Semiclassical measures of quantum cat maps

S. Nonnenmacher $+$ F. Faure, S. De Bièvre

MSRI, 05/05/02

- Typeset by FoilT $EX -$

Hyperbolic torus automorphisms (Arnold's cat maps)

We consider the map on the 2-dimensional torus $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$, given by a hyperbolic matrix $M \in SL(2, \mathbb{Z})$

 $\lambda > 0$ uniform Lyapunov \Rightarrow the map M is Anosov \Rightarrow ergodic, mixing etc.. Many invariant measures $\mu \in \mathfrak{M}$: Lebesgue measure dx ; periodic orbits $\delta_{\mathcal{P}}$ (rational coordin.). $\{\delta_{\mathcal{P}}\}$ are **dense** in \mathfrak{M} [Sigmund].

Quantization of M [Han-Ber, DeEsp, Bou-DeBiel

For any $\hbar > 0$, the linear map M on \mathbb{R}^2 is quantized into a metaplectic transformation \hat{M}_\hbar unitary on $L^2(\mathbb{R})$.

 $\forall v\in\mathbb{R}^2\,\longrightarrow\,$ the quantum translation $\hat{T}_{v,\hbar}=\exp\{\mathrm{i}(\hat{q}v_2-\hat{p}v_1)/\hbar\}$ acts on $\mathcal{S}'(\mathbb{R})$.

If $(2\pi\hbar)^{-1} = N \in \mathbb{N}$, the "space of torus states"

$$
\mathcal{H}_N = \left\{ |\psi\rangle \in \mathcal{S}'(\mathbb{R}), \ \hat{T}_{(0,1),\hbar} |\psi\rangle = \hat{T}_{(1,0),\hbar} |\psi\rangle = |\psi\rangle \right\}
$$

is nontrivial, and **invariant through** \hat{M}_\hbar (if $M\in \Gamma_\theta$). \mathcal{H}_N =the range of the projector $\hat{P}_{\mathbb{T}^2}\colon\mathcal{S}(\mathbb{R})\to\mathcal{S}'(\mathbb{R})$

$$
\hat{P}_{\mathbb{T}^2} = \hat{P}_{\mathbb{T}^2, \hbar} = \sum_{n \in \mathbb{Z}^2} (-1)^{N n_1 n_2} \hat{T}_{n, \hbar}.
$$

 $\mathcal{H}_N\approx \mathbb{C}^N$ can be given a Hilbert structure $\longrightarrow \hat{M}_{\hbar}=\hat{M}_N$ is a $N\times N$ unitary matrix on \mathcal{H}_N : a "quantum map" on \mathbb{T}^2 .

Semiclassical measures of M

We want to describe sequences of eigenstates $\{|\psi_{j,\hbar}\rangle\}_{\hbar\to 0}$ of $\hat{M}_{\hbar}.$

To each state $|\psi_{\hbar}\rangle\in\mathcal{H}_N$ is associated a ${\sf Husimi}$ measure $\rho_{\psi_{\hbar}}.$

We are interested in the weak $-*$ limits $\mu = \lim_{\hbar \to 0} \rho_{\psi_{j,\hbar}}$ for sequences of eigenstates. Any such limit $\mu \in \mathfrak{M}_{sc}$ is called a semiclassical measure of M .

Proposition. [Egorov] $\mathfrak{M}_{sc} \subset \mathfrak{M}$.

For an ergodic system (symplectic map/Hamiltonian flow), one has a general result: Quantum Ergodicity

Theorem. [Schn, CdV, Zel, He-Ma-Ro, Ge-Le, Ze-Zw etc.]

Let ${\mathcal M}$ be an ergodic map on ${\mathbb T}^2$, and $\hat{{\mathcal M}}_{\hbar}$ its quantization. For almost all sequences of eigenstates $\{\ket{\psi_{j,\hbar}}\}_{\hbar\to 0}$ of $\hat{\mathcal{M}}_{\hbar}$, the associated Husimi measures converge to the Lebesgue measure on \mathbb{T}^2 .

This theorem holds in particular for the quantum cat map $\hat{M}_{\hbar}.$

Question: can some exceptional sequence of eigenstates converge towards another invariant measure?

Quantum unique ergodicity

Quantum unique ergodicity means that all semiclassical sequences of eigenstates converge to the Lebesgue measure: $\mathfrak{M}_{sc} = \{dx\}$.

QUE holds if M is a uniquely ergodic map: $\mathfrak{M} = \{dx\}$ [Mar-Rud].

