Some Geometrical / topological aspects of **slow / fast coupled** dynamical systems in **quantum / classical** dynamics.

1) Introduction

A small molecule:

group of **interacting (quantum) nuclei and electrons. 1) Introduction

A small molecule:**

group of **interacting (quantum) nuclei a**

with **fast electrons** ($\tau_e \simeq 10^{-15} \rightarrow 10^{-16} s$.), **iclei an**
D^{−16}s.),
≃ 10^{−14} **lei a**
 $\frac{16}{s}$.),
 10^{-1}
 $\simeq 10$

 ${\bf slower~vibrations~of~the~ nuclei}$ ($\tau_v \simeq 10^{-14} \rightarrow 10^{-15} s$.,) $\frac{4}{-10}$

slower vibrations of the nuclei ($\tau_v \approx 10^{-12} \rightarrow 10^{-12} s$.).
 Characteristics:

• Fast-Slow coupled, quantum, Hamiltonian system with

Characteristics:

-
- **finite humber of degree of freedom.**

 We will be concerned with **Topological** properties of the spectrum. (crude **degree of freedom.**
- We will be concerned with **Topological** properties of the spectrum, (crude properties but robust against perturbations). **Collaboration with Boris Zhilinskii** (Dunkerque).

Geometrical and topological aspects:

They concern **fiber bundles** with **connections** which naturally occur in the previous situations.

Topology of the bundle due to possible twists:

3

Base space = Slow Phase space (A) or Parameter space (B)

 $\overline{\mathscr{A}}$

 $ΔE ~sim h$ ω

 \equiv V

Contents

- Correspondances between the semi-quantum and quantum description: \mathbf{e}
S $\frac{1}{2}$
	- <u>Slow motion on S^2 :</u> rotation coupled with fast fibrations. Line bundles with C_1 Chern index. \mathbf{w}
 \vdots I rotation coupl<mark>e</mark>
'₁ Chern index. $\frac{S}{C}$ $\frac{1}{2}$
	- <u>Slow motion on C \mathbb{P}^2 :</u> degenerate vibrations coupled with fast electronic motion. motion.
Vector bundles with C_1, C_2 Chern indices. $\begin{array}{c} \n \begin{array}{c} 1 \ 1 \end{array} \\
	 \begin{array}{c} C \end{array} \\
	 \begin{array}{c} C \end{array} \n \end{array}$

Non-decomposable vector bundles. The index formula.

• Correspondances between the classical and semi-quantum description: Monodromy and bifurcation of eigenstate bundles.

References

Ro-Vibrationnal coupling:

- B. Zhilinskii, L. Michel , *"Symmetry, Invariants, and Topology"*, Phys. report, 2001.
- R.G. Littlejohn, and W.G. Flynn *"semi-classical theory of spin-orbit coupling"*, Phys. Rev. A ,1992.

Semi-classical Theory of Slow-Fast systems:

- R.G.Littlejohn, W.G.Flynn *"Geometric phases in the asymptotic theory of coupled wave equations"* Phys.Rev. A,44 (1991).
- C. Emmrich, A. Weinstein *"Geometry of the transport equation in multicomponents WKB approximations"* Comm.Math.Phys., 209, p691 (1996).

Index formula and geometric quantization:

- B. Fedosov, *"The Atiyah-Bott-Patodi Method in deformation quantization"*, Commun. Math. Phys.,**209**, p691,2000.
- E. Hawkins, *"Geometric quantization of vector bundles and the correspondence* with *deformation quantization*" Commun. Math. Phys., 215, p409, (2000).

Index formula and topology in molecular spectra: $\frac{1}{\cdot}$

- F.Faure, B.Zhilinskii, *"Topological Chern indices in molecular spectra".* Phys.Rev.Lett.
85, p.960, 2000.
• F. Faure, B. Zhilinskii, *"Topological properties of the Born-Oppenheimer approx*-**85,** p.960, 2000.
- *imation and implications for the exact spectrum"*, Lett. in Math. Phys., 2001. F. Faure, B. Zhilinskii, *"Topologically coupled energy bands in molecules"* Phys.Letters
- A, 302, p. 242, 2002.

Semi-classical computation of Chern indices $\frac{1}{2}$

F.Faure *"Topological properties of quantum periodic Hamiltonians"* Jour. of phys. A: math and general, 33 , 531-555 (2000)

Classical and Quantum Monodromy in integrable systems

- J.J. Duistermaat, *"On Global action-angle coordinates"*,Pure Appl. Math., 33,p.687- 706, (1980).
- R.H. Cushman and L.M. Bates, *"Global Aspects of classical integrable systems"*, Birkauser,Basel, (1997).
- Vu Ngoc San, *"Quantum Monodromy and Bohr-Sommerfeld Rules"*, Letters in Mathematical Physics 55, p. 205-217, (2001)
- D.A. Sadovskii, B.I. Zhilinskii, "Monodromy, diabolic points, and angular mo*mentum coupling*" Physics Letter A, **256**, p235 (1999).

2) Slow rotation coupled with fast vibrations of the nuclei

Observations:

- Group of rotational levels
- Restructuration of groups and exchange of levels with external parameter.

These qualitative phenomena are very common in molecular spectra.

Objectives: Understand these qualitative phenomena

2.1) Angular momentum of ^a molecule

Isolated molecule

 $\begin{array}{l} \textbf{molecule} \\\hline + \textbf{the total angular momentum } \vec{J} = \sum_i \vec{x_i} \wedge \vec{p_i} \end{array}$ \sum \ddot{i}

is conserved in any inertial frame.

Rotational motion of ^a *rigid* **molecule:**

<u>kotational motion of a *rigid* **molecule:**

• <u>In classical dynamics,</u> In the body frame $\vec{J}(t)$ moves on the sphere phase</u> **<u>Cotational motion of a** *rigid* **moles of a state of a state of the boundary space** S_J^2 , with energy: $H(\vec{J}) = \frac{J_x^2}{I_x}$ </u> $\frac{\mathbf{m}}{S}$ $\frac{1}{J}$ $\begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}$ <u>cu</u>
ly + \mathbf{f}
 \mathbf{f} $\frac{1}{2}$ $\scriptstyle y$ $\frac{J_y^2}{I_y} + \frac{J_z^2}{I_z}$.
an
+ \mathbf{h} $\frac{1}{2}$ \mathbf{e} $\frac{1}{z}$. **9 Space** S_J^2 , with energy:
• <u>In quantum dynamics</u> $\frac{1}{\Box}$ $\frac{2}{J},$

$\frac{1}{N}$

 $\frac{1}{j}$ $\begin{array}{l} \hbox{\bf \textit{intum dynamics}} \ \vec{J} \in \mathbb{N} \hbox{ {\bf fixed, and angular momentum operators } } \left[\hat{J}_x, \hat{J}_y \right] = i \hat{J}_z \hbox{ of } so(3) \end{array}$ \hat{J} $\frac{dy}{y}$ $\frac{i}{i}$ \hat{J} acting in **Hilbert space** \mathcal{H}_i with dimension $(2j + 1)$. け」
in
孔 \mathbf{g} ular momentum operato $_j$ with dimension $(2j+1).$ p
 j

Semi-classical limit is

$$
\hbar_{eff} = 1/(2j) \to 0
$$

We will use:

\n- We will use:
\n- $$
\hat{J}_{new} = \frac{1}{j}\hat{J}
$$
 and write \hat{J} instead of \hat{J}_{new}
\n- **Berezin symbol of the operator** of \hat{O} (or Normal symbol):
\n- $\hat{O} \in L(\mathcal{H}_j) \rightarrow O(\vec{J}) = \langle \vec{J} | \hat{O} | \vec{J} \rangle \in C^\infty$
\n

$$
\hat{O} \in L(\mathcal{H}_j) \to O(\vec{J}) = \langle \vec{J} | \hat{O} | \vec{J} \rangle \in C^{\infty}
$$

Operator Symbol

$$
||m = -j \rangle
$$
, : coherent state, $\vec{\alpha} = (0, \theta - \pi)$

with

$$
O \in L(\mathcal{H}_j) \to O(J) = \langle J|O|J \rangle \in C^{\infty}
$$

\n**Operator** Symbol
\nith
\n
$$
|\vec{J}\rangle = \hat{R}(\vec{\alpha})|m = -j \rangle
$$
\n: coherent state, $\vec{\alpha} = (0, \theta - \pi, \varphi)$: Euler angles
\n
$$
\hat{R}(\vec{\alpha}) = \exp(-i\alpha_3 j \hat{J}_z) \exp(-i\alpha_2 j \hat{J}_y) \exp(-i\alpha_1 j \hat{J}_z)
$$
\n: Rotation operator
\n(1)

Example:

Example:
\n
$$
<\vec{J}|\hat{J}_z|\vec{J}>=J_z=\cos\theta,
$$
 $<\vec{J}|\hat{J}_x|\vec{J}>=J_x,$ $<\vec{J}|\hat{J}_z^2|\vec{J}>=({J_z})^2+\frac{1}{2j}(1-{J_z^2}),$
\nOne consider operators with symbols such that:
\n $O(\vec{J})=-O_0(\vec{J})$ $+\hbar_{eff}O_1(\vec{J})+\dots$

One consider operators with symbols such that:

$$
O(\vec{J}) = O_0(\vec{J}) + \hbar_{eff} O_1(\vec{J}) + \dots
$$

principal symbol
The map $\hat{O} \rightarrow O$ is injective. \Rightarrow allows to work (as

possible) with symbols on phase space instead of operators.

 $\widehat{a * b} = \hat{a} \hat{b}$

Define the **star product** of two symbols:

Function on phase space

Property:

$$
\hat{a} * \hat{b} = \hat{a}
$$

$$
a * b = ab + \frac{i}{2}\hbar_{eff} \{a, b\} + o(\hbar_{eff})
$$

2.2) Model for coupling between:

slow rotation and n quantum vibrational levels:

•In the quantum description: Suppose

 \hat{H}_{tot} acts in $\mathcal{H}_{tot} = \mathcal{H}_{slow} \otimes \mathcal{H}_{fast} = \mathcal{H}_{i} \otimes \mathbb{C}^{n}$

Schrödinger equation is:

$$
i\frac{d|\psi\rangle}{dt} = \hat{H}_{tot}|\psi\rangle
$$

\n
$$
\Leftrightarrow \quad i\hbar_{eff}\frac{d|\psi\rangle}{d\tilde{t}} = \hat{H}_{tot}|\psi\rangle, \quad \text{with } \tilde{t} = \hbar_{eff} t \to 0
$$

So semi-classical limit $\hbar_{eff} \rightarrow 0$ gives slow (adiabatic) motion for $\vec{J}(\tilde{t})$.

•In the semi-quantum description, its symbol is:

$$
\hat{H}_{fast}(\vec{J}) = \langle \vec{J} | \hat{H}_{tot} | \vec{J} \rangle = \hat{H}_0(\vec{J}) + \hbar_{eff} \hat{H}_1(\vec{J}) + \dots
$$

Symbol $\hat{H}_{fast}(\vec{J})$ is a operator valued symbol:

$$
\begin{cases}\n\vec{J} & \to \hat{H}_{fast}(\vec{J}) \\
S_J^2 & \to \text{Herm}(\mathcal{H}_{fast} = \mathbb{C}^n) \\
Slow & Fast\n\end{cases}
$$

(This is the Born-Oppenheimer Approximation)

•Simple example: $(n = 2)$ the **Spin-Orbit** coupling $(\lambda \in [0, 1])$:

$$
\hat{H}_{fast} \left(\vec{J} \right) = (1 - \lambda) \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + (\lambda) \frac{1}{2} \begin{pmatrix} J_z & J_x + iJ_y \\ J_x - iJ_y & -J_z \end{pmatrix}
$$

$$
= (1 - \lambda) \hat{S}_z + \lambda \vec{J} \cdot \hat{\vec{S}}.
$$

• Eigenvalues of the symbol $\hat{H}_0\left(\vec{J}\right)$:

are $E_1(\vec{J})$, $E_2(\vec{J})$, $E_3(\vec{J})$, ..., $E_n(\vec{J})$, form *n* bands, provided there is no degeneracy.

Property about degeneracies: $\frac{dy}{dt}$ $\frac{a}{n}$ $\frac{1}{2}$

 $\frac{\textbf{Property~about~degeneracies:}}{\textbf{If} \, \lambda \in \mathbb{R}^n \rightarrow \hat{H}\left(\lambda \right) \textbf{ is generic family of hermitian operators,}$ $\frac{1}{\lambda}$ $\frac{1}{10}$ $\frac{g}{\lambda}$ *then* $\frac{\bf n}{\bf c}$

*degeneracies between 2 eigenvalues occur with codimension 3. degeneracies between 2 eigenvalues occur with codimens
More generally degeneracies with multiplicity* $k=2,3,\ldots$ $\frac{1}{k}$ *More generally degeneracies with multip.
• occur with codimension* $k^2-1=3,8,\ldots$ $\frac{1}{2}$ $\dot{\mathbf{z}}$
 i ri
^{ore}
- $\frac{1}{\sqrt{2}}$ al
tl. $\frac{1}{10}$

Proof:

<u>Proof:</u>
Because the space of $k\times k$ Hermitian matrices is k^2 dimensional. k k Matrices with multiplicity k are: $\lambda \hat{I}$ with $\lambda \in \mathbb{R}$. Hermitian ma
k are: $\lambda \hat{I}$ with $\frac{1}{\lambda}$ $\frac{1}{2}$ ti $\frac{1}{\lambda}$ \mathbf{c} \mathbf{s} .

The eigenspaces of $\hat{H}_0(\vec{J})$:

 $\vec{J}\rightarrow F_i\left(\vec{J}\right)=\text{Ker}\left(\hat{H}_0(\vec{J})-E_i\left(\vec{J}\right)\hat{I}\right)\subset\mathbb{C}^n$

define *n* Complex Vector Bundle **of rank 1:** $F_1, F_2, \ldots F_n$.

Their **topology** is characterized by **Chern indices:**

 $C_1, C_2, \ldots, C_n \in \mathbb{Z}$

Additivity of the indices: $\sum_i C_i =$ $\sum_{i} c_1(L_i) = c_1(\bigoplus_i L_i) = c_1(\mathcal{H}_{fast}) = 0.$

Simple Example of: $(n = 2)$ the Spin-Orbit coupling:

$$
\hat{H}_{fast}(\vec{J}) = (1 - \lambda)\hat{S}_z + \lambda \vec{J}.\hat{\vec{S}}, \qquad \lambda \in [0, 1]
$$

$$
-\underline{\text{For }\lambda=0, }\hat{H}_{fast}(\vec{J}) = \hat{S}_z = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}. \quad E_{\pm}(\vec{J}) = \pm 1/2, \quad C_{\pm} = 0.
$$

$$
-\underline{\text{For }\lambda=1, }\hat{H}_{fast}(\vec{J}) = \vec{J}.\hat{\vec{S}}. \quad E_{\pm}(\vec{J}) = \pm 1/2, \quad C_{\pm} = \mp 1.
$$

 $-\underline{\text{At}} \lambda = 1/2$, $\vec{J} = (0,0,-1)$, gives $H = 0$; an **isolated degeneracy** between the two bands.

18

Quantum model: (rotation is quantized)

(rotation
$$
\vec{J}
$$
 is quantized)

\n**Operator** $\hat{H}_{tot} = \hat{H}_{fast}(\hat{J})$ on $\mathcal{H}_j \otimes \mathbb{C}^n$

Theorem :(C.Emmrich-A.Weinstein, CMP 176, p.701, 1998),

Construct projectors in \mathcal{H}_{tot} , $\hat{P}_1, \hat{P}_2, \hat{P}_3, \ldots, \hat{P}_n$ associated with bands $1, 2, 3, \ldots, n$, **Theorem** : (C.Emmrich-A.We
 Construct projectors in \mathcal{H}_{tot} ,
 such that $\left[\hat{H}_{tot}, \hat{P}_i\right] = O(\hbar_{eff}^{\infty})$. Theorem :(C.Emmrich-A.Weinstein, CMP 176, p.7)

Construct **projectors in** \mathcal{H}_{tot} , \hat{P}_1 , \hat{P}_2 , \hat{P}_3 , . . . \hat{P}_n associ

such that $\left[\hat{H}_{tot}, \hat{P}_i\right] = O(\hbar^{\infty}_{eff})$.
 $(\hat{P}_i$ is given by its symbol $\hat{P$ such that $\left[\hat{H}_{tot},\hat{P}_i\right]=O(\hbar^{\infty}_{eff}).$
 $(\hat{P}_i$ is given by its symbol $\hat{P}_{i,0}(\vec{J})+\hbar_{eff}\hat{P}_{i,1}(\vec{J})+ \ldots,$

with $\hat{P}_{i,0}\left(\vec{J}\right)$: spectral projector on level n°*i* of $\hat{H}_0\left(\vec{J}\right)$.) such that $\left[H_{tot}, P_i\right] = O(\hbar_{eff}^{\infty})$
 $(\hat{P}_i$ is given by its symbol \hat{P}_i

with $\hat{P}_{i,0}\left(\vec{J}\right)$: spectral proje

So define: $\mathcal{N}_i = Rank\left(\hat{P}_i\right)$: $\left|\textsf{So define: } \mathcal{N}_i = Rank\left(\hat{P}_i\right): \quad \textbf{number of levels in band } i\right|$

Remarks:

- This result is no so obvious **if bands overlap** in energy; (figure above).
- Corrections are due to possible **tunnelling effect** between bands.

Summary:

Question: relation between band topology C_i and \mathcal{N}_i ?

<u>Simple Example of : $(n = 2)$ the Spin-Orbit coupling:</u> **Simple Example of :** $(n = 2)$
 $\hat{H}_{fast}(\vec{J}) = (1 - \lambda)\hat{S}_z + \lambda\vec{J}.$ the Spin-Orb
 $\hat{\vec{S}}$, $\lambda \in [0, 1]$. $-$ For $\lambda = 0$, $H = S_z$: $\mathcal{N}_{\pm} = (2j + 1)$ levels. **Simple Example of :** $(n = 2)$ the Spin-Orbit
 $\hat{H}_{fast}(\vec{J}) = (1 - \lambda)\hat{S}_z + \lambda \vec{J}.\hat{\vec{S}}, \quad \lambda \in [0, 1].$
 $-\text{For } \lambda = 0, H = S_z: \quad \mathcal{N}_{\pm} = (2j + 1) \text{ levels.}$ – For $\lambda=1.$ $H=\vec{J}.\vec{S}$ **Simple Example of :** $(n = 2)$ the Spin-Orbit coup $\hat{H}_{fast}(\vec{J}) = (1 - \lambda)\hat{S}_z + \lambda \vec{J}.\hat{\vec{S}}, \quad \lambda \in [0, 1].$
- <u>For $\lambda = 0$ </u>, $H = S_z$: $\mathcal{N}_{\pm} = (2j + 1)$ levels.
- <u>For $\lambda = 1$ </u>, $H = \vec{J}.\vec{S}$: $\mathcal{N}_{\pm} = (2j + 1) \pm 1$ levels.

Property (proof below): (F.Faure, B.Zhilinskii, Phys.Rev.Lett. **85,** p.960, 2000)

<u>This is a simple case of the Index formula for the sphere (angular momentum)</u> **This is a simple case of the Index formula for the sphere (angular moment)
Chern Class of a line bundle on Sphere is** $C(F^*) = 1 - Cx \in H^*(S^2, \mathbb{Z})$ **, with** $\frac{s}{1}$ $\frac{1}{2}$ ohere $\overline{\mathbf{a}}$ ng
H $\frac{1}{2}$ $\frac{1}{C}$ $\frac{1}{2}$
 \in $C\in\mathbb{Z}$. bundle on Sphere is $C(F^*) = 1 - Cx \in H^*(S^2, \mathbb{Z}),$
 $Ch(F^*) = 1 - Cx \quad :$ Chern Character of the band Sphere is

Introduce

 $\overline{1}$ $\emph{C}h(F^*)=1-Cx \quad \text{: Chern Character of the ban} \ \emph{Ch} (Quant_j)=\exp{((2j)x)}=1+2j\,x \quad \text{: coherent states line bundle}$ $a(F^*) = 1 - Cx$:
 $j(x) = 1 + 2jx$: $\frac{1}{1}$ $\frac{1}{2}$ $\frac{\mathcal{C}}{j}$. I have I have stay of the $Ch(F^*) = 1 - Cx$: Chern Character of the
 $f(x) = \exp((2j)x) = 1 + 2jx$: coherent states line bun
 $Todd(TS^2) = 1 + (1 - g)x$: Base space, genre g = 0 $\binom{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ th $\begin{aligned} \operatorname{Total}(TS^2) &= 1 + (1-g)x \quad \text{: } \textbf{Base space, genre g} \ \textbf{la:} \ \mathbf{A} \ \mathbf{$

Index formula:

 $\binom{2}{ }$ $\frac{1}{x}$ $\begin{array}{l} \displaystyle \left(F \right) = \left[Ch(F^*) \wedge Ch(Quant_{j}) \wedge Todd(TS^2) \right]_{/\textbf{coeff}} \ \displaystyle \left. - Cx \right) \wedge \left(1 + (2j)x \right) \wedge \left(1 + (1-g)x \right) \right]_{/x} = (2j) + (1j) \end{array}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\int \frac{1}{x} \, dx$

gives

$$
\mathcal{N}(F) = [Ch(F^*) \land Ch(Quant_j) \land Todd(TS^2)]_{/\text{coeff of } x}
$$

\n
$$
\mathcal{N}(F) = [(1 - Cx) \land (1 + (2j)x) \land (1 + (1 - g)x)]_{/x} = (2j) + (1 - g) - C
$$

\n
$$
= (2j + 1) - C
$$

<u>Modifications of bands by an external parameter λ .</u> Proof of the formula **Modifications of**
 $\mathcal{N}_i = (2j + 1) - C_i$. $\frac{1}{j}$ $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}-\frac{1}{2}\right)}$ $\frac{1}{\lambda}$ $\frac{y}{x}$ $rac{\mathbf{b}}{\mathbf{b}}$
ard

 ${\bf Remark: for molecules} \; \lambda = \left| \vec{J} \right|,$

the external parameters are:

ules
$$
\lambda = |\vec{J}|
$$
,
ters are:

$$
\vec{J} = \left(\frac{\vec{J}}{|\vec{J}|}, |\vec{J}|\right) \in (S_J^2 \times \mathbb{R}^+) = \mathbb{R}^3
$$

Modification of Chern index at a generic degeneracy:

 $\Delta C_2 = C'_2 - C_2 = \pm 1$

Local model near an isolated degeneracy:

$$
\hat{H}_{\lambda}(q,p) = \begin{pmatrix} \pm \lambda & q + ip \\ q - ip & \mp \lambda \end{pmatrix}, \quad \Delta E = 2\sqrt{\lambda^2 + q^2 + p^2}
$$

giving (Berry 84)

$$
\boxed{\Delta C = \mp 1}
$$

Its quantization:

Generic deformation of the given symbol \hat{H} $\left(\vec{J} \right)$
from the trivial (uncoupled) situation $\hat{H}_0 = \hat{S}_z$, $\left(\begin{array}{c} \end{array}\right)$ **Generic deformation** of th
from the trivial (uncoupled
where $\mathcal{N}_i = (2j + 1), C_i = 0$ where $\mathcal{N}_i = (2j + 1), C_i = 0$:

What is particular here:

 \bullet Dim(*phase space* S^2)=2 < Codim(*degeneracies*)=3.

So Vector bundles have **rank 1.** An external parameter $\lambda \in \mathbb{R}$, gives isolated degeneracies; a unique local model (sign ± 1). del (sign ± 1).

des over S^2 are characterized by

Chern Index : $C \in H^2(S^2, \mathbb{Z}) \equiv \mathbb{Z}$

a unique local model (sign \pm 1).
•Rank 1 vector bundles over S^2 are characterized by

Question: what happends with **4-dimensional** compact slow phase space?

3) Model with more interesting topological phenomena: Slow motion on $\mathbb{C}P^2$, dimension 4. $\frac{1}{2}$ re
P $\frac{1}{2}$ \overline{T} \ddot{x} \mathbb{R}

Classical mechanics: Three vibrations in 1:1:1 resonance on $T^*\mathbb{R}^3=\mathbb{R}^6$: $\frac{1}{3}$ \mathbb{R} $\frac{6}{3}$

q2

 $q3 \uparrow$

Classical mechanics: Three vibrations in 1:1:1 resonance on
$$
T^* \mathbb{R}^3 = \mathbb{R}^6
$$
:
\n
$$
H_{vib} = \sum_{i=1}^3 \frac{1}{2} (p_i^2 + q_i^2) = \sum_{i=1}^3 |Z_i|^2 = \langle Z|Z \rangle,
$$
\nwith $Z_i = \frac{1}{\sqrt{2}} (q_i + ip_i) \in \mathbb{C}, \quad Z = (Z_1, Z_2, Z_3) \in \mathbb{C}^3$
\nso $Z(t) = Z(0)e^{-it}$.

 $\big)$ $-it$.

so $Z(t) = Z(0)e^{-it}$.
For a fixed energy $E = \langle Z|Z\rangle$, a trajectory is associated to a point $[Z]$ in \overline{E} \langle **reduced phase space (dim 4)** $rac{1}{s}$ er
:**p**
P $\frac{1}{2}$ y
 $:=$ E (d) di
C $\frac{1}{3}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\langle 4 \rangle$ $\begin{align} Z|Z\rangle, \text{ a trajectory is }&\text{assoc}(\lambda) \,, \end{align}$ $\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array}$ $\begin{pmatrix} 2 \ 1 \end{pmatrix}$)
|
| $\frac{1}{\lambda}$ $\frac{d}{dx}$ $\overline{\mathbb{C}}$

Quantum mechanics: on $L^2(\mathbb{R}^3)$, **Quantum mechanics:** on $L^2 (\mathbb{R}^3)$,
operators $\hat{q}_i : \psi(\vec{q}) \to q_i \psi(\vec{q})$ $\hat{p}_i : \psi(\vec{q}) \to -i \frac{\partial \psi(\vec{q})}{\partial q_i}$ $\frac{\psi(\vec{q})}{\partial q_i},$ $\begin{align} \vec{q} &\rightarrow \ \vec{H} = \sum^3 \end{align}$ $\frac{1}{3}$ $\sum_{i=1}^3$ $\frac{i}{1}$ $i : \psi(\vec{q}) \to -$
 $\frac{1}{2} (\hat{p}_i^2 + \hat{q}_i^2)$, Quant $\begin{aligned} \textbf{Quant} \ \text{operator} \ \frac{\textbf{Spect}}{2} \ \textbf{E} = \sum_{i=1}^{3} \ \end{aligned}$

<u>Semi-classical limit:</u> $\hbar_{eff} = 1/N \rightarrow 0$

Slow Vibrations coupled with 3 electronic states: λ

**<u>Slow Vibrations coupled with 3 electronic states:</u>

<u>Matrix symbol:</u> with parameter** $\lambda \in [0,1]$ **":***magnetic field",* $\frac{\mathbf{n}}{\mathbf{k}}$ $\frac{\partial \mathbf{I} \epsilon}{\partial \mathbf{a}}$ $\frac{1}{\sqrt{2}}$ td
m
+ $\frac{1}{\lambda}$ $\frac{1}{2}$

 \bullet For $\lambda=0,$ λ

No dependence on $[Z]$ \in \mathbb{C} \overline{P} $\frac{1}{2}$: $\hat{H}_{fast,0}$ $\overline{}$ - $\frac{1}{1}$ $\overline{0}$ $\frac{1}{1}$ \backslash , ^giving **three trivial fibers bundles, rank 1**, on $\mathbb{C}P^2$: $T_1, T_2, T_3.$ $\overline{\mathbb{C}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\begin{array}{c} \frac{1}{2} \end{array}$ $\frac{1}{\lambda}$ ri
= three trivial fibers bundles, rank 1, on $\mathbb{C}P^{\frac{1}{2}}$: T_1, T_2, T_3 .
 $\widehat{\mathbf{For}}\ \lambda=1$,
 $\hat{H}_{fast,1}(Z)\equiv |Z\ \rangle\langle\ Z|= \frac{1}{} \left(\overline{Z_i}Z_j\right)_{i,j}$: Projector onto line $[Z]\subset\mathbb{C}^3_{fast}$

•For $\lambda=1$,

: $\frac{3}{3}$ $\text{Eigenvalue } (E_3 = 1)$: $\textbf{rank 1 fiber bundle}$ $\frac{7}{3}$ $\frac{1}{\sqrt{2}}$ $\textbf{V}_{line}: \textbf{``the canonical bundle''} \$ $\bm{E} = 1$): $\bm{{\bf rank}}$ **1 fiber bundle** V_{line} :"the canonical bundle
Eigenvalue ($E_1 = 0, E_2 = 0$): $\bm{{\bf rank}}$ 2 fiber bundle V_{orth} . $\overline{Z_i}Z$
ber
 $\overline{Z_1} =$ $\frac{1}{2}$ $\frac{P}{P}$

Band spectrum in the Semi-quantum description $\frac{\mathbf{n}}{E}$ <u>ii</u>
E $\frac{\mathrm{d} \mathbf{e}}{E}$

Band spectrum in the Semi-quantum description
One compute $E_1(\lambda,[Z]) \leq E_2(\lambda,[Z]) \leq E_3(\lambda,[Z])$, $\lambda \in \mathbb{R}, [Z] \in \mathbb{C}P^2$. $\frac{e}{\leq}$ $\frac{\mathbf{n}}{\leq}$ ϵ \overline{P} $\frac{1}{2}$

represents the decomposition of the trivial bundle $\mathbb{C}P^{2}\times\mathbb{C}^{3}$: e . $\frac{1}{3}$ $\frac{p^2}{V_{orth}}$ $\begin{align} \mathcal{L} &\rightarrow \\ &\mathcal{L}_{o} \end{align}$

e decomposition of the trivial bundle \mathbb{C}
 $T_1 \oplus T_2 \oplus T_3 \qquad = \qquad \mathbb{C}^3 \qquad = \qquad V_{line} \in$
 $nk \, 1. \,\, trivial \, = Rank \, 3. \,\, trivial \, = \, Rank$ $T_1 \oplus T_2 \oplus T_3 = \mathbb{C}^3 = V_{line} \oplus V_{orth}$
 $Rank 1, trivial = Rank 3, trivial = Rank 1 \oplus Rank 1$

 $\frac{1}{1}$ $\frac{1}{2}$

Topology of **a** vector fiber bundle F over $\mathbb{C}P^2$: **Topology of a vector fiber bundle** F **over** $\mathbb{C}P^2$:
Characterized by its **Chern Class** $C(F) \in H^*(\mathbb{C}P^2,\mathbb{Z})$ or fiber bundle F over $\mathbb{C}P^2$:

s Chern Class $C(F) \in H^*(\mathbb{C}P^2, \mathbb{Z})$
 $C(F) = 1 + Ax + Bx^2, \qquad A, B \in \mathbb{Z}$ Characterized by its **Chern Class** $C(F)$
 $C(F) = 1 + Ax + Bx$
and its **rank**: $r \in \mathbb{N}^*$, $(B = 0 \text{ if } r = 1)$.

 $C(F) = 1 + Ax + Bx^2$, $A, B \in \mathbb{Z}$
and its rank: $r \in \mathbb{N}^*$, $(B = 0 \text{ if } r = 1)$.
(*x* is symplectic two form on $\mathbb{C}P^2$).

Composition property:

 $C(F \oplus F') = C(F) \wedge C(F') = 1 + (A + A') x + (AA' + B + B') x^2$

In the model,

but

$$
C(V_{Line}) = 1 + x, \qquad C(V_{Orth}) = 1 - x + x^2
$$

$$
C(V_{Orth}) \neq (1 + Ax) \land (1 + A'x) = 1 + (A + A')x + (AA')x^2
$$

no solution with integers A, A' .

So 4" is ^a **rank 2 undecomposable bundle.**

Physical interpretation: A **spectral gap can not appear** inside the band V_{orth} , **under any perturbation**.

Remark: *One needs at least three bands because:*

One needs at least three bands because:
 $(1 + A x) \wedge (1 + A' x) = 1 + (A + A') x + (A A') x^2 = 1$ \Rightarrow $A = A' = 0$: 2 trivial bands **ee bands** be
= $1 + (A + A)$
 $A = A' = 0$.
. $+(AA')x^2=1$
2 trivial bands

Quantization of vibrations: Quanti
 $\mathbb{C}P^2 \rightarrow$

ation of vibrations:
Hilbert space $\mathcal{H}_{Polyad\,N},$ $Z = \frac{1}{\sqrt{2}}(q+ip) \rightarrow \hat{Z} = \frac{1}{\sqrt{2}}(\hat{q}+i\hat{p}),$ $\hat{H}_{fast}\left(Z\right)\rightarrow\hat{H}_{total}$ **Quantization of vibrations:**
 $\mathbb{C}P^2 \rightarrow \text{Hilbert space } \mathcal{H}_{Polyad\,N}, \qquad Z = \frac{1}{\sqrt{N}}$
 Total Hilbert space: $\mathcal{H}_{tot} = \mathcal{H}_{Polyad\,N} \otimes \mathbb{C}_{El}^3$ **Total Hilbert space:** $\mathcal{H}_{tot} = \mathcal{H}_{Polyad N} \otimes \mathbb{C}_{Electromics}^3$ $\mathbb{C}P^2 \rightarrow \mathbb{H}$
 $\hat{H}_{fast}(Z)$
 Total Hilb
 For $N = 4$:

Question: relation between N and band topology (r, A, B) ?

Atiyah-Singer Index formula (1965), Fedosov (1990)

relating Analysis (number of levels) and topology of bundles: $\frac{b}{P}$

 $\frac{1}{x}$

 $\frac{1}{2}$

with

yah-Singer Index formula (1965), Fedosov (1990)
ating Analysis (number of levels) and topology of bundles:

$$
\mathcal{N}(F) = \left[Ch(F^*) \wedge Ch(Polyad_N) \wedge Todd(T\mathbb{C}P^2) \right]_{/\text{coef of } x^2}
$$

h
$$
Ch(F^*) = r - Ax + \frac{1}{2}(A^2 + 2B) x^2 \quad \text{: Band topology}
$$

$$
Ch(Polyad_N) = \exp(Nx) \quad \text{: geometric quantization of } \mathbb{C}P^2
$$

$$
Todd(T\mathbb{C}P^2) = 1 + \frac{3}{2}x + x^2 \quad \text{: Base space}
$$

Our model:

model:
\n
$$
\mathcal{N}(V_{Line}) = \left[\left(1 + x + \frac{x^2}{2} \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2}x + x^2 \right) \right]_{/x^2} = \frac{1}{2} (N+3) (N+2)
$$
\n
$$
\mathcal{N}(V_{Orth}) = \left[\left(2 - x - \frac{x^2}{2} \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2}x + x^2 \right) \right]_{/x^2} = N (N+2)
$$

Important physical remarks:

the Index formula is more precise than just giving the total number of states. From Levi-Civita connection in Hilbert space or Berry's connection, one has differential forms:

$$
C(F) = det\left(1 + \frac{1}{2\pi i} \hat{\Omega}^{Berry}\right); \quad \text{Total Chern Class}
$$

• The Index formula can be written:

$$
\mathcal{N}\left(F\right)=\int_{M}\mu
$$

$$
\mu=\left[Ch(F^*)\wedge Ch(Polyad_N)\wedge Todd(T\mathbb{C}P^2)\right]_{/\mbox{Vol}}
$$

The Volume form μ is interpreted as the local density of states in phase space M_{\bullet}

 \bullet μ is still well defined if M is not compact.

- By the Semi-classical Symbol of the Hamiltonian $p \in M \rightarrow H(p) \in \mathbb{R}$, one \overline{p} \in \overline{M} obtains then the **Energy density of states**. • By
obt:
• For he Semi-classical Symbol of the Hamiltonian $p \in M \to H(p) \in \mathbb{R}$, one
ins then the **Energy density of states**.
 $h_{eff} = 1/N \to 0$, the expansion of μ is the **Weyl formula**. ("Averaged en
he
= ו
מ $\begin{array}{c} -1 \ 1 \end{array}$ cla
ch
N
- part" of the Gutwiller Trace-Formula), and involves no dynamics.

3) Correspondances between the Classical and Semi-quantum descriptions 3.1) A simple class of classical models. Topology of the tori bundle. **3.1) A simple class of classical models. Topology of the tori bundle.**
• Model: A slow angular momentum $\vec{J}(t)$ coupled with fast Angular momentum $\vec S(t).$ \bullet if m
 \equiv $\frac{1}{x}$ $\left(\frac{1}{2} \right)$ S $\frac{1}{\sqrt{1+\frac{1}{2}}}$ S

Total *classical phase space*:

nce:

\n
$$
P_{tot} = P_{slow} \times P_{fast} = S_j^2 \times S_s^2
$$
\n**space:**

\n
$$
\frac{\partial P_{test}}{\partial t} = \mathcal{H}_i \otimes \mathcal{H}_s, \quad \dim = (2, 2, 3)
$$

 Total *quantum Hilbert space*: \mathbf{m} be $\frac{1}{\alpha}$

 $P_{tot}=P_{slow}\times P_{fast}=S_j^2\times S_s^2$
antum Hilbert space:
 $\mathcal{H}_{tot}=\mathcal{H}_{slow}\otimes\mathcal{H}_{fast}=\mathcal{H}_j\otimes\mathcal{H}_s,\quad dim=(2j+1)\,(2s+1)$ $\frac{j}{j}$ \int $\sqrt{7}$

with the **adiabatic assumption**:

 $\frac{j}{j}$ $j \gg s$

and the **semi-classical limit for fast variable**: \gg are \gg $\frac{a}{1}$

 $s\gg 1$

The **classical model** is specified by ^a **total symbol**:

 $\begin{aligned} \log a \\
H\left(\vec{J}\right) \n\end{aligned}$ \vec{S} $\begin{array}{c} \text{t:} \\ \text{t:} \end{array}$

•The classical model is specified by a total symbol: $H\left(\vec{J},\vec{S}\right)$
•Total Dynamics is nearly integrable (well identified tori: $S^1_{fast}\times S^1_{slow}$).

Simple example **"Spin-orbit coupling"**:

s is **nearly integrable** (well identified tori:
the "**Spin-orbit coupling**".

$$
H\left(\vec{J}, \vec{S}\right) = (1 - \lambda)S_z + \lambda \vec{J}\vec{S}, \qquad \lambda \in [0, 1]
$$

Summary:

Restricted Hypothesis:

•For every \vec{J} fixed, $H_{\vec{J}}(\vec{S})$ is a function on S_s^2 , with only a minimum min and a Maximum Max.

C: this class of models.

If $Max > min$, Topology of the fast trajectories, characterized by degree $d \in \mathbb{Z}$ of:

$$
degree \ of: \quad \vec{J} \in S_j^2 \to \mathbf{Max} \in S_s^2
$$

So Topological subclass of models

 $\mathcal{C} = (\cup_d \mathcal{C}_d) \cup Singulars$

Topology of tori bundle $(T^1 \rightarrow S^2_{slow})$:

$$
Chern_{Hannay} = 2 d
$$

Examples:

$$
H = \vec{B}(\vec{J}).\vec{S} \in \mathcal{C}_d
$$

free *d*:

$$
H = \vec{J}.
$$

 $H = I$
with $\vec{J}(\theta, \varphi) \rightarrow \vec{B}(\theta', \varphi')$ of degree d:

$$
H = \vec{B}(\vec{J}).\vec{S} \in \mathcal{C}_d
$$

\n
$$
\theta, \varphi) \rightarrow \vec{B}(\theta', \varphi') \text{ of degree } d:
$$

\n
$$
\bullet d = 1, \qquad \vec{B} = \vec{J}, \qquad H = \vec{J}.\vec{S} \qquad C_{Hannay} = 2
$$

\n
$$
\bullet d = 0, \qquad \vec{B} = (0, 0, 1) \qquad H = S_z, \qquad C_{Hannay} = 0
$$

\n
$$
\bullet d \neq 0, \qquad \vec{B}(\theta' = \theta, \varphi' = d\varphi) \qquad H = \vec{B}(\vec{J})\vec{S}, \qquad C_{Hannay} = 2d
$$

3.2) Semi-quantum model;

Energy Bands and their topology by semi-classical calculation

there are $dim\mathcal{H}_{fast} = 2s + 1$ isolated bands, with Chern index $C_{\text{Berry},m}$, $m = -s \rightarrow +s$.

Property: For $\mathcal{H} \in \mathcal{C}_d$,

$$
C_{Berry,m} = -(2m) d,
$$

$$
C_{Hannay} = -\frac{\partial C_{Berry,m}}{\partial m} = 2d
$$

Proof: Count the zeros of a global section of band $F_m\!\!:\,\vec{J}\to$ ze
Ĥ $\text{cross of a global section}\ \vec{j}|\psi_{\vec{J},m}\rangle=E_{\vec{J},m}|\psi_{\vec{J},m}\rangle.$ $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ $\frac{1}{1}$ **of band** $F_m: \vec{J} \to \hat{H}_{\vec{J}} |\psi_{\vec{J},m}\rangle = E_{\vec{J},m} |\psi_{\vec{J},m}\rangle$.
Consider a **fixed coherent state** $|\vec{S}_0\rangle$. A **global section** is $|\psi_{\vec{J},m}\rangle \langle \psi_{\vec{J},m}|\vec{S}_0\rangle$. $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Same zeroes as the Husimi distribution at point \vec{S}_0 : $\begin{equation*} \mathbf{r} \mathbf{r} \mathbf{r} \end{equation*}$ →
'0 ∪
) $\begin{align} \n\overline{} &\n\cdot \overline{} \\
\overline{} &\n\end{align}$ $rac{C}{2}$

ni distribution at point
$$
\bar{S}
$$

\n
$$
Hus_{\Psi}(\vec{S}) = |\langle \vec{S}_0 | \psi_{\vec{J},m} \rangle|^2
$$

$$
C_{Berry, m} = ((s - m) - (s + m)) d = -(2m) d
$$

Example: $s = 2$, $m = -2 \rightarrow +2$ so 5 bands,

$$
d = 1,
$$
 $C_{-2} = +4,$ $C_{-1} = +2,$ $C_0 = 0,$ $C_1 = -2,$ $C_2 = -4,$
\n $d = 2,$ $C_{-2} = +8,$ $C_{-1} = +4,$ $C_0 = 0,$ $C_1 = -4,$ $C_2 = -8,$

Remember in the *Quantum model*: $\mathcal{N}_m = (2j + 1) - C_{Berry,m}$ So transition $d \to d+1$ gives a **redistribution of levels** $\Delta \mathcal{N}_m = 2m$.

 $\Delta \mathcal{N}_{-2} = -4$, $\Delta \mathcal{N}_{-1} = -2$, $\Delta \mathcal{N}_0 = 0$, $\Delta \mathcal{N}_1 = +2$, $\Delta \mathcal{N}_2 = +4$,

3.3) Relation with classical and quantum monodromy: Local model at a transition between C_d and C_{d+1} i<mark>tum mono</mark>
C_d and C_{d+1} $\frac{\mathbf{0}}{\mathcal{C}}$

Transition occurs if $\vec{B}\left(\,\vec{J}\,\right)\sim0,$ for $\vec{J}\simeq\,\vec{J}^*.$ Transi
 (q,p) : local coordinates for $\vec{J} \in S^2_*$. $\frac{1}{\sqrt{10}}$ $\frac{1}{S}$ \mathbf{r}
2 $\frac{1}{j}$

Generic local model in $(q, p, \vec{S}) \in \mathbb{R}^2 \times S_s^2$: $H_{loc}\left(q,p,\vec{S}\right) = qS_y + pS_x - \lambda S_z$

Parameter space $(q, p, \lambda) \in \mathbb{R}^3$. Singularity at $(0,0,0)$ gives:

$$
\Delta C_{Hannay} = 2, \qquad \Delta C_{Berry,m} = -2m, \qquad \Delta \mathcal{N}_m = 2m
$$

•For $s = 1/2$, already considered:

$$
\hat{H}_{loc} = \begin{pmatrix} -\lambda & p + iq \\ p - iq & \lambda \end{pmatrix}
$$

.This local model is integrable:

$$
N = S_z + \frac{1}{2} (p^2 + q^2) , \quad \{H_{loc}, N\} = 0
$$

This local integrable model has ^a generic (classical and quantum) monodromy defect

Observed by D.A. Sadovskii,B.I. Zhilinskii, *"Monodromy, diabolic points, and angular momentum coupling*" Physics Letter A, **256**, p235 (1999).

See **Movie monodromie.gif.**

Remark: generic only with the special assumption on Reeb graphs.

Monodromy matrix:

$$
M=\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)\in SL\left(2,\mathbb{Z}\right)
$$

Remark: Monodromy is ^a generic event in integrable systems.

Summary:

Semi-classical correspondence between the *Topological aspects of Semi Quantum* and the *Qualitative aspects of the Quantum* problem :

The semi-quantum **Born-Oppenheimer** approximation for*rotation-vibration-*

electronic coupling in molecules, shows **bands with non trivial topology** (vector bundles of any ranks)**.**

This topology is related to the **number of energy levels** in each group of the quantum problem.

Bifurcations : A change of band topology gives **an exchange of levels** between groups of levels.

also related with **monodromie** in the Classical description.

Perspectives: extend this topological approach for infinite dimensional degrees of freedom systems (spins on lattice ...) ?

Remark on the surface of degeneracy in the model between bands 2-3 \mathbf{e} $rac{e_1}{\mathbb{R}}$ $rac{1}{\times}$ $\frac{a}{c}$ $\frac{dy}{P}$ $\frac{1}{2}$

**Remark on the surface of degeneracy .
•In Parameter space** $(\lambda,[Z]) \in \mathbb{R} \times \mathbb{C}P^2$ **, o**In Parameter space $(\lambda, [Z]) \in \mathbb{R} \times \mathbb{C}P^2$,
This surface $S \subset \mathbb{R} \times \mathbb{C}P^2$ is homotopic to $\mathbb{C}P^1 \subset \mathbb{C}P^2$ (Sphere: $Z_1 = 0$)
oLocally, one has a rank 2 bundle over Normal ($\mathbb{C}P^1$): $rac{\mathbf{h}}{\mathbf{v}}$ $\frac{1}{\sqrt{2}}$ ur
ac
R $\frac{\mathbf{fa}}{\mathbf{e}}$ λ $\begin{array}{c} \mathbf{0} \\ \hline \mathbf{P} \end{array}$ $\overline{\mathbb{C}}$ $\frac{d\mathbf{h}}{d\mathbf{r}}$ $\frac{1}{1}$ $\frac{m}{2}$ $\frac{d\mathbf{e}}{P}$ $rac{\mathbf{b}}{Z}$ $\frac{1}{1}$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$ \subset \mathbb{C}

•Locally, one has a rank 2 bundle over Normal $(\mathbb{C}P^1)$:

This gives transfert of states:

$$
\Delta \mathcal{N} = (N+1) + 1
$$

Remark on Semi-classical expansion for --**; Weyl formula with correction Remark on <u>Semi-classical expansion for** $\hbar \to 0$ **; Weyl formula witloffor a line bundle over a Riemann surface,** $h_{eff} = 1/(2j)$ **, Vol(** S^2 **)=1.**</u> cal expansion for $\hbar \rightarrow 0$; W
a Riemann surface, $h_{eff} =$
 $\mathcal{N}(F) = \frac{Vol}{h_{eff}} + (1 - g) - C$

$$
\mathcal{N}(F) = \frac{Vol}{h_{eff}} + (1 - g) - C
$$

The first term is Usual Weyl **"number of quanta"** in total phase space (Below, this will give **the local density of states**.) $\mathcal{F}(\mathbf{x}) = \frac{1}{h_{eff}} + (1 - \frac{1}{g})$
The first term is Usual Weyl "**number of quanta**" in total phase space
(Below, this will give **the local density of states**.)
•<u>For a line ($r = 1$) bundle $\mathcal F$ over CP², number of le</u>

mial in N :

The first term is Usual Weyl "**number of quanta**" in total phase space
\n(Below, this will give **the local density of states**.)
\n• For a line
$$
(r = 1)
$$
 bundle \mathcal{F} over $\mathbb{C}P^2$, number of levels $\mathcal{N}(F)$ is a poly
\nial in N :
\n
$$
\mathcal{N}(F) = \left[\left(1 - Ax + \frac{1}{2} A^2 x^2 \right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2} \right) \wedge \left(1 + \frac{3}{2} x + x^2 \right) \right]_{/x^2}
$$
\n
$$
= \frac{1}{2} N^2 + N \left(-A + \frac{3}{2} \right) + \left(\frac{1}{2} A^2 - \frac{3}{2} A + 1 \right)
$$
\nInterpretation: $h_{eff} = 1/N$, Vol $(\mathbb{C}P^2) = 1/2$.
\nSo
\n
$$
\mathcal{N}(F) = \frac{Vol}{h_{eff}^2} + \frac{1}{h_{eff}} \left(\frac{3}{2} - A \right) + ...
$$

Interpretation: $h_{eff} = 1/N$, Vol $(\mathbb{C}P^2) = 1/2$.

So

$$
\mathcal{N}(F) = \frac{Vol}{h_{eff}^2} + \frac{1}{h_{eff}} \left(\frac{3}{2} - A\right) + \dots
$$

Remark on "Naturality" of index formula

•Chern Class is a map:

$$
C: F \in Vect(M) \to C(F) \in H^*(M, \mathbb{Z})
$$

The main interest of Chern class $C(F)$ is that coefficients are *integers*. But $C(F \oplus F') = C(F) \wedge C(F')$.

• For two bundles over (dim $2n$) phases spaces,

$$
F_1 \to M_1, \qquad F_2 \to M_2
$$

one expects:

 $\mathcal{N}((F_1 \otimes F_2) \to (M_1 \times M_2)) = \mathcal{N}(F_1 \to M_1) \mathcal{N}(F_2 \to M_2)$: product of Hilbert spaces $\mathcal{N}((F_1 \oplus F_2) \to M) = \mathcal{N}(F_1 \to M) + \mathcal{N}(F_2 \to M)$: Sum of bands

This comes from

 $Ch(F_1 \otimes F_2) = Ch(F_1) \wedge Ch(F_2)$ $Ch(F_1 \oplus F_2) = Ch(F_1) + Ch(F_2)$ $Todd (T(M_1 \times M_2)) = Todd (TM_1) \wedge Todd (TM_2)$

So the index formula is an expected formula:

 $\mathcal{N}(F_i) = [Ch(F_i \otimes Line_N) \wedge Todd(TM_i)]_{\text{coeff}}$ de x^n

But $Ch, Todd \in H^*(M, \mathbb{Q})$ (not integer classes).

Index theorem and group theory:

In the model, for $\lambda = 1$, \hat{H}_1 is constructed from **equivariance by SU(3)**:

Weyl formula of group theory gives correct dimensions \mathcal{N}_{Line} , \mathcal{N}_{orth} .

Remark on relations with vector coherent states, and weight diagramm, induced representations, equivariant vector bundles:

Rank 2 bundle over $SU(3)/U(2)=CP^{-2}$

4) Main "Born-Oppenheimer" theorem of adiabaticity (C.Emmrich-A.Weinstein, CMP 176, p.701, 1998)

Consider:

- a **Phase space** P_{slow} (a symplectic manifold for slow motion),
- an **Hilbert space** \mathcal{H}_{fast} (for fast motion)
- a Matrix symbol $p \in P_{slow} \to \hat{H}(p) \in Herm(H_{fast})$ which can be written $\hat{H}(p) = \hat{H}_0(p) + \hbar \hat{H}_1(p) + \hbar^2 \hat{H}_2(p) \ldots,$
- **Hypothesis:** $\forall p \in P_{slow}$, eigenvalues $(\lambda_i)_{i=1...m}$ of $\hat{H}_0(p)$ are separated from the *other part of the spectrum* $(\mu_j)_{j=\dots}$:

$$
\forall i, j, p \ \lambda_i(p) - \mu_j(p) \neq 0
$$

- So eigenvalues $(\lambda_i(p))_{i=1,...m}$ define a subspace $E(p) \subset \mathcal{H}_{fast}$, with orthogonal pro*jector* $\hat{\pi}_0(p)$.
- $E \rightarrow P_{slow}$ is a rank m complex vector bundle over P_{slow} .

• *Then for any* $k \in \mathbb{N}$ *, there is a unique matrix valued symbol.*

here is a **unique** matrix valued symbol
\n
$$
\hat{\pi}(p) = \hat{\pi}_0(p) + \hbar \hat{\pi}_1(p) + \dots \hbar^k \hat{\pi}_k(p)
$$

which defines a self-adjoint operator $\hat{\pi}_{tot}$ *in* \mathcal{H}_{tot} *, such that.*

$$
\hat{\pi}(p) = \hat{\pi}_0(p) + \hbar \hat{\pi}_1(p) + \dots \hbar^k \hat{\pi}_k(p)
$$
\neff-adjoint operator $\hat{\pi}_{tot}$ in \mathcal{H}_{tot} , such that:
\n
$$
\hat{\pi}_{tot}^2 = \hat{\pi}_{tot} + \mathcal{O}(\hbar^{k+1}) \qquad : \text{ quasi- projector},
$$
\n
$$
\left[\hat{H}_{tot}, \hat{\pi}_{tot}\right] = \mathcal{O}(\hbar^{k+1}) \qquad : \text{almost commute.}
$$
\n(3)

$$
\left[\hat{H}_{tot}, \hat{\pi}_{tot}\right] = \mathcal{O}(\hbar^{k+1}) \qquad \text{: almost commute.} \tag{3}
$$

Remarks

Remarks
• One can thus modify $\hat{\pi}_{tot}$ (move slightly the eigenvalues towards 1 or 0, marks

One can thus modify $\hat{\pi}_{tot}$ (move slightly the eigenvalues towards 1 or 0,

without moving the eigen-spaces) to obtain a true projector $\hat{\pi}'_{tot}$ (i.e. $\hat{\pi}^2_{tot}$ = $\hat{\pi}_{tot}^{\prime}$). Let: ove slightly the
aces) to obtain
 $\mathcal{N} = Rank(\hat{\pi}_{tot}')$ One can thus modify π_{tot} (move slightly the eigenvalues towards 1
without moving the eigen-spaces) to obtain a true projector $\hat{\pi}'_{tot}$ (i.e. $\hat{\pi}$
 $\hat{\pi}'_{tot}$). Let:
 $\mathcal{N} = Rank(\hat{\pi}'_{tot})$
 \mathcal{N} is the number of eige

$$
\mathcal{N} = Rank(\hat{\pi}_{tot}')
$$

 $\mathcal N$ is the number of eigenvalues close to 1 of the principal symbol $\hat{\pi}_0(\vec{J})$.

• The **index formula** above gives $\mathcal{N} = Rank(\hat{\pi}_{tot}')$ in terms of topology of the bundle E .

- Generic case: each eigenvalue E_i and eigenvector $|\phi_i>$ of $\hat{H}_{tot}, \quad i\in [1,\dots \dim \mathcal{H}_{tot}],$ **Generic case:** each eigenvalue E_i and eigenvector $|\phi_i>$ of $\hat{H}_{tot}, \quad i\in [1,\dots$ dien be associated with the vector bundle E or its complement E^{\perp} ; i.e. $|\phi_i\rangle \in$ **Generic case:** each eige
can be associated with
 $Im(\hat{\pi}(p))$ or $\hat{\textbf{K}}$ er $(\hat{\pi}(p))$. **Consequence:** a quantum state which initially belongs to the space $Im(\hat{\pi}(p))$ or $\hat{\textbf{K}}$ and $\hat{\pi}(p)$.

• **Consequence:** a quantum state which initially belongs to the space $Im(\hat{\pi}(p))$,
- will stay in this space forever during its evolution, with a good approxima-**Consequence:**
will stay in this
tion (if *k* high).
- **Non** generic case: by resonances between two eigenvalues the associated \bullet **Non generic case:** by resonances between two eigenvalues the associated states can be equidistributed on $Im(\hat{\pi}(p))$ and Ker $(\hat{\pi}(p))$., as it occurs usually in the **tunneling effect**. states can be equidistributed on $Im(\pi(p))$ and Ker (π ally in the **tunneling effect**.
adications for the proof :
By induction on $k \in \mathbb{N}$. One works only with symbols.

Indications for the proof :

Hypothesis for a given k : of:

M. One works only with sym

m *k*:
 $\pi * \pi - \pi = \hbar^{k+1} A + O\left(\hbar^{k+2}\right)$

By induction on
$$
k \in \mathbb{N}
$$
. One works only with symbol
Hypothesis for a given k :
\n
$$
\pi * \pi - \pi = \hbar^{k+1}A + O\left(\hbar^{k+2}\right)
$$
\n
$$
[\pi, H]_* = \hbar^{k+1}F + O\left(\hbar^{k+2}\right)
$$
\nCheck that the hypothesis is true for $k = 0$.

Because
$$
[\pi_0, H_0] = 0
$$
, one can find a basis (for a given $p \in P$) such that:
\n
$$
\pi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad H_0 = \begin{pmatrix} (\lambda_i)_i & 0 \\ 0 & (\mu_j)_j \end{pmatrix} \equiv \begin{pmatrix} H_{00} & 0 \\ 0 & H_{11} \end{pmatrix},
$$
\nand write in this basis:
\n
$$
A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}, \quad \text{idem for } F.
$$

and write in this basis:

and write in this basis:
\n
$$
A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}, \quad \text{idem for } 1.
$$
\nLemma 1: $[A, \pi_0] = 0$, so $A = \begin{pmatrix} A_{00} & 0 \\ 0 & A_{11} \end{pmatrix}$.
\nLemma 2: $F_{00} = [A_{00}, H_{00}], F_{11} = [A_{11}, H_{11}]$.
\nWrite:
\n
$$
\tilde{\pi} = \pi + \hbar^{k+1} K
$$
\nwith unknown $K = \begin{pmatrix} K_{00} & K_{01} \\ K_{10} & K_{11} \end{pmatrix}$ such that:

$$
\tilde{\pi} = \pi + \hbar^{k+1} K
$$
\nwith unknown $K = \begin{pmatrix} K_{00} & K_{01} \\ K_{10} & K_{11} \end{pmatrix}$ such that:

\n
$$
\tilde{\pi} * \tilde{\pi} - \tilde{\pi} = O\left(\hbar^{k+2}\right)
$$
\n
$$
[\tilde{\pi}, H]_* = O\left(\hbar^{k+2}\right)
$$

Lemme 3: $K_{00} = -A_{00}$, $K_{11} = A_{11}$. *Lemme 4:* $H_{00}K_{01} - K_{01}H_{11} = F_{01}$ and $H_{11}K_{10} - K_{10}H_{00} = F_{10}$, i.e.:

 $(K_{01})_{ij} = (\lambda_i - \mu_j)^{-1} (F_{01})_{ij}, \text{~idem for } K_{10}.$

So Matrix $K(p)$ is determined, giving $\tilde{\pi}$. Lemma 1,2,3,4 are not difficult to prove.