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Hyperbolic torus automorphisms (Arnold’s cat maps)

We consider the map on the 2-dimensional torus T? = R?/Z?, given by a
hyperbolic matrix M € SL(2,7Z)
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A > 0 uniform Lyapunov = the map M is Anosov = ergodic, mixing etc..

Many invariant measures 1 € 9J1: Lebesgue measure dx; periodic orbits
op (rational coordin.). {6p} are dense in 9] [Sigmund].
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Quantization of M [Han-Ber,DeEsp,Bou-DeBig]

For any /& > 0, the linear map M on R? is quantized into a metaplectic
transformation Mj, unitary on L?(R).

Vv € R? — the quantum translation Tv,h = exp{i(qus — pv1)/h} acts
on §'(R).
If (2rh)~1 = N € N, the "space of torus states”

Hn = {!W c S'(R), T(o,1),h|¢> = T(l,O),h|¢> — W>}

is nontrivial, and invariant through M; (if M € T'p).
H =the range of the projector Pp2: S(R) — S’(R)

Pro= Ppaj = Z (—1)NMm2 T

nezZ?

Hy ~ C% can be given a Hilbert structure — M, =My isa N x N
unitary matrix on Hy: a “quantum map” on T2
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Semiclassical measures of M

We want to describe sequences of eigenstates {|; 1) }a—o of Mj.
To each state |¢)5) € Hy is associated a Husimi measure py, .

We are interested in the weak—: limits yo = limy_,0 py; , for sequences of
eigenstates. Any such limit p € 9. is called a semiclassical measure

of M.
Proposition. [Egorov] .. C .

For an ergodic system (symplectic map/Hamiltonian flow), one has a
general result: Quantum Ergodicity

Theorem. [Schn, CdV, Zel, He-Ma-Ro, Ge-Le, Ze-Zw etc.]

Let M be an ergodic map on T?, and M, its quantization. For almost
all sequences of eigenstates {|v; )}, ., of My, the associated Husimi
measures converge to the Lebesgue measure on T?.

This theorem holds in particular for the quantum cat map M,

Question: can some exceptional sequence of eigenstates converge towards
another invariant measure?



Quantum unique ergodicity

Quantum unique ergodicity means that all semiclassical sequences of
eigenstates converge to the Lebesgue measure: 91,. = {dx}.

QUE holds if M is a uniquely ergodic map: 9t = {dz} [Mar-Rud].

QUE was recently proven [Lindenstrauss] for Hecke eigenstates of the
Laplacian on arithmetic surfaces (all eigenstates?).

A counterexample to QUE was obtained by [Schubert et al.] by quantizing
some ergodic (non-mixing) interval-exchange maps lifted on the torus.

For the cat map M, QUE was proven

e for “Hecke eigenstates” [Kurl-Rud]

e for all eigenstates along subsequences {h;} [DeEs-Gra-Is,Ku-Ru].

These results use “hard” number theory.



Exceptional sequences exist for cat maps

Theorem 1. [F-N-DB]J

For any periodic orbit P of M, there is a semiclassical sequence of
eigenstates {\Cbhk>}hk_)0 of My, whose Husimi densities weakly converge

to %dw + %57: as hy, — 0.
Since 91, is a closed subset of I, one gets:
Corollary. For any ;. € 90, the inv. measure measure 3(dx + 1) € M.

On the other hand, not all invariant measures can be semiclassical mea-
sures:

Theorem 2. [F-N]|

If e Ms., then its pure point and Lebesgue components satisfy
1pp(T?) < pipen(T?), which implies j1,,(T?) < 1/2.

Main tool: time evolution of localized states.



Time evolution of a coherent state
Take a coherent state (“circular” Gaussian wave packet) at the origin
(fixed point) |05)p2 = Pp2[0s). Study [¢(t))p2 = ME|04) 2
The evolved state wraps itself on

b I \ the torus = need to consider
‘ $ ; the Ehrenfest time

Vhett
t=0 /
ﬁ\ Tu(h) = \10g}\27rh|

-3T/2 -T -T/2 0 T/2 T 3T/2 t

equidistributed localized at O equidistributed



To test the spreading of |¢(t))r2, use the autocorrelation function

C(t) =12(0n]10(2)) 2 =p2({tb(=1/2)|00(t/2)) 7>
= D ((=t/2)|T|v(t/2))

=Y

For t < I'z, only the n = 0 term
— C(t) ~ e /2,

For t > T'x, contributions of
N; ~ he* homoclinic intersec-

tions. Each contribution ~
eigone—)\t/Q

— C(t) ~ e /2 Zjlvt el¥n,
If random phases,

C(t) ~ e M2 /N, ~ Vh. [hert/2
If rigid phases, |C(t)| ~ e /2N, ~ het/?

it| > 2Tz — full revival of |0;)2 possible.
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upper bound ogCt) T T /Jpper bound

C(t)
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Sketch of the autocorrelation function C(t) (linear + logarithmic plots)



Transition localized — equidistributed

Consider a finite finite set of periodic orbits S = {P1,...,Ps}, and an
invariant probability measure ds o, = > . a;0p,.

Proposition 1. [Bonechi-DeBiévre] Let a sequence of states {|{s.1)}

converge to the measure 0s .. Then, the sequence

{|¢fgh> et M;;FEWS;—L)} converges to the Lebesgue measure.

Notice: For any k € Z, the plane wave Fi(q,p) = exp{2im(gks — pk1)}
iIs Weyl-quantized on H into the infinitesimal translation T}.

Therefore, equidistribution of {15 ;) } means that

a h—0
vk € Z2, (Vs 5l Thi|¥)s p) — 0

Proposition 2. Let v be an invariant measure s.t. v(S) = 0, and

{|1,1)} another sequence converging towards v.

Then, Vk € Z2, (b p|Thicltbs 1) 2= 0 (obvious)

and also (zﬁ,,jﬂM{TETAhkMnggﬁ =00 (less obvious).



Proof of Proposition 1
Exact Egorov property:

\V/t < Z, Mh_tThkM;; — ThM_tk

Therefore, for any k € Z? \ 0,

ThM—TEkWS,h>

(s | Thicls ) = (s,

The operator on the RHS is now a finite translation:
hM_TEk _ hM—TEkstable + hM—TEkunstable _ kstable 4+ O(hQ)

S is a set of rational points, and k*t?%¢ has an irrational slope
— S + kstable is at 3 finite distance from S.

—> |¢s ;) and its translate by kstable do not interfere.
[]
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1st application: upper bound for scarring

Proof of Thm 2
Let {|¢n)} be a sequence of eigenstates of M, converging towards ..
Assume ;1 = B0s o + (1 — B)v with »(S) =0, and 0 < 5 < 1.

Using a smooth function ¥.(x) localized near S, we can construct a
“microlocal projector” 6.(;) such that

— |Ys i) det ée(h)Wh) converges to the measure (305 .

— Yy 1) 2 (1 — ée(h)hbh)} converges to the measure (1 — §)v.

Now, we play with time evolution:

(on| Tl tbn) = (on| My BTy M, o)
(s | Thiltbs i) + (ol Dl oon) + et = (Ws 1| Tal s ) 4+ (0l o Thac ¥, ) + ..
as i = 0,  Bos.o(F) + (1 = B)v(F) = Bde(F) + (1 — B)v' (F)

The Lebesgue component on the LHS isin v = (1 — 3) > (. ]
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2d application: Quasimodes of maximal scarring

We want to construct a quasimode for M;, by evolving the coherent state
05) 2. For any ¢ € |—m, 7|, we define:

375 /2 t
|Dy) det Z e 19t My |0g) 2.
t=— T /2

This state can be split into [Py 0c) + [Py equi), With

Tr/2 ,
—j 9 def »
> e My [0p)ge and [P equi) = My E|D 4 poc).
t=—T} /2

def
D 10c) =

(D 10c) is made of localized coherent states = is localized at 0.

From the simplicity of the autocorrelation function C(t) for |t| < T, we
can compute its norm || Py joc||1ny ~ S(P)VI1E.
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We have a sequence {|®y ;o) } converging to the measure dy.

o Prop. 1= [®y cqui)n is equidistributed

o — Dy 0e)n and | Py cqui)n are “independent”.
Consequences:

o ||[@4)]| ~ S(¢)v2TE = |®y), is a quasimode of M

|(Mh = €9)| P, cqui)nll < —=

NG

e the states {|®,),} converge to the semiclassical measure W#‘lx.
Similarly, by propagating a coherent state |z ;)2 localized at a point
xo on a periodic orbit P, one constructs quasimodes converging to the
measure 67”;‘150.

These quasimodes are not yet eigenstates...
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Figure 1: The two components of the quasimode at
the origin for N=500, ¢ =0
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Figure 2: Quasimode |®,) at the origin for N=500,
¢ = 0: linear (left) and logarithmic (right) plots of the
Husimi function
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Periodicity of quantum cat maps

Each quantum cat map M is a periodic matrix [Hannay-Berry,Keating]:
Vh = 5=, there is a quantum period P(h) s.t.

M}f(fb) — ole(h) iHN

—> eigenvalues ¢; = “0(]]\3[2;?” with degeneracies ~ %.

Proposition. [Kurlberg-Rudnick]
— for all integers N, clog N < P(N) < C N loglog N.
— P(N) > N2 for almost all integers => QUE for these integers.

From our discussion on the correlation function C(t), we must have
P(N) 2 2Tp(N).

e One can construct an infinite explicit (sparse) sequence { Ny} s.t.
P(Ny) =2Tg + O(1): “"short periods’ [Bonechi-DeBievre]
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From quasimodes to eigenstates

Proof of Thm. 1
If ¢; is an eigenvalue of M, then

to—i—P(ﬁ)
g, = Z e 10" Mj

t=tg

is the spectral projector for this eigenvalue.

In the case of a “short period” P(hy) ~ 2T (h),
this projector is the operator we used to construct the quasimode | ).
— for xg on a periodic orlait P, the projection of the coh. state |z, )12
onto any eigenspace of M}, yields a sequence of eigenstates {|®,)}
satisfying:

p,dr — 1230 (remainder = O(|log 71| ~1/?)).

R

We also control Hp

18



Perspectives

e Thm. 2shows that 9Jt.. is a nowhere dense closed subset of 9)i. Can
;. contain measures with a Lebesgue component < 1/2 7 Can a
semiclassical measure have a small entropy ?

e The spectral degeneracy ~ IOgLN is a non-generic feature, seems
to disappear for (nonlinear) perturbations of the cat map of type

e~ iet2/h o Np Strong scarring of eigenstates is unlikely for pert. cat
maps.

e Control the time evolution of localized states for perturbed cat maps

up to (or beyond) Ehrenfest time (cf. R. Schubert’s work on hyperbolic
surfaces)

— prove a “transition localized — equidistributed”
— constrain <M, for nonlinear maps?
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