QUE was recently proven [Lindenstrauss] for Hecke eigenstates of the Laplacian on arithmetic surfaces (all eigenstates?).

A counterexample to QUE was obtained by [Schubert et al.] by quantizing some ergodic (non-mixing) interval-exchange maps lifted on the torus.

For the cat map M , QUE was proven

- for "Hecke eigenstates" [Kurl-Rud]
- for all eigenstates along subsequences $\{\hbar_k\}$ [DeEs-Gra-Is,Ku-Ru].

These results use "hard" number theory.

Exceptional sequences exist for cat maps

Theorem 1. $[*F*-*N*-*DB*]$

For any periodic orbit P of M , there is a semiclassical sequence of For any periodic
eigenstates $\left\{ \ket{\Phi_{\hbar_{k}}}\right\}$ $\frac{O}{D}$ $\hbar_k\rightarrow 0$ of $\hat{M}_{\hbar_{\bm{k}}}$ whose Husimi densities weakly converge to $\frac{1}{2}dx + \frac{1}{2}$ $\frac{1}{2}\delta_{\mathcal{P}}$ as $\hbar_k\rightarrow 0$.

Since \mathfrak{M}_{sc} is a closed subset of \mathfrak{M} , one gets:

Corollary. For any $\mu \in \mathfrak{M}$, the inv. measure measure $\frac{1}{2}(dx + \mu) \in \mathfrak{M}_{sc}$. On the other hand, not all invariant measures can be semiclassical measures:

Theorem 2. $\sqrt{F-N}$

If $\mu \in \mathfrak{M}_{sc}$, then its pure point and Lebesgue components satisfy $\mu_{pp}(\mathbb{T}^2) \leq \mu_{Leb}(\mathbb{T}^2)$, which implies $\mu_{pp}(\mathbb{T}^2) \leq 1/2$.

Main tool: time evolution of localized states.

Time evolution of a coherent state

Take a coherent state ("circular" Gaussian wave packet) at the origin $(\textrm{fixed point})\,\ket{0_{\hbar}}_{\mathbb{T}^2}=\hat{P}_{\mathbb{T}^2}|0_{\hbar}\rangle$. Study $|\psi(t)\rangle_{\mathbb{T}^2}=\hat{M}^t_{\hbar}|0_{\hbar}\rangle_{\mathbb{T}^2}$

To test the spreading of $|\psi(t)\rangle_{\mathbb{T}^2}$, use the **autocorrelation function**

$$
C(t) \stackrel{\text{def}}{=} {}_{\mathbb{T}^2} \langle 0_{\hbar} | \psi(t) \rangle_{\mathbb{T}^2} = {}_{\mathbb{T}^2} \langle \psi(-t/2) | \psi(t/2) \rangle_{\mathbb{T}^2}
$$

$$
= \sum_{n \in \mathbb{Z}^2} e^{i \delta_n} \langle \psi(-t/2) | \hat{T}_n | \psi(t/2) \rangle
$$

For $t < T_E$, only the $n = 0$ term $\implies C(t) \sim e^{-\lambda t/2}.$ For $t > T_E$, contributions of $\mathcal{N}_t \, \sim \, \hbar {\rm e}^{\lambda t}$ homoclinic intersections. Each contribution \simeq $e^{i\varphi_n}e^{-\lambda t/2}$ $\Longrightarrow C(t) \sim e$ $-\lambda t/2 \sum_{t} \mathcal{N}_t$ $\frac{\mathcal{N}_t}{1} \, \mathrm{e}^{\mathrm{i} \varphi_n}.$ If random phases, $C(t) \sim e$ $\frac{1}{2}$ pnase $\overline{\mathcal{N}_t}\approx$ √ \hbar . If rigid phases, $|C(t)| \sim \mathrm{e}^{-\lambda t/2} \mathcal{N}_t \simeq \hbar \mathrm{e}^{\lambda t/2}$ $|t| > 2T_E \rightarrow$ full revival of $|0_{\hbar}\rangle_{\mathbb{T}^2}$ possible.

Sketch of the autocorrelation function $C(t)$ (linear + logarithmic plots)

Transition localized \rightarrow equidistributed

Consider a finite finite set of periodic orbits $\mathcal{S} = \{\mathcal{P}_1, \ldots, \mathcal{P}_s\}$, and an invariant probability measure $\delta_{{\cal S},\alpha}=\sum_i \alpha_i \delta_{{\cal P}_i}$.

Proposition 1. [Bonechi-DeBièvre] Let a sequence of states $\{|\psi_{\mathcal{S},\hbar}\rangle\}$ converge to the measure $\delta_{\mathcal{S},\alpha}$. Then, the sequence $\{| \psi'_s$ $\langle \vec{s},_{\hbar} \rangle \stackrel{\rm def}{=} \hat{M}^{T_{E}}_{\hbar} |\psi_{\mathcal{S},\hbar} \rangle \}$ converges to the Lebesgue measure. Notice: For any $\mathbf{k} \in \mathbb{Z}^2$, the plane wave $F_{\mathbf{k}}(q,p) = \exp\{2\mathrm{i}\pi(qk_2 - pk_1)\}$ is Weyl-quantized on \mathcal{H}_N into the infinitesimal translation $\hat{T}_{h\mathbf{k}}$. Therefore, equidistribution of $\{|\psi'_s\rangle\}$ $\langle\!\!\langle \vphantom{\frac{\partial^{2}}{\partial \zeta}}_{,\hbar} \rangle \rbrace$ means that

$$
\forall \mathbf{k} \in \mathbb{Z}^2, \quad \langle \psi_{\mathcal{S},\hbar}^{\prime} | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar}^{\prime} \rangle \xrightarrow{h \to 0} 0
$$

Proposition 2. Let ν be an invariant measure s.t. $\nu(S) = 0$, and $\{|\psi_{\nu,\hbar}\rangle\}$ another sequence converging towards ν . Then, $\forall \mathbf{k} \in \mathbb{Z}^2$, $\langle \psi_{\nu,\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar} \rangle \xrightarrow{h \to 0} 0$ (obvious) and also $\langle \psi_{\nu,\hbar}|\hat{M}_{\hbar}^{-T_E}\hat{T}_{h\mathbf{k}}\hat{M}_{\hbar}^{T_E}|\psi_{\mathcal{S},\hbar}\rangle\stackrel{h\to 0}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\longrightarrow}0$ (less obvious).

Proof of Proposition 1

Exact Egorov property:

$$
\forall t \in \mathbb{Z}, \quad \hat{M}_{\hbar}^{-t} \hat{T}_{h\mathbf{k}} \hat{M}_{\hbar}^{t} = \hat{T}_{hM}^{-t} \mathbf{k}
$$

Therefore, for any $\mathbf{k} \in \mathbb{Z}^2 \setminus 0$,

$$
\langle \psi_{\mathcal{S},\hbar}^{\prime}|\hat{T}_{h\mathbf{k}}|\psi_{\mathcal{S},\hbar}^{\prime}\rangle=\langle \psi_{\mathcal{S},\hbar}|\hat{T}_{hM^{-T_E}\mathbf{k}}|\psi_{\mathcal{S},\hbar}\rangle
$$

The operator on the RHS is now a finite translation:

$$
hM^{-T_E}\mathbf{k} = hM^{-T_E}\mathbf{k}^{stable} + hM^{-T_E}\mathbf{k}^{unstable} = \mathbf{k}^{stable} + \mathcal{O}(\hbar^2).
$$

 $\mathcal S$ is a set of $rational$ points, and $\mathbf k^{stable}$ has an $irrational$ slope \Longrightarrow $\mathcal{S} + \mathbf{k}^{stable}$ is at a finite distance from $\mathcal{S}.$ $\Longrightarrow \ket{\psi_{\mathcal{S},\hbar}}$ and its translate by \mathbf{k}^{stable} do not interfere. ¤

1st application: upper bound for scarring

Proof of Thm 2

Let $\{|\psi_{\hbar}\rangle\}$ be a sequence of eigenstates of \hat{M}_{\hbar} converging towards μ . Assume $\mu = \beta \delta_{\mathcal{S},\alpha} + (1-\beta)\nu$ with $\nu(\mathcal{S}) = 0$, and $0 \le \beta \le 1$. Using a smooth function $\vartheta_{\epsilon}(x)$ localized near S, we can construct a "microlocal projector" $\hat{\theta}_{\epsilon(\hbar)}$ such that

$$
- |\psi_{\mathcal{S},\hbar}\rangle \stackrel{\text{def}}{=} \hat{\theta}_{\epsilon(\hbar)} |\psi_{\hbar}\rangle \text{ converges to the measure } \beta \delta_{\mathcal{S},\alpha}.
$$

$$
- |\psi_{\nu,\hbar}\rangle \stackrel{\text{def}}{=} (1 - \hat{\theta}_{\epsilon(\hbar)} |\psi_{\hbar}\rangle \text{ converges to the measure } (1 - \beta)\nu.
$$

$$
\langle \psi_{\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\hbar} \rangle = \langle \psi_{\hbar} | \hat{M}_{\hbar}^{-T_{E}} \hat{T}_{h\mathbf{k}} \hat{M}_{\hbar}^{T_{E}} | \psi_{\hbar} \rangle
$$

$$
\langle \psi_{\mathcal{S},\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar} \rangle + \langle \psi_{\nu,\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\nu,\hbar} \rangle + c.t. = \langle \psi_{\mathcal{S},\hbar} | \hat{T}_{h\mathbf{k}} | \psi_{\mathcal{S},\hbar} \rangle + \langle \psi_{\nu,\hbar}^{\prime} | \hat{T}_{h\mathbf{k}} | \psi_{\nu,\hbar}^{\prime} \rangle + c.t.
$$

as $\hbar \to 0$, $\beta \delta_{\mathcal{S},\alpha}(F_{\mathbf{k}}) + (1 - \beta) \nu(F_{\mathbf{k}}) = \beta dx(F_{\mathbf{k}}) + (1 - \beta) \nu^{2}(F_{\mathbf{k}})$

The Lebesgue component on the LHS is in $\nu \Longrightarrow (1 - \beta) \ge \beta$.

2d application: Quasimodes of maximal scarring

We want to construct a quasimode for \hat{M}_\hbar by evolving the coherent state $|0_{\hbar}\rangle_{\mathbb{T}^2}$. For any $\phi \in [-\pi, \pi]$, we define:

$$
\ket{\Phi_\phi} \stackrel{\text{def}}{=} \sum_{t=-T_E/2}^{3T_E/2} \mathrm{e}^{-\mathrm{i}\phi t} \, \hat{M_\hbar}^t \ket{0_\hbar}_{\mathbb{T}^2}.
$$

This state can be split into $|\Phi_{\phi,loc}\rangle + |\Phi_{\phi,equi}\rangle$, with

$$
|\Phi_{\phi,loc}\rangle\overset{\text{def}}{=}\sum_{t=-T_E/2}^{T_E/2}{\mathrm{e}}^{-{\mathrm{i}}\phi t}\,\hat{M}_\hbar^{t}|0_{\hbar}\rangle_{\mathbb{T}^2}\quad\text{and}\quad|\Phi_{\phi,equi}\rangle\overset{\text{def}}{=}\hat{M}_\hbar^{T_E}|\Phi_{\phi,loc}\rangle.
$$

 $|\Phi_{\phi,loc}\rangle$ is made of localized coherent states \Longrightarrow is localized at 0. From the simplicity of the autocorrelation function $C(t)$ for $|t| \le T_E$, we can compute its norm $\|\Phi_{\phi,loc}\|_{\mathcal{H}_N} \sim S(\phi)\sqrt{T_E}.$

We have a sequence $\{|\Phi_{\phi,loc}\rangle_n\}$ converging to the measure δ_0 .

- Prop. $1 \Longrightarrow |\Phi_{\phi, equi}\rangle_n$ is equidistributed
- $\bullet \implies |\Phi_{\phi,loc}\rangle_n$ and $|\Phi_{\phi,equi}\rangle_n$ are "independent".

Consequences:

\n- \n
$$
\|\Phi_{\phi}\|\sim S(\phi)\sqrt{2T_E}\Longrightarrow |\Phi_{\phi}\rangle_n
$$
 is a **quasimode** of \hat{M}_{\hbar} :\n
\n- \n $\|(\hat{M}_{\hbar}-e^{i\phi})|\Phi_{\phi,equi}\rangle_n\|\leq \frac{C}{\sqrt{T_E}}$ \n
\n

 $\bullet\,$ the states $\{|\Phi_{\phi}\rangle_{n}\}$ converge to the semiclassical measure $\frac{\delta_{0}+dx}{2}.$

Similarly, by propagating a coherent state $|x_{0,\hbar}\rangle_{\mathbb{T}^2}$ localized at a point x_0 on a periodic orbit P , one constructs quasimodes converging to the measure $\frac{\delta p + dx}{2}$ $\frac{+dx}{2}$

These quasimodes are not yet eigenstates...

Figure 1: The two components of the quasimode at the origin for N=500, $\phi = 0$

Figure 2: Quasimode $|\Phi_{\phi}\rangle$ at the origin for N=500, $\phi = 0$: linear (left) and logarithmic (right) plots of the Husimi function

Periodicity of quantum cat maps

Each quantum cat map \hat{M}_{\hbar} is a periodic matrix [Hