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Outline:
•  Introduction and physical motivation:  the
importance of invariants
•  Linear wave conversion:

1.  The 2X2 local wave equation.
2. The ray equations in non-canonical form.
3.   Geometric invariants in multi-dimensions.
4. Normal form of the 2X2 wave equation in multi-
dimensions.

•   Summary and conclusions
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What is linear wave conversion?
Plasmas, fluids and other media can support a
wide variety of linear wave types, with different
dispersion characteristics and polarizations.
•  In a weakly non-uniform medium, the dispersion
characteristics and polarizations are local objects.
•  For fixed frequency, ω, near a point x*, wave types ‘a’
and ‘b’ (with different group velocities and polarizations)
can have nearly equal wavenumbers.
•Linear wave conversion is due to a local phase
resonance.
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Sample application:
RF heating in fusion devices (e.g.
tokamaks) (with Andre Jaun, Phys. Lett.
A (2001)).

Scenario: a family of rays are
launched by an antenna.

Questions:
1]  Where is the energy eventually
deposited?
2]  What is the global cavity
response of the plasma?

Goal:  develop practical ray tracing
algorithms which include
conversion.  (Should run much faster
than full-wave codes.)
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Linear wave conversion occurs in
many areas of physics

•  RF heating in plasmas
•  Ionospheric physics
•  Atomic, molecular and nuclear physics
(Landau-Zener crossings, spin-orbit resonance)
•  Geophysics (e.g. equatorial waves)
•  Neutrino physics (‘MSW effect’)
•  Black hole theory
•  Solid mechanics
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Distinguish two cases:
CASE I)  The two waves undergoing conversion
have different polarizations.  This can be reduced
locally to a 2-component vector wave problem.

CASE II)  The two waves undergoing conversion
have the same polarization.  This can be reduced
locally to a scalar wave problem.  (“Landau-
Zener”, “avoided crossings”.)

Our work focuses on CASE I.
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Multi-dimensional conversion has new physics:
•  The resonance condition involves the phase velocities,
not the group velocities. Multi-dimensional conversion, in
general, cannot be reduced to the one-dimensional case
(even locally).  See, e.g. Tracy, Kaufman, Brizard, Phys.
Plasmas, Feb.`03.
•  ‘Generic’ multi-dimensional conversion will be a
hybrid of ‘hyperbolic’ (i.e. avoided crossing) and
‘elliptic’ (oscillatory) behaviors.  This combination of
effects is impossible in one spatial dimension. Preprint:
arXiv.org/physics/0303086
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To simplify the problem, two types of
transformations are used:

•  Congruence transformations, acting on the
vector components of the wave equation, Ψ.
•  Canonical transformations, acting on the ray
phase space z=(x,k).

Quantities that are invariant under both sets of
transformations have fundamental physical
significance.
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If the system is conservative

Action principle:
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Non-uniform (time-stationary)

.0)','()',',(''2 =Ψ⋅−∫ tttdtxd xxxD

.0),(),,( =Ψ⋅∂∇− tii t xxD

),,( ωkxD Dispersion tensor
(Weyl symbol)
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First, try WKB: insert the ansatz:

).()̂(ee)t,( aa
)(iti a xexx x ψ=Ψ θω−

)()( xxk θ∇≡

slowly varying

local wavevector

.)(ˆ),,( a 0=⋅ωθ∇ xexD

Find, to leading order:

rapidly varying
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Non-trivial solutions exist only if 

.)),,(det(),,(D 0=ωθ∇≡ωθ∇ xDx

θ(x) is unknown at this point.

•  This is a PDE that θ(x) must satisfy (the
eikonal equation).
•  In practice, solutions are found by ray tracing
with a family of rays.
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Trouble in Paradise:

•  In phase space z=(x,k) the rays don’t cross, but in x-
space they can.  If this occurs, we get two phases for
each x!  This is a caustic, and is dealt with using Maslov
methods (Littlejohn, Delos...).

•  If the rays encounter a linear conversion region, then
the polarization and amplitude vary rapidly:  the WKB
ansatz is not valid there.
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A ray-based approach to multi-dimensional
linear conversion (with A. Jaun)
Although WKB is invalid within the conversion region, the
ray geometry leading into - and out of - the conversion
region can be used to

•  Detect the presence of conversion,
•  Find the outgoing transmitted and converted rays,
•  Extract the local polarizations for reduction to 2X2 form,
•  Guide the asymptotic matching to incoming and outgoing WKB
waves.
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Outside the conversion region (‘exterior’ WKB
solutions)  (Note: there are ‘incoming’ and ‘outgoing’
versions with ‘connection’ coefficients relating them.)

Inside the conversion
region (interior
solution)
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The 2X2 wave equation is simplified via
congruence transformations: Ψ’=QΨ
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Following Littlejohn and Flynn, write:

Where σµ µ=0,1,2,3 are the Pauli matrices,
and the ‘four-vector’ B(z) is:

)).(),(),(),(()( 3210 zzzzz BBBBB =
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If |det(Q)|=1,  Λ is a Lorentz transformation,
otherwise it is conformal.  Both preserve the
‘light cone’ in B-space.

Under a congruence transformation:
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.)()det( 2
3

2
2

2
1

2
0 νµ

µνη BBBBBBD =−−−=≡ zD

).1,1,1,1( −−−= diagη (The Minkowski tensor.)

