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Outline:
 Introduction and physical motivation: the

Importance of invariants

e | Inear wave conversion:

1. The 2X2 local wave equation.

2. Theray equations in non-canonical form.

3. Geometric invariants in multi-dimensions.

4. Normal form of the 2X2 wave equation in multi-
dimensions.

e Summary and conclusions
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What 1s linear wave conversion?

Plasmas, fluids and other media can support a
wide variety of linear wave types, with different

dispersion characteristics and polarizations.

 In aweakly non-uniform medium, the dispersion
characteristics and polarizations are local objects.

 For fixed frequency, w, near apoint x., wave types‘a’
and ‘b’ (with different group velocities and polarizations)
can have nearly equal wavenumbers.

Linear wave conversion is dueto alocal phase

Iresonance.
MSRI Workshop, Berkeley, CA, April 2003 3
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Sample application:
RF heating in fusion devices (e.g.
tokamaks) (with Andre Jaun, Phys. Lett.

L

A (2001)). |
Questions: | %

1] Whereisthe energy eventually | @
deposited? | N

2] What isthe global cavity '-_.
response of the plasma? '-

Goal: develop practical ray tracing
algorithms which include Scenario: afamily of rays are
conversion. (Should run much faster launched by an antenna.

than full-wave codes.)
MSRI Workshop, Berkeley, CA, April 2003 10
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L Inear wave conversion occursin
many areas of physics

* RF heating in plasmas

 lonospheric physics

« Atomic, molecular and nuclear physics
(Landau-Zener crossings, spin-orbit resonance)
» Geophysics (e.g. equatorial waves)

* Neutrino physics (‘M SW effect’)

» Black hole theory

« Solid mechanics

MSRI Workshop, Berkeley, CA, April 2003
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Distinguish two cases:

CASE |) Thetwo waves undergoing conversion
have different polarizations. This can be reduced
locally to a 2-component vector wave problem.

CASE IlI) The two waves undergoing conversion
have the same polarization. This can be reduced
locally to a scalar wave problem. (“Landau-
Zener” , “avoided crossings’ .)

Our work focuses on CASE |.

MSRI Workshop, Berkeley, CA, April 2003 12
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Multi-dimensional conversion has new physics.

* The resonance condition involves the phase velocities,
not the group velocities. Multi-dimensional conversion, in
general, cannot be reduced to the one-dimensional case
(even locally). See, e.g. Tracy, Kaufman, Brizard, Phys.
Plasmas, Feb. 03.

e ‘Generic’ multi-dimensional conversion will be a
hybrid of ‘hyperbolic’ (i.e. avoided crossing) and
‘elliptic’ (oscillatory) behaviors. This combination of
effectsisimpossible in one spatial dimension. Preprint:
arXiv.org/physics/0303086
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[exdlt D(x,x t =t JW(X .t )=0.

X = (X, %),

D(x,x',t—t") =

Restrict here to two spatial
K =(k,,K,). dimensionsfor simplicity
(four-dim. phase space)

MSRI Workshop, Berkeley, CA, April 2003
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To smplify the problem, two types of
transformations are used:

e Congruence transformations, acting on the

vector components of the wave equation, W.
« Canonical transformations, acting on the ray
phase space z=(X,k).

Quantities that are invariant under both sets of

transformations have fundamental physical
significance.

MSRI Workshop, Berkeley, CA, April 2003 15
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If the system Is conservative
Djk(X,XI =t )=D (X ,x,t'-t)

Action principle:

AEIdtdxdx'dt' W t)ID(X,X ,t—t YW(X t')

MSRI Workshop, Berkeley, CA, April 2003 16
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Non-uniform (time-stationary)

Idzx'dt'D(x,x',t -t [W(x',t') =0.

!

D(X, k,w) Dispersion tensor

1 (Weyl symbol)

D(x,—1J,10,) (W(x,t) = 0.

MSRI Workshop, Berkeley, CA, April 2003 17
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First, try WKB: insert the ansatz:

W(x,t)=e""e%y_(x)e,(x).

T

N .
rapidly varyi ng\ slowly varying

K(x)=06(X) loca wavevector
Find, to leading order:
D(x,008,w) 2 (x) =0.

MSRI Workshop, Berkeley, CA, April 2003
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Non-trivial solutions exist only If

D(x,010,w) = det( D( x,10,w)) =0.

O(X) Is unknown at this point.

 ThisisaPDE that 0(x) must satisfy (the
elkonal equation).

 |n practice, solutions are found by ray tracing
with afamily of rays.

MSRI Workshop, Berkeley, CA, April 2003 19
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Trouble in Paradise:

 In phase space z=(x,k) the raysdon’t cross, but in x-
space they can. If this occurs, we get two phases for
each x! Thisisacaustic, and is dealt with using Maslov
methods (Littlgjohn, Delos...).

o If therays encounter alinear conversion region, then

the polarization and amplitude vary rapidly: the WKB
ansatz is not valid there.

