1).

(*x* is symplectic two form on $\mathbb{C}P^2$).

•Composition property:

 $C(F \oplus F') = C(F) \land C(F') = 1 + (A + A') x + (AA' + B + B') x^{2}$

In the model,

 $C(V_{Line}) = 1 + x,$ $C(V_{Orth}) = 1 - x + x^{2}$

but

$$C(V_{Orth}) \neq (1 + A x) \land (1 + A' x) = 1 + (A + A') x + (AA') x^2$$

no solution with integers A, A'.

So V_{Orth} is a rank 2 undecomposable bundle.

Physical interpretation: A spectral gap can not appear inside the band *V*_{orth}, under any perturbation.

•**Remark:** One needs at least **three bands** because:

$$(1 + Ax) \land (1 + A'x) = 1 + (A + A')x + (AA')x^2 = 1$$

$$\Rightarrow A = A' = 0 : 2 \text{ trivial bands}$$

Quantization of vibrations:

 $\mathbb{C}P^2 \to \text{Hilbert space } \mathcal{H}_{Polyad N}, \qquad Z = \frac{1}{\sqrt{2}} \left(q + ip \right) \to \hat{Z} = \frac{1}{\sqrt{2}} \left(\hat{q} + i\hat{p} \right), \\ \hat{H}_{fast} \left(Z \right) \to \hat{H}_{total}$ **Total Hilbert space:** $\mathcal{H}_{tot} = \mathcal{H}_{Polyad N} \otimes \mathbb{C}^3_{Electronics}$

For N = 4:

Exchange of "elementary group" of $\Delta N = N + 2 = (N + 1) + 1 = 6$ levels.

Question: relation between \mathcal{N} and band topology (r, A, B)?

Atiyah-Singer Index formula (1965), Fedosov (1990)

relating Analysis (number of levels) and topology of bundles:

 $\mathcal{N}\left(F\right) = \left[Ch(F^*) \wedge Ch(Polyad_N) \wedge Todd(T\mathbb{C}P^2)\right]_{/\mathsf{coef of}\, x^2}$

with

$$Ch(F^*) = r - Ax + \frac{1}{2} (A^2 + 2B) x^2 \quad : \text{Band topology}$$
$$Ch(Polyad_N) = \exp(Nx) \quad : \text{geometric quantization of } \mathbb{C}P^2$$
$$Todd(T\mathbb{C}P^2) = 1 + \frac{3}{2}x + x^2 \quad : \text{Base space}$$

Our model:

$$\mathcal{N}(V_{Line}) = \left[\left(1 + x + \frac{x^2}{2} \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2}x + x^2 \right) \right]_{/x^2} = \frac{1}{2} \left(N + 3 \right) \left(N + 2 \right)$$
$$\mathcal{N}(V_{Orth}) = \left[\left(2 - x - \frac{x^2}{2} \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2}x + x^2 \right) \right]_{/x^2} = N \left(N + 2 \right)$$

Important physical remarks:

the Index formula is more precise than just giving the total number of states. From Levi-Civita connection in Hilbert space or Berry's connection, one has differential forms:

$$C(F) = det\left(1 + \frac{1}{2\pi i}\hat{\Omega}^{Berry}
ight);$$
 Total Chern Class

• The Index formula can be written:

$$\begin{split} \mathcal{N}\left(F\right) &= \int_{M} \mu \\ \mu &= \left[Ch(F^{*}) \wedge Ch(Polyad_{N}) \wedge Todd(T\mathbb{C}P^{2})\right]_{/\mathrm{Vol}} \end{split}$$

The Volume form μ is interpreted as the local density of states in phase space M.

• μ is still well defined if *M* is not compact.

- By the Semi-classical Symbol of the Hamiltonian $p \in M \to H(p) \in \mathbb{R}$, one obtains then the **Energy density of states**.
- For $h_{eff} = 1/N \rightarrow 0$, the expansion of μ is the Weyl formula. ("Averaged part" of the Gutwiller Trace-Formula), and involves no dynamics.

3) Correspondances between the Classical and Semi-quantum descriptions
3.1) A simple class of classical models. Topology of the tori bundle.
•Model: A slow angular momentum *J*(*t*) coupled with fast Angular momentum *S*(*t*).

