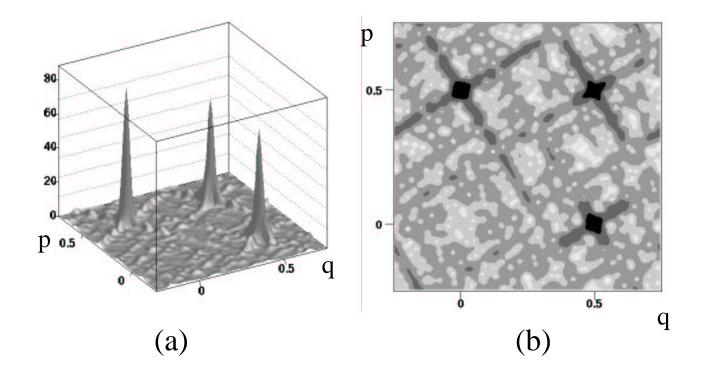
Semiclassical measures of quantum cat maps

S. Nonnenmacher + F. Faure, S. De Bièvre

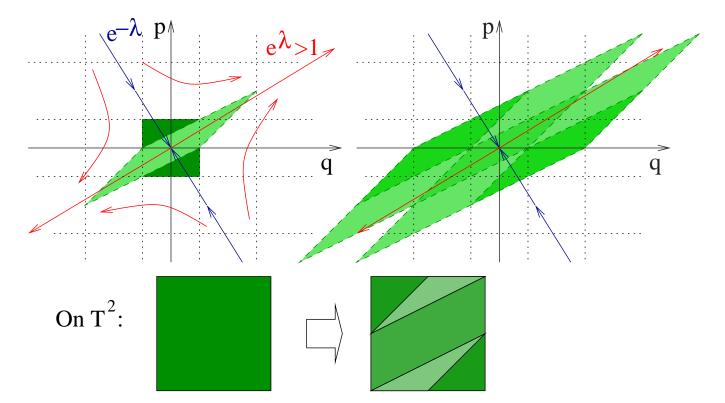
MSRI, 05/05/02



– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Hyperbolic torus automorphisms (Arnold's cat maps)

We consider the map on the 2-dimensional torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, given by a hyperbolic matrix $M \in SL(2,\mathbb{Z})$



 $\lambda > 0$ uniform Lyapunov \Rightarrow the map M is Anosov \Rightarrow ergodic, mixing etc.. Many invariant measures $\mu \in \mathfrak{M}$: Lebesgue measure dx; periodic orbits $\delta_{\mathcal{P}}$ (rational coordin.). $\{\delta_{\mathcal{P}}\}$ are **dense** in \mathfrak{M} [Sigmund].

Quantization of M [Han-Ber, DeEsp, Bou-DeBiè]

For any $\hbar > 0$, the linear map M on \mathbb{R}^2 is quantized into a metaplectic transformation \hat{M}_{\hbar} unitary on $L^2(\mathbb{R})$.

 $\forall v \in \mathbb{R}^2 \longrightarrow$ the quantum translation $\hat{T}_{v,\hbar} = \exp\{i(\hat{q}v_2 - \hat{p}v_1)/\hbar\}$ acts on $\mathcal{S}'(\mathbb{R})$.

If $(2\pi\hbar)^{-1} = N \in \mathbb{N}$, the "space of torus states"

$$\mathcal{H}_N = \left\{ |\psi\rangle \in \mathcal{S}'(\mathbb{R}), \ \hat{T}_{(0,1),\hbar} |\psi\rangle = \hat{T}_{(1,0),\hbar} |\psi\rangle = |\psi\rangle \right\}$$

is nontrivial, and **invariant through** \hat{M}_{\hbar} (if $M \in \Gamma_{\theta}$). \mathcal{H}_N =the range of the projector $\hat{P}_{\mathbb{T}^2}$: $\mathcal{S}(\mathbb{R}) \to \mathcal{S}'(\mathbb{R})$

$$\hat{P}_{\mathbb{T}^2} = \hat{P}_{\mathbb{T}^2,\hbar} = \sum_{n \in \mathbb{Z}^2} (-1)^{Nn_1 n_2} \hat{T}_{n,\hbar}.$$

 $\mathcal{H}_N \approx \mathbb{C}^N$ can be given a Hilbert structure $\longrightarrow \hat{M}_{\hbar} = \hat{M}_N$ is a $N \times N$ unitary matrix on \mathcal{H}_N : a "quantum map" on \mathbb{T}^2 .

Semiclassical measures of \boldsymbol{M}

We want to describe sequences of eigenstates $\{|\psi_{j,\hbar}\rangle\}_{\hbar\to 0}$ of \hat{M}_{\hbar} .

To each state $|\psi_{\hbar}\rangle \in \mathcal{H}_N$ is associated a Husimi measure $\rho_{\psi_{\hbar}}$.

We are interested in the weak—* limits $\mu = \lim_{\hbar \to 0} \rho_{\psi_{j,\hbar}}$ for sequences of eigenstates. Any such limit $\mu \in \mathfrak{M}_{sc}$ is called a **semiclassical measure** of M.

Proposition. [Egorov] $\mathfrak{M}_{sc} \subset \mathfrak{M}$.

For an ergodic system (symplectic map/Hamiltonian flow), one has a general result: **Quantum Ergodicity**

Theorem. [Schn, CdV, Zel, He-Ma-Ro, Ge-Le, Ze-Zw etc.]

Let \mathcal{M} be an ergodic map on \mathbb{T}^2 , and $\hat{\mathcal{M}}_{\hbar}$ its quantization. For almost all sequences of eigenstates $\{|\psi_{j,\hbar}\rangle\}_{\hbar\to 0}$ of $\hat{\mathcal{M}}_{\hbar}$, the associated Husimi measures converge to the Lebesgue measure on \mathbb{T}^2 .

This theorem holds in particular for the quantum cat map \hat{M}_{\hbar} .

Question: can some exceptional sequence of eigenstates converge towards another invariant measure?

Quantum unique ergodicity

Quantum unique ergodicity means that **all** semiclassical sequences of eigenstates converge to the Lebesgue measure: $\mathfrak{M}_{sc} = \{dx\}$.

QUE holds if \mathcal{M} is a uniquely ergodic map: $\mathfrak{M} = \{dx\}$ [Mar-Rud].

QUE was recently proven [Lindenstrauss] for Hecke eigenstates of the Laplacian on arithmetic surfaces (all eigenstates?).

A counterexample to QUE was obtained by [Schubert *et al.*] by quantizing some ergodic (non-mixing) interval-exchange maps lifted on the torus.

For the cat map $M, \, \mathrm{QUE}$ was proven

- for "Hecke eigenstates" [Kurl-Rud]
- for all eigenstates along subsequences $\{\hbar_k\}$ [DeEs-Gra-Is,Ku-Ru].

These results use "hard" number theory.

Exceptional sequences exist for cat maps

Theorem 1. [F-N-DB]

For any periodic orbit \mathcal{P} of M, there is a semiclassical sequence of eigenstates $\{|\Phi_{\hbar_k}\rangle\}_{\hbar_k\to 0}$ of \hat{M}_{\hbar_k} whose Husimi densities weakly converge to $\frac{1}{2}dx + \frac{1}{2}\delta_{\mathcal{P}}$ as $\hbar_k \to 0$.

Since \mathfrak{M}_{sc} is a closed subset of \mathfrak{M} , one gets:

Corollary. For any $\mu \in \mathfrak{M}$, the inv. measure measure $\frac{1}{2}(dx + \mu) \in \mathfrak{M}_{sc}$. On the other hand, not all invariant measures can be semiclassical measures:

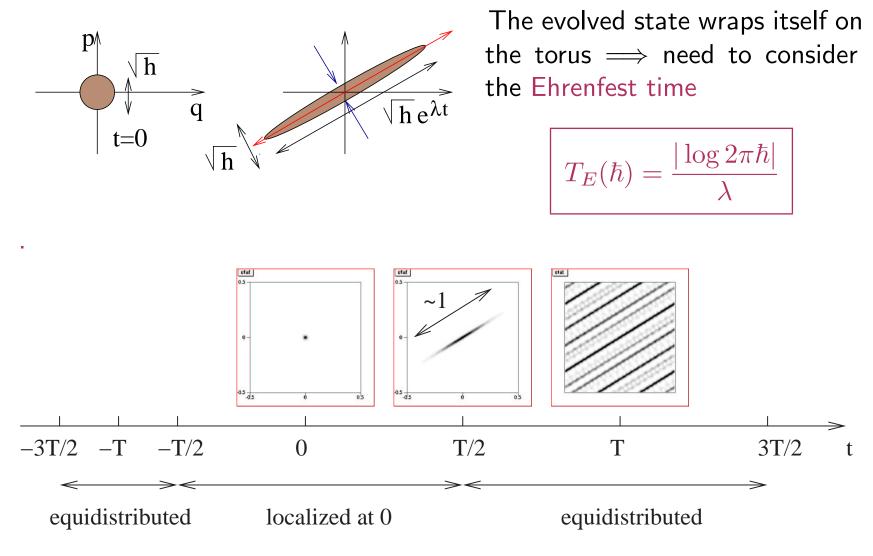
Theorem 2. [F-N]

If $\mu \in \mathfrak{M}_{sc}$, then its pure point and Lebesgue components satisfy $\mu_{pp}(\mathbb{T}^2) \leq \mu_{Leb}(\mathbb{T}^2)$, which implies $\mu_{pp}(\mathbb{T}^2) \leq 1/2$.

Main tool: time evolution of localized states.

Time evolution of a coherent state

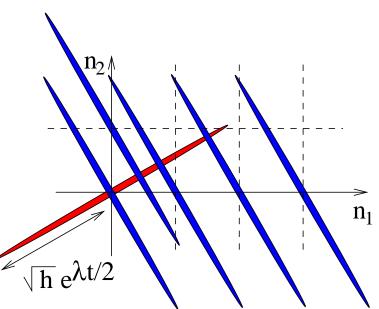
Take a coherent state ("circular" Gaussian wave packet) at the origin (fixed point) $|0_{\hbar}\rangle_{\mathbb{T}^2} = \hat{P}_{\mathbb{T}^2}|0_{\hbar}\rangle$. Study $|\psi(t)\rangle_{\mathbb{T}^2} = \hat{M}^t_{\hbar}|0_{\hbar}\rangle_{\mathbb{T}^2}$

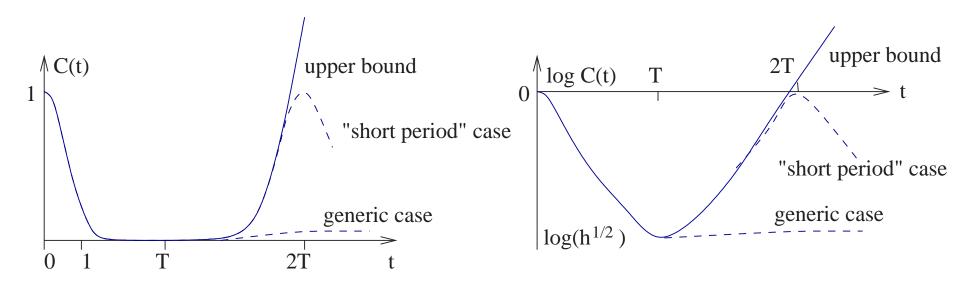


To test the spreading of $|\psi(t)\rangle_{\mathbb{T}^2}$, use the **autocorrelation function**

$$C(t) \stackrel{\text{def}}{=}_{\mathbb{T}^2} \langle 0_{\hbar} | \psi(t) \rangle_{\mathbb{T}^2} =_{\mathbb{T}^2} \langle \psi(-t/2) | \psi(t/2) \rangle_{\mathbb{T}^2}$$
$$= \sum_{n \in \mathbb{Z}^2} e^{i\delta_n} \langle \psi(-t/2) | \hat{T}_n | \psi(t/2) \rangle$$

For $t < T_E$, only the n = 0 term $\Rightarrow C(t) \sim e^{-\lambda t/2}$. For $t > T_E$, contributions of $\mathcal{N}_t \sim \hbar e^{\lambda t}$ homoclinic intersections. Each contribution \simeq $e^{i\varphi_n}e^{-\lambda t/2}$ $\Rightarrow C(t) \sim e^{-\lambda t/2} \sum_{1}^{\mathcal{N}_t} e^{i\varphi_n}$. If random phases, $C(t) \sim e^{-\lambda t/2} \sqrt{\mathcal{N}_t} \approx \sqrt{\hbar}$. If rigid phases, $|C(t)| \sim e^{-\lambda t/2} \mathcal{N}_t \simeq \hbar e^{\lambda t/2}$ $|t| > 2T_E \rightarrow$ full revival of $|0_\hbar\rangle_{\mathbb{T}^2}$ possible.





Sketch of the autocorrelation function C(t) (linear + logarithmic plots)

Transition localized \rightarrow equidistributed

Consider a finite finite set of periodic orbits $S = \{\mathcal{P}_1, \ldots, \mathcal{P}_s\}$, and an invariant probability measure $\delta_{S,\alpha} = \sum_i \alpha_i \delta_{\mathcal{P}_i}$.

Proposition 1. [Bonechi-DeBièvre] Let a sequence of states $\{|\psi_{\mathcal{S},\hbar}\rangle\}$ converge to the measure $\delta_{\mathcal{S},\alpha}$. Then, the sequence $\{|\psi'_{\mathcal{S},\hbar}\rangle \stackrel{\text{def}}{=} \hat{M}_{\hbar}^{T_E} |\psi_{\mathcal{S},\hbar}\rangle\}$ converges to the Lebesgue measure. Notice: For any $\mathbf{k} \in \mathbb{Z}^2$, the plane wave $F_{\mathbf{k}}(q,p) = \exp\{2i\pi(qk_2 - pk_1)\}$ is Weyl-quantized on \mathcal{H}_N into the infinitesimal translation $\hat{T}_{h\mathbf{k}}$. Therefore, equidistribution of $\{|\psi'_{\mathcal{S},\hbar}\rangle\}$ means that

$$\forall \mathbf{k} \in \mathbb{Z}^2, \quad \langle \psi'_{\mathcal{S},\hbar} | \hat{T}_{h\mathbf{k}} | \psi'_{\mathcal{S},\hbar} \rangle \xrightarrow{h \to 0} 0$$

Proposition 2. Let ν be an invariant measure s.t. $\nu(S) = 0$, and $\{|\psi_{\nu,\hbar}\rangle\}$ another sequence converging towards ν . Then, $\forall \mathbf{k} \in \mathbb{Z}^2$, $\langle \psi_{\nu,\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{S,\hbar} \rangle \xrightarrow{h \to 0} 0$ (obvious) and also $\langle \psi_{\nu,\hbar} | \hat{M}_{\hbar}^{-T_E} \hat{T}_{h\mathbf{k}} \hat{M}_{\hbar}^{T_E} | \psi_{S,\hbar} \rangle \xrightarrow{h \to 0} 0$ (less obvious).

Proof of Proposition 1

Exact Egorov property:

$$\forall t \in \mathbb{Z}, \quad \hat{M}_{\hbar}^{-t} \hat{T}_{h\mathbf{k}} \hat{M}_{\hbar}^{t} = \hat{T}_{hM^{-t}\mathbf{k}}$$

Therefore, for any $\mathbf{k} \in \mathbb{Z}^2 \setminus 0$,

$$\langle \psi_{\mathcal{S},\hbar}' | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar}' \rangle = \langle \psi_{\mathcal{S},\hbar} | \hat{T}_{hM^{-T_E}\mathbf{k}} | \psi_{\mathcal{S},\hbar} \rangle$$

The operator on the RHS is now a finite translation:

$$hM^{-T_E}\mathbf{k} = hM^{-T_E}\mathbf{k}^{stable} + hM^{-T_E}\mathbf{k}^{unstable} = \mathbf{k}^{stable} + \mathcal{O}(\hbar^2).$$

S is a set of *rational* points, and \mathbf{k}^{stable} has an *irrational* slope $\implies S + \mathbf{k}^{stable}$ is at a finite distance from S. $\implies |\psi_{S,\hbar}\rangle$ and its translate by \mathbf{k}^{stable} do not interfere. \Box

1st application: upper bound for scarring

Proof of Thm 2

Let $\{|\psi_{\hbar}\rangle\}$ be a sequence of eigenstates of \hat{M}_{\hbar} converging towards μ . Assume $\mu = \beta \delta_{\mathcal{S},\alpha} + (1 - \beta)\nu$ with $\nu(\mathcal{S}) = 0$, and $0 \le \beta \le 1$. Using a smooth function $\vartheta_{\epsilon}(x)$ localized near \mathcal{S} , we can construct a "microlocal projector" $\hat{\theta}_{\epsilon(\hbar)}$ such that

$$- |\psi_{\mathcal{S},\hbar}\rangle \stackrel{\text{def}}{=} \hat{\theta}_{\epsilon(\hbar)} |\psi_{\hbar}\rangle \text{ converges to the measure } \beta \delta_{\mathcal{S},\alpha}.$$
$$- |\psi_{\nu,\hbar}\rangle \stackrel{\text{def}}{=} (1 - \hat{\theta}_{\epsilon(\hbar)} |\psi_{\hbar}\rangle\} \text{ converges to the measure } (1 - \beta)\nu.$$
Now, we play with time evolution:

$$\langle \psi_{\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\hbar} \rangle = \langle \psi_{\hbar} | \hat{M}_{\hbar}^{-T_{E}} \hat{T}_{h\mathbf{k}} \hat{M}_{\hbar}^{T_{E}} | \psi_{\hbar} \rangle$$

$$\langle \psi_{\mathcal{S},\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar} \rangle + \langle \psi_{\nu,\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\nu,\hbar} \rangle + c.t. = \langle \psi_{\mathcal{S},\hbar}' | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar}' \rangle + \langle \psi_{\nu,\hbar}' | \hat{T}_{h\mathbf{k}} | \psi_{\nu,\hbar}' \rangle + c.t.$$

$$\text{as } \hbar \to 0, \quad \beta \delta_{\mathcal{S},\alpha}(F_{\mathbf{k}}) + (1-\beta)\nu(F_{\mathbf{k}}) = \beta dx(F_{\mathbf{k}}) + (1-\beta)\nu^{2}(F_{\mathbf{k}})$$

The Lebesgue component on the LHS is in $\nu \Longrightarrow (1 - \beta) \ge \beta$.

2d application: Quasimodes of maximal scarring

We want to construct a quasimode for \hat{M}_{\hbar} by evolving the coherent state $|0_{\hbar}\rangle_{\mathbb{T}^2}$. For any $\phi \in [-\pi, \pi]$, we define:

$$|\Phi_{\phi}\rangle \stackrel{\text{def}}{=} \sum_{t=-T_{E}/2}^{3T_{E}/2} e^{-i\phi t} \hat{M_{\hbar}}^{t} |0_{\hbar}\rangle_{\mathbb{T}^{2}}.$$

This state can be split into $|\Phi_{\phi,loc}\rangle + |\Phi_{\phi,equi}\rangle$, with

$$|\Phi_{\phi,loc}\rangle \stackrel{\text{def}}{=} \sum_{t=-T_E/2}^{T_E/2} e^{-i\phi t} \hat{M_{\hbar}}^t |0_{\hbar}\rangle_{\mathbb{T}^2} \quad \text{and} \quad |\Phi_{\phi,equi}\rangle \stackrel{\text{def}}{=} \hat{M_{\hbar}}^{T_E} |\Phi_{\phi,loc}\rangle.$$

 $|\Phi_{\phi,loc}\rangle$ is made of localized coherent states \implies is localized at 0. From the simplicity of the autocorrelation function C(t) for $|t| \leq T_E$, we can compute its norm $\|\Phi_{\phi,loc}\|_{\mathcal{H}_N} \sim S(\phi)\sqrt{T_E}$. We have a sequence $\{|\Phi_{\phi,loc}\rangle_n\}$ converging to the measure δ_0 .

- Prop. $1 \Longrightarrow |\Phi_{\phi,equi}\rangle_n$ is equidistributed
- $\implies |\Phi_{\phi,loc}\rangle_n$ and $|\Phi_{\phi,equi}\rangle_n$ are "independent".

Consequences:

•
$$\||\Phi_{\phi}\rangle\| \sim S(\phi)\sqrt{2T_E} \Longrightarrow |\Phi_{\phi}\rangle_n$$
 is a **quasimode** of \hat{M}_{\hbar} :
 $\|(\hat{M}_{\hbar} - e^{i\phi})|\Phi_{\phi,equi}\rangle_n\| \le \frac{C}{\sqrt{T_E}}$

• the states $\{|\Phi_{\phi}\rangle_n\}$ converge to the semiclassical measure $\frac{\delta_0+dx}{2}$.

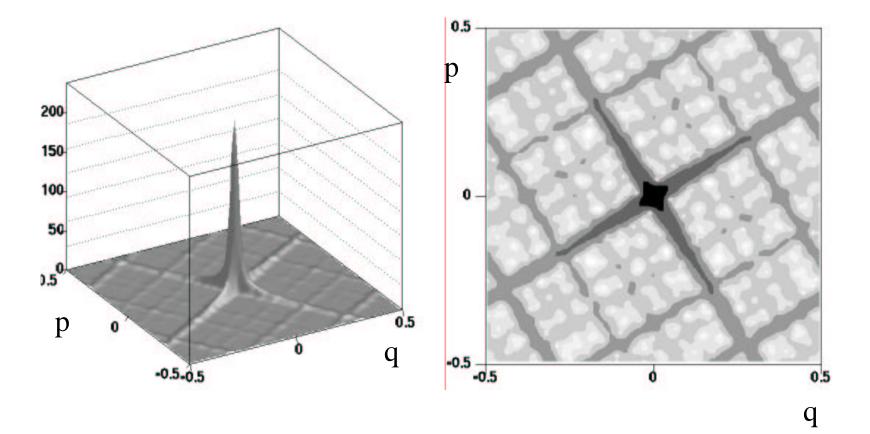
Similarly, by propagating a coherent state $|x_{0,\hbar}\rangle_{\mathbb{T}^2}$ localized at a point x_0 on a periodic orbit \mathcal{P} , one constructs quasimodes converging to the measure $\frac{\delta_{\mathcal{P}}+dx}{2}$.

These quasimodes are not yet eigenstates...

Figure 1: The two components of the quasimode at the origin for N=500, $\phi=0$



Figure 2: Quasimode $|\Phi_{\phi}\rangle$ at the origin for N=500, $\phi = 0$: linear (left) and logarithmic (right) plots of the Husimi function



Periodicity of quantum cat maps

Each quantum cat map \hat{M}_{\hbar} is a periodic matrix [Hannay-Berry,Keating]: $\forall \hbar = \frac{1}{2\pi N}$, there is a *quantum period* $P(\hbar)$ s.t.

$$\hat{M}_{\hbar}^{P(\hbar)} = \mathrm{e}^{\mathrm{i}\varphi(\hbar)} \,\hat{1}_{\mathcal{H}_N}.$$

 \implies eigenvalues $\phi_j = \frac{\varphi(N) + 2\pi j}{P(N)}$, with degeneracies $\simeq \frac{N}{P(N)}$.

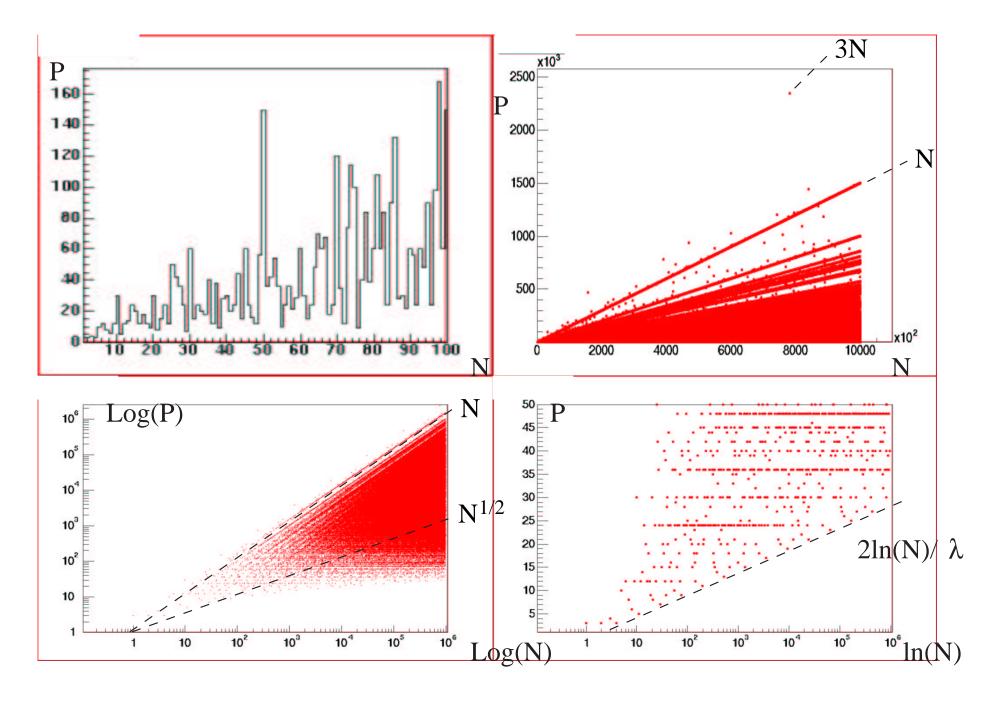
Proposition. [Kurlberg-Rudnick]

- for all integers N, $c \log N \le P(N) \le C N \log \log N$.

 $-P(N) \ge N^{1/2}$ for almost all integers $\implies QUE$ for these integers.

From our discussion on the correlation function C(t), we must have $P(N) \gtrsim 2T_E(N)$.

• One can construct an infinite explicit (sparse) sequence $\{N_k\}$ s.t. $P(N_k) = 2T_E + O(1)$: "short periods" [Bonechi-DeBièvre]



From quasimodes to eigenstates

Proof of Thm. 1

If ϕ_j is an eigenvalue of \hat{M}_{\hbar} , then

$$\hat{\Pi}_{\phi_j} = \frac{1}{P(\hbar)} \sum_{t=t_0}^{t_0 + P(\hbar)} e^{-i\phi_j t} \hat{M}_{\hbar}^t$$

is the **spectral projector** for this eigenvalue.

In the case of a "short period" $P(\hbar_k) \simeq 2T_E(\hbar_k)$,

this projector is the operator we used to construct the quasimode $|\Phi_{\phi}\rangle$. \implies for x_0 on a periodic orbit \mathcal{P} , the projection of the coh. state $|x_{0,\hbar_k}\rangle_{\mathbb{T}^2}$ onto any eigenspace of \hat{M}_{\hbar_k} yields a sequence of eigenstates $\{|\Phi_{\phi}\rangle\}$ satisfying:

$$\begin{split} \rho_{\Phi_{\phi}} dx &\to \frac{dx + \delta_{\mathcal{P}}}{2} \text{ (remainder} = \mathcal{O}\big(|\log \hbar|^{-1/2}\big)). \\ \text{We also control } \|\rho_{\Phi_{\phi}}^{(norm)}\|_{L^{s}} &\sim \frac{C(s, \phi/\lambda)}{\hbar^{1-\frac{1}{s}}|\log \hbar|}, \text{ for any } 1 < s \leq \infty. \end{split}$$

Perspectives

- Thm. 2shows that \mathfrak{M}_{sc} is a nowhere dense closed subset of \mathfrak{M} . Can \mathfrak{M}_{sc} contain measures with a Lebesgue component < 1/2? Can a semiclassical measure have a small entropy?
- The spectral degeneracy $\sim \frac{N}{\log N}$ is a **non-generic feature**, seems to disappear for (nonlinear) perturbations of the cat map of type $e^{-i\epsilon \hat{H}_{\mathbb{T}^2}/\hbar} \circ \hat{M}_{\hbar}$. Strong scarring of eigenstates is unlikely for pert. cat maps.
- Control the time evolution of localized states for perturbed cat maps up to (or beyond) Ehrenfest time (cf. R. Schubert's work on hyperbolic surfaces)
 - $\rightarrow\,$ prove a "transition localized $\rightarrow\,$ equidistributed"
 - \rightarrow constrain \mathfrak{M}_{sc} for nonlinear maps?