.00)det( =⇒= νµ
µνη BBD

•  ‘B’-space: dispersion surface (D(z)=0) is the ‘light cone’.
•  ‘Genericity’ defined: Assume the four Bµ(z) are
independent and can be used as local (non-canonical!)
coordinates.
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?),,,( 3210 =∇∇∇∇ BBBBrank

•  rank = 1: no conversion, usual WKB.
•  rank = 2: local confinement to 2-dim plane, (very slow
transverse motion)

•  “avoided crossing”  with constant coupling (Phys.
Lett. A, 2002) hyperbolic ray motion (locally)
•  “effective cavity” with elliptic ray motion (locally)

•  rank = 3: Braam-Duistermaat-type, variable coupling
versions of rank 2 cases, linear ‘transverse’ motion.
•  rank = 4: full ‘generic’ conversion with combination of
hyperbolic and elliptic  ray motion.
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The ray equations: D(z) is the ray Hamiltonian
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In particular:

{ } ν
ν
µµµ BBDB Ω== 2,&

where

{ }µρ
νρ

ρµ
νρν

µ ηη BB ,=Ω=Ω

(Hamilton’s eqs. In non-
canonical coordinates.)
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{ } )()(, zz µρρµµρρµ Ω−=Ω⇒=Ω BB

•  The entries are Poisson brackets, hence the
4X4 matrix Ω is automatically invariant under
all canonical transformations (which act on z).
•  However, under congruence transformations

{ } t''B,'B' ΛΩΛ=Ω⇒=Ω µρρµ
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Restrict to congruence transformations
with |det(Q)|=1 first.  Then Λ is a Lorentz
matrix:

( ) ttt' ΩΛηΛ=ΛΩΛη=Ωη −1

η=ΛηΛt

Therefore, ηΩ transforms via similarity.
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( )[ ] )det()(det)'det()(P tt λ−Ωη=Λλ−ΩηΛ=λ−Ωη≡λ −1

The characteristic polynomial of ηΩ is
invariant:

( )( ) ( ).det)( 22

2
14 Ω+Ω−= ηληλλ trP

2 congruence invariants
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( )( ) { }{ } .B,BB,Btr µ
ν

ν
µ=Ωη 2

Previously found by Littlejohn & Flynn,
‘Generic mode conversion in one-
dimension’, PRL & Annals of Phys.

)det()det( Ω=Ωη
This new invariant can only be non-zero when Ω
is of full rank (4), which can only occur in multi-
dimensional conversion.
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Physical interpretation
From the theory of Lorentz tranformations:



















ωω−γ−
ω−ωγ−

ωω−γ−
γγγ

=Ω

0

0

0

0

123

132

231

321

( ) ( )22224 γ⋅ω−λγ−ω+λ=λ−Ωη=λ )det()(P

tr((ηΩ)2) can be positive or negative

But, det(ηΩ) can never be positive
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P(λ2) P(λ2)

λ2 λ2

ω2>γ2ω2<γ2

Both cases have a mixture of ‘hyperbolic’ and ‘elliptic’behavior

|λ

Re(λ)

Im(λ)

Roots of P(λ)=0
on the complex
λ-plane
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Geometric interpretation:  choose a point z0

on the ray.  The matrix ηΩ0=ηΩ(z0) generates
the Lorentz transformation:

)exp()( 00 Ωση≡σΛ

Acting upon B(z0):

)(B)exp()(B)()(B 0000 zz Ωση=σΛ=σ
This is a local approximation of the ray orbit
in ‘B-coordinates’.

σ is ‘ray orbit parameter’
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)exp()( 00 Ωση≡σΛ

scoordinateBin

directioninboost
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Therefore, the ‘generic’ ray motion in multi-
dimensional conversion will be a combination of
hyperbolic and elliptic motions.
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What about congruence transformations with

( ) ttt Q' ΩΛηΛ=ΛΩΛη=Ωη −12

η=ΛηΛ 2Qt

?Q|)det(| 1≠=Q

Λ is conformal

The characteristic polynomial is no longer
invariant, but...
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( ) ( ) 8242224 QQ)'det()('P γ⋅ω−λγ−ω+λ=λ−Ωη=λ

)det(
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K is invariant under all (constant)
congruence transformations.
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Physical interpretation: using
congruence transformations, can find
B-coordinates where ω||γ

ω
γ−

γ
ω≡K

helicityrayintrinsic≡
γ
ω



MSRI Workshop, Berkeley, CA, April 2003 48

{ } { } { }
{ } { } { }
{ } { } { }
{ } { } { } 


















−

−
=



















=Ω

000

000

000

000

0,,,

,0,,

,,0,

,,,0

)(

231303

321202

312101

302010

γ
ω

ω
γ

BBBBBB

BBBBBB

BBBBBB

BBBBBB

z

In this coordinate frame:







−−
++

=
3021

2130)(
BBiBB

iBBBB
zD

Diagonal elements
commute with off-
diagonals



MSRI Workshop, Berkeley, CA, April 2003 49

)()( 2

3021

2130 zO
i

i
+





⋅−⋅⋅−⋅
⋅+⋅⋅+⋅

=
zbzbzbzb

zbzbzbzb
zD

If we expand about the ‘apex’ of the
light cone in B-coordinates
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If γ is non-zero, can perform a further
combination of congruence and canonical
transformations to find the ‘normal’ form:

γ
ωκ =



MSRI Workshop, Berkeley, CA, April 2003 51

The related 2X2 wave equation
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Can be solved by separation of variables and a
generalization of the Fourier transformation.
(Littlejohn, de Verdiere)
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Summary and conclusions:

•  Linear wave conversion in multi-dimensions
has new physics not present in one-dimensional
version, such as ray helicity.
•  There is an invariant that characterizes the
helicity of rays in conversion regions.
•  Methods are constructive and should lead to
explicit solutions (work in progress).
•  Preprint available at arXiv.org/physics/0303086