•Total *classical phase space*:

$$P_{tot} = P_{slow} \times P_{fast} = S_j^2 \times S_s^2$$

•Total quantum Hilbert space:

 $\mathcal{H}_{tot} = \mathcal{H}_{slow} \otimes \mathcal{H}_{fast} = \mathcal{H}_{j} \otimes \mathcal{H}_{s}, \quad dim = (2j+1) (2s+1)$

• with the **adiabatic assumption**:

 $j \gg s$

and the **semi-classical limit for fast variable**:

 $s \gg 1$

•The **classical model** is specified by a **total symbol**:

 $H\left(\vec{J},\vec{S}\right)$

•Total Dynamics is **nearly integrable** (well identified tori: $S_{fast}^1 \times S_{slow}^1$).

•Simple example "Spin-orbit coupling":

$$H\left(\vec{J},\vec{S}\right) = (1-\lambda)S_z + \lambda\vec{J}\vec{S}, \qquad \lambda \in [0,1]$$

•Summary:

Slow $\vec{J} \setminus \text{Fast} \vec{S}$	Classical in $P_{Fast} = S_s^2$	Quantum in $\mathcal{H}_{Fast} = \mathcal{H}_s$
Classical in $P_{Slow} = S_j^2$	Function $H_{tot}(\vec{J}, \vec{S})$	Operator Symbol $\vec{J} \rightarrow \hat{H}_{fast}(\vec{J})$
	(<i>Classical</i> , phase space $S_j^2 \times S_s^2$)	(<i>Semi-Quantum</i>)
Quantum in $\mathcal{H}_{Slow} = \mathcal{H}_j$	No meaning	\hat{H}_{tot}
		$(Quantum \text{ in } \mathcal{H}_{tot} = \mathcal{H}_{slow} \otimes \mathcal{H}_{fast})$

Restricted Hypothesis:

•For every \vec{J} fixed, $H_{\vec{J}}(\vec{S})$ is a function on S_s^2 , with only a minimum *min* and a Maximum *Max*.

 \mathcal{C} : this class of models.

•If Max > min, Topology of the fast trajectories, characterized by **degree** $d \in \mathbb{Z}$ of:

degree of :
$$\vec{J} \in S_j^2 \to \mathbf{Max} \in S_s^2$$

So Topological subclass of models

 $\mathcal{C} = (\cup_d \mathcal{C}_d) \cup Singulars$

Topology of tori bundle $(T^1 \rightarrow S^2_{slow})$:

$$Chern_{Hannay} = 2 d$$

Examples:

$$H = \vec{B}(\vec{J}).\vec{S} \in \mathcal{C}_d$$

with $\vec{J}(\theta,\varphi) \rightarrow \vec{B}(\theta',\varphi')$ of degree d:

•
$$d = 1$$
, $\vec{B} = \vec{J}$, $H = \vec{J}.\vec{S}$ $C_{Hannay} = 2$
• $d = 0$, $\vec{B} = (0, 0, 1)$ $H = S_z$, $C_{Hannay} = 0$
• $d \neq 0$, $\vec{B}(\theta' = \theta, \varphi' = d\varphi)$ $H = \vec{B}(\vec{J})\vec{S}$, $C_{Hannay} = 2d$

3.2) Semi-quantum model;

Energy Bands and their topology by semi-classical calculation

there are $dim \mathcal{H}_{fast} = 2s + 1$ isolated bands, with Chern index $C_{Berry,m}$, $m = -s \rightarrow +s$.

Property: For $\mathcal{H} \in \mathcal{C}_d$,

$$C_{Berry,m} = -(2m) d,$$

$$C_{Hannay} = -\frac{\partial C_{Berry,m}}{\partial m} = 2d$$

<u>Proof:</u> Count the zeros of a global section of band $F_m: \vec{J} \to \hat{H}_{\vec{J}} |\psi_{\vec{J},m}\rangle = E_{\vec{J},m} |\psi_{\vec{J},m}\rangle$. Consider a **fixed coherent state** $|\vec{S}_0\rangle$. A **global section** is $|\psi_{\vec{J},m}\rangle\langle\psi_{\vec{J},m}|\vec{S}_0\rangle$. Same zeroes as the Husimi distribution at point \vec{S}_0 :