MSRI Workshop, Berkeley, CA, April 2003 20
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A ray-based approach to multi-dimensional
linear conversion (with A. Jaun)

Although WKB isinvalid within the conversion region, the
ray geometry leading into - and out of - the conversion
region can be used to

» Detect the presence of conversion,

 Find the outgoing transmitted and converted rays,

« Extract the local polarizations for reduction to 2X2 form,
 Guide the asymptotic matching to incoming and outgoing WKB
waves.

MSRI Workshop, Berkeley, CA, April 2003 21
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Outside the conversion region (‘ exterior WKB
solutions) (Note: there are ‘incoming’ and ‘ outgoing’
versions with ‘connection’ coefficients relating them.)

W(x,t) = e ey (x)8, (x) +e*Dw, (x)&,(x)

Local field amplltudes
Ins_dethecqnverson W(x,t) = e'“[tﬂ (x)e +¢/ﬁ(x)e ]
region (interior
solution) ‘uncoupled’

polarization basis

MSRI Workshop, Berkeley, CA, April 2003 23
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Reduction to local 2X2 form

EIdthLIJ*t(x,t) (x,~i0,i0, )BP(X,t) =
Idtdx[qf; f)aaLlJa + UJE[A)BBLUB +, f)anJB + LlJEf)BGLlJa]'

D,

(x,~i0,id, ), .

D(x,-i[,id, ) (&, = Dj}.

I
CD>

D,

ap
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N\ N\

EPaa Da,B dﬂua _ O

A A A .
Epaﬁ Dﬁﬁ _quﬁ
The 2X2 wave operator has the related
disperson matrix:

—Daa (Z) Daﬁ (Z)
:P;,B (2) Dgs (2)

MSRI Workshop, Berkeley, CA, April 2003
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The 2X2 wave equation is ssimplified via
congruence transformations: ¥’ =QY¥

“JI a _QCXG

J'B _QBG

Qup
Qpp

J

a

Jp

det(Q) # 0.

. are complex constants
L

D'(z)=Q*'D(z)Q, de(D )=

MSRI Workshop, Berkeley, CA, April 2003

det Q|2 det(D)
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Following Littlggohn and Flynn, write:

1D D B.+B. B +IB.,[
_ aa af 0 3 1 2 —__
D= —Bua“

Pos ™ Dy 3 —-1B, B,-B;

Where ot 1=0,1,2,3 are the Pauli matrices,
and the ‘four-vector’ B(z) Is.

B(z) = (B,(2),B.(2),B,(2), B;(2)).

MSRI Workshop, Berkeley, CA, April 2003 27
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Under a congruence transformation:

BIO+B'3
-)Il_i Blz

D':Q*t DQ:

B'1+iB'2
Blo_Bls

— D sl
—BMG

B,=N,B,, (\*) =1tr(0,Q*'0,Q)

If |det(Q)[=1, A Isalorentz transformation,
otherwise it is conformal. Both preserve the

‘light cone’ in B-space.

MSRI Workshop, Berkeley, CA, April 2003
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D(2) = aHB(2)
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det(D) = D(z) =B -B?-B2-B2?=n""B,B,.

n =dag (1,—-1,-1,-1). (The Minkowski tensor.)

det(D)=0 0O [n*B B =0.

U =v

o ‘B’-space: dispersion surface (D(z)=0) isthe ‘light cone'.
* _Genericity’ defined: Assume the four B (z) are
Independent and can be used as local (non-canonical!)
coordinates.

MSRI Workshop, Berkeley, CA, April 2003 30
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rank(LJB,,1B,,[1B,,[1B,) =7

e rank = 1. no conversion, usual WKB.
 rank = 2: local confinement to 2-dim plane, (very slow
transverse motion)
e “avoided crossing” with constant coupling (Phys.
Lett. A, 2002) hyperbolic ray motion (locally)
o “effective cavity” with éliptic ray motion (locally)
e rank = 3. Braam-Duistermaat-type, variable coupling
versions of rank 2 cases, linear ‘transverse’ motion.
e rank = 4: full ‘generic’ conversion with combination of
hyperbolic and elliptic ray motion.

MSRI Workshop, Berkeley, CA, April 2003 31
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Theray equations. D(z) istheray

7={D,3 =

-JUD

J4><4 —

For any scalar function f(z)

f ={D, f}

MSRI Workshop, Berkeley, CA, April 2003
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In particular:

5 { _ V (Hamilton’s egs. In non-
Bu _ D1 B = ZQM BV canonical coordinates.)
where

Q! =n"Q,, =n*{B,.B,}

MSRI Workshop, Berkeley, CA, April 2003 35



THE COLLEGE OF WILLIAM AND MARY

Q,, :{Bp’Bu} Q,,(2)=-Q,,(2)

e The entries are Poisson brackets, hence the

4X4 matrix Q Is automatically invariant under
all canonical transformations (which act on z).
 However, under congruence transformations

Q. ={B,.B Q' = AQA!

MSRI Workshop, Berkeley, CA, April 2003 36
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Restrict to congruence transformations
with |[det(Q)|=1 first. Then A isaLorentz
matrix:

ANA =n

. t t Y1 t
nQ =nAQA = (A ) hQA
Therefore, NQ transforms viasimilarity.

MSRI Workshop, Berkeley, CA, April 2003 37
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The characteristic polynomial of NQ is
Invariant:

P(A) = det(nQ' -\ ) = detK/\‘)_l(nQ —)\)/\tJ: det(nQ - \)
P(A) = X* - 1tr (1Q)? ) 2% + det(1Q).

NS

2 congruence invariants

MSRI Workshop, Berkeley, CA, April 2003 38
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tr(nQ)?)={8*.8) 8.8} .
Previously found by Littlgohn & Flynn,

‘Generic mode conversion in one-
dimension’, PRL & Annals of Phys.

det(nQ ) = det( Q)

This new Invariant can only be non-zero when Q

Is of full rank (4), which can only occur in multi-
dimensional conversion.

MSRI Workshop, Berkeley, CA, April 2003 39
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Physical interpretation
From the theory of Lorentz tranformations.

HO Y. Y Y3 H
(Y1 0 -w w0

0=
L Y. 0 -
Y3 —W, W 0 @
tr((NQ)2) can be positive or negative
\

P(A)zdet(nQ—A>:A4+(w2—vz)v—(oow/)z\

But, det(nQ) can never be positive

MSRI Workshop, Berkeley, CA, April 2003 40
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P(A?) P(\?)
NN VA
WP<y? WF>Y
Both cases have a mixture of ‘hyperbolic’ and ‘eliptic’ behavior
Im(A)
5 A
Roots of P(A)=0
on the complex 0 ¢— Re(A)
A-plane 5

MSRI Workshop, Berkeley, CA, April 2003 41



THE COLLEGE OF WILLIAM AND MARY

Geometric interpretation: choose a point z,
ontheray. Thematrix nQ,=nQ(z,) generates
the Lorentz transformation:

N, (0)=exp(onQ,) o is‘ray orbit parameter
Acting upon B(z,):
B(o)=A,(0)B(z,)=exp(on€,)B(z,)

Thisisalocal approximation of the ray orbit
In ‘B-coordinates .

MSRI Workshop, Berkeley, CA, April 2003 42
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No(0) =

Ny(0) =
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exp(ang, )

rotation about

&

}JOOS’[ Indirection y

INn B — coordinates

Therefore, the ‘ generic’ ray motion in multi-
dimensional conversion will be a combination of

hyperbolic and elliptic motions.

MSRI Workshop, Berkeley, CA, April 2003 44
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What about congruence transformations with
| det(Q)|=Q#17?

A'nA =Qn A\ is conformal

NQ =nAQA = Q*(A ) 'naA

The characteristic polynomial is no longer
Invariant, but...

MSRI Workshop, Berkeley, CA, April 2003 45
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P (A)=det(nQ -A) =X +(w? -y \2Q* -

K Isinvariant under all (constant)
congruence transformations.

MSRI Workshop, Berkeley, CA, April 2003
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Physical interpretation: using
congruence transformations, can find
B-coordinates where w|ly

W Yy
VAR

K

W= Intrinsic ray helicity
y

MSRI Workshop, Berkeley, CA, April 2003
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In this coordinate frame:

1o, Baadlabggo o oy
0(2) = Bl,Bz}}{ OE}1 {Bl,BLEBl,% E:EO 0 -w O%
B,,B4 {B,, 0 {B.,B,5 0 w 0 0
o) (md (ah RS o o

Diagonal elements
commute with off-
diagonals

B, +B; B +IB,
3 -iB, B,-B,

1]

D(z) =

LT |

MSRI Workshop, Berkeley, CA, April 2003 48
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If we expand about the ‘apex’ of the
light cone in B-coordinates

o Z+b,[Z Db, [Z+Ib,[Z[]
%&—ibzﬁ b, Z-b, & [

D(2) = FO(Z%)

1

A linear canonical transformation (z'=M z)
gives

Oy 0, +lwp,
2 T1W0P, o,

D(Z') = FO(Z?)

MSRI Workshop, Berkeley, CA, April 2003 49
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If v isnon-zero, can perform afurther
combination of congruence and canonical
transformations to find the ‘normal’ form:

D(z) = % G GFIKP,
, TIK P, o

00
IO 12 K=—
CONNE

MSRI Workshop, Berkeley, CA, April 2003 50
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he related 2X2 wave eguation

LT |
[
)

% Q1 é\Iz'l'in)z W,
z_in)z I,j1 “ouz

Can be solved by separation of variables and a
generalization of the Fourier transformation.
(Littlggohn, de Verdiere)

MSRI Workshop, Berkeley, CA, April 2003 51
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Summary and conclusions.

* Linear wave conversion in multi-dimensions
has new physics not present in one-dimensional
version, such asray helicity.

 Thereisan invariant that characterizesthe
helicity of raysin conversion regions.

* Methods are constructive and should lead to
explicit solutions (work in progress).

* Preprint avallable at arXiv.org/physics/0303086
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