$$Hus_{\Psi}\left(\vec{S}\right) = \left|\langle \vec{S}_{0}|\psi_{\vec{J},m}\rangle\right|^{2}$$

$$C_{Berry,m} = ((s-m) - (s+m)) d = -(2m) d$$

Example: s = 2, $m = -2 \rightarrow +2$ so 5 bands,

$$d = 1, \qquad C_{-2} = +4, \quad C_{-1} = +2, \quad C_0 = 0, \quad C_1 = -2, \quad C_2 = -4, \\ d = 2, \qquad C_{-2} = +8, \quad C_{-1} = +4, \quad C_0 = 0, \quad C_1 = -4, \quad C_2 = -8,$$

Remember in the *Quantum model*: $\mathcal{N}_m = (2j + 1) - C_{Berry,m}$ So transition $d \to d + 1$ gives a **redistribution of levels** $\Delta \mathcal{N}_m = 2m$.

 $\Delta \mathcal{N}_{-2} = -4, \quad \Delta \mathcal{N}_{-1} = -2, \quad \Delta \mathcal{N}_0 = 0, \quad \Delta \mathcal{N}_1 = +2, \quad \Delta \mathcal{N}_2 = +4,$

3.3) Relation with classical and quantum monodromy: Local model at a transition between C_d **and** C_{d+1}

Transition occurs if $\vec{B}(\vec{J}) \sim 0$, for $\vec{J} \simeq \vec{J^*}$. (q, p) : local coordinates for $\vec{J} \in S_j^2$. Generic local model in $(q, p, \vec{S}) \in \mathbb{R}^2 \times S_s^2$: $H_{loc}(q, p, \vec{S}) = qS_y + pS_x - \lambda S_z$

Parameter space $(q, p, \lambda) \in \mathbb{R}^3$. Singularity at (0, 0, 0) gives:

$$\Delta C_{Hannay} = 2, \qquad \Delta C_{Berry,m} = -2m, \qquad \Delta \mathcal{N}_m = 2m$$

•For s = 1/2, already considered:

$$\hat{H}_{loc} = \left(egin{array}{cc} -\lambda & p+iq \\ p-iq & \lambda \end{array}
ight)$$

•This local model is **integrable**:

$$N = S_z + \frac{1}{2} \left(p^2 + q^2 \right), \quad \{H_{loc}, N\} = 0$$

This local integrable model has a generic (classical and quantum) monodromy defect

Observed by D.A. Sadovskii, B.I. Zhilinskii, *"Monodromy, diabolic points, and angular momentum coupling*" Physics Letter A, **256**, p235 (1999).

See Movie monodromie.gif.

Remark: generic only with the special assumption on Reeb graphs.

Monodromy matrix:

$$M = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL\left(2, \mathbb{Z}\right)$$

Remark: Monodromy is a generic event in integrable systems.

Summary:

•Semi-classical correspondence between the *Topological aspects of Semi Quantum* and the *Qualitative aspects of the Quantum* problem :

The semi-quantum Born-Oppenheimer approximation for *rotation-vibration-*

electronic coupling in molecules, shows **bands with non trivial topology** (vector bundles of any ranks).

This topology is related to the **number of energy levels** in each group of the **quantum** problem.

•Bifurcations : A change of band topology gives an exchange of levels between groups of levels.

also related with **monodromie** in the Classical description.

•**Perspectives :** extend this topological approach for infinite dimensional degrees of freedom systems (spins on lattice ...)?

Remark on the surface of degeneracy S in the model between bands 2-3

•In Parameter space $(\lambda, [Z]) \in \mathbb{R} \times \mathbb{C}P^2$, This surface $S \subset \mathbb{R} \times \mathbb{C}P^2$ is homotopic to $\mathbb{C}P^1 \subset \mathbb{C}P^2$ (Sphere: $Z_1 = 0$)

•Locally, one has a rank 2 bundle over Normal($\mathbb{C}P^1$):

This gives transfert of states:

$$\Delta \mathcal{N} = (N+1) + 1$$

<u>**Remark on Semi-classical expansion for** $\hbar \rightarrow 0$; Weyl formula with correction •For a line bundle over a Riemann surface, $h_{eff} = 1/(2j)$, Vol(S^2)=1.</u>

$$\mathcal{N}(F) = \frac{Vol}{h_{eff}} + (1 - g) - C$$

The first term is Usual Weyl **"number of quanta"** in total phase space (Below, this will give **the local density of states**.)

•For a line (r = 1) bundle \mathcal{F} over $\mathbb{C}P^2$, number of levels $\mathcal{N}(F)$ is a polynomial in N:

$$\mathcal{N}(F) = \left[\left(1 - Ax + \frac{1}{2}A^2x^2 \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2}x + x^2 \right) \right]_{/x^2}$$
$$= \frac{1}{2}N^2 + N\left(-A + \frac{3}{2} \right) + \left(\frac{1}{2}A^2 - \frac{3}{2}A + 1 \right)$$

Interpretation: $h_{eff} = 1/N$, $Vol(\mathbb{C}P^2) = 1/2$.

So

$$\mathcal{N}(F) = \frac{Vol}{h_{eff}^2} + \frac{1}{h_{eff}} \left(\frac{3}{2} - A\right) + \dots$$

<u>Remark on "Naturality" of index formula</u>

•<u>Chern Class is a map:</u>

$$C: F \in Vect(M) \to C(F) \in H^*(M, \mathbb{Z})$$

The main interest of Chern class C(F) is that coefficients are *integers*. But $C(F \oplus F') = C(F) \land C(F')$.

•For two bundles over (dim 2n) phases spaces,

$$F_1 \to M_1, \qquad F_2 \to M_2$$

one expects:

 $\mathcal{N}\left((F_1 \otimes F_2) \to (M_1 \times M_2)\right) = \mathcal{N}\left(F_1 \to M_1\right) \mathcal{N}\left(F_2 \to M_2\right) : \text{product of Hilbert spaces}$ $\mathcal{N}\left((F_1 \oplus F_2) \to M\right) = \mathcal{N}\left(F_1 \to M\right) + \mathcal{N}\left(F_2 \to M\right) : \text{Sum of bands}$

This comes from

 $Ch(F_1 \otimes F_2) = Ch(F_1) \wedge Ch(F_2)$ $Ch(F_1 \oplus F_2) = Ch(F_1) + Ch(F_2)$ $Todd (T (M_1 \times M_2)) = Todd (TM_1) \wedge Todd (TM_2)$

So the index formula is an expected formula:

 $\mathcal{N}(F_i) = [Ch(F_i \otimes Line_N) \wedge Todd(TM_i)]_{/\operatorname{coef de} x^n}$

But $Ch, Todd \in H^*(M, \mathbb{Q})$ (not integer classes).

Index theorem and group theory:

In the model, for $\lambda = 1$, \hat{H}_1 is constructed from **equivariance by SU(3)** :

Weyl formula of group theory gives correct dimensions \mathcal{N}_{Line} , \mathcal{N}_{orth} .

<u>Remark on relations with vector coherent states, and weight diagramm,</u> <u>induced representations, equivariant vector bundles:</u>

Rank 2 bundle over SU(3)/U(2)=CP 2

4) Main "Born-Oppenheimer" theorem of adiabaticity (C.Emmrich-A.Weinstein, CMP 176, p.701, 1998)

Consider:

- a **Phase space** P_{slow} (a symplectic manifold for slow motion),
- an Hilbert space \mathcal{H}_{fast} (for fast motion)
- a Matrix symbol $p \in P_{slow} \rightarrow \hat{H}(p) \in Herm(\mathcal{H}_{fast})$ which can be written $\hat{H}(p) = \hat{H}_0(p) + \hbar \hat{H}_1(p) + \hbar^2 \hat{H}_2(p) \dots,$
- Hypothesis: ∀p ∈ P_{slow}, eigenvalues (λ_i)_{i=1,...m} of Ĥ₀(p) are separated from the other part of the spectrum (μ_j)_{j=...}:

$$\forall i, j, p \ \lambda_i(p) - \mu_j(p) \neq 0$$

- So eigenvalues $(\lambda_i(p))_{i=1,...m}$ define a subspace $E(p) \subset \mathcal{H}_{fast}$, with orthogonal projector $\hat{\pi}_0(p)$.
- $E \rightarrow P_{slow}$ is a rank m complex vector bundle over P_{slow} .

• Then for any $k \in \mathbb{N}$, there is a **unique** matrix valued symbol:

$$\hat{\pi}(p) = \hat{\pi}_0(p) + \hbar \hat{\pi}_1(p) + \dots \hbar^k \hat{\pi}_k(p)$$

which defines a self-adjoint operator $\hat{\pi}_{tot}$ *in* \mathcal{H}_{tot} *, such that:*

$$\hat{\pi}_{tot}^2 = \hat{\pi}_{tot} + \mathcal{O}(\hbar^{k+1}) \qquad : \quad quasi - projector, \tag{2}$$

$$\left[\hat{H}_{tot}, \hat{\pi}_{tot}\right] = \mathcal{O}(\hbar^{k+1}) \quad : almost \ commute.$$
(3)

Remarks

• One can thus modify $\hat{\pi}_{tot}$ (move slightly the eigenvalues towards 1 or 0, without moving the eigen-spaces) to obtain a true projector $\hat{\pi}'_{tot}$ (i.e. $\hat{\pi}'^2_{tot} = \hat{\pi}'_{tot}$). Let:

$$\mathcal{N} = Rank(\hat{\pi}'_{tot})$$

 \mathcal{N} is the number of eigenvalues close to 1 of the principal symbol $\hat{\pi}_0(\vec{J})$.

• The index formula above gives $\mathcal{N} = Rank(\hat{\pi}'_{tot})$ in terms of topology of the bundle *E*.

- Generic case: each eigenvalue E_i and eigenvector $|\phi_i > \text{of } \hat{H}_{tot}, \quad i \in [1, ... \dim \mathcal{H}_{tot}]$, can be associated with the vector bundle E or its complement E^{\perp} ; i.e. $|\phi_i\rangle \in Im(\hat{\pi}(p))$ or $\hat{\text{Ker}}(\hat{\pi}(p))$.
- **Consequence:** a quantum state which initially belongs to the space $Im(\hat{\pi}(p))$, will stay in this space forever during its evolution, with a good approximation (if k high).
- Non generic case: by resonances between two eigenvalues the associated states can be equidistributed on $Im(\hat{\pi}(p))$ and $\hat{K}er(\hat{\pi}(p))$., as it occurs usually in the tunneling effect.

Indications for the proof :

By induction on $k \in \mathbb{N}$. One works only with symbols. Hypothesis for a given k:

$$\pi * \pi - \pi = \hbar^{k+1}A + O(\hbar^{k+2})$$
$$[\pi, H]_* = \hbar^{k+1}F + O(\hbar^{k+2})$$

Check that the hypothesis is true for k = 0.

Because $[\pi_0, H_0] = 0$, one can find a basis (for a given $p \in P$) such that:

$$\pi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad H_0 = \begin{pmatrix} (\lambda_i)_i & 0 \\ 0 & (\mu_j)_j \end{pmatrix} \equiv \begin{pmatrix} H_{00} & 0 \\ 0 & H_{11} \end{pmatrix},$$

and write in this basis:

$$A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}, \text{ idem for } F.$$
Lemme 1: $[A, \pi_0] = 0$, so $A = \begin{pmatrix} A_{00} & 0 \\ 0 & A_{11} \end{pmatrix}$.
Lemme 2: $F_{00} = [A_{00}, H_{00}], F_{11} = [A_{11}, H_{11}]$.
Write:

- /

$$\tilde{\pi} = \pi + \hbar^{k+1} K$$
with unknown $K = \begin{pmatrix} K_{00} & K_{01} \\ K_{10} & K_{11} \end{pmatrix}$ such that:

$$\tilde{\pi} * \tilde{\pi} - \tilde{\pi} = O(\hbar^{k+2})$$

$$[\tilde{\pi}, H]_* = O(\hbar^{k+2})$$

Lemme 3: $K_{00} = -A_{00}, K_{11} = A_{11}.$ *Lemme 4:* $H_{00}K_{01} - K_{01}H_{11} = F_{01}$ and $H_{11}K_{10} - K_{10}H_{00} = F_{10}$, i.e.:

 $(K_{01})_{ij} = (\lambda_i - \mu_j)^{-1} (F_{01})_{ij}, \quad idem \ for \ K_{10}.$

So Matrix K(p) is determined, giving $\tilde{\pi}$. Lemma 1,2,3,4 are not difficult to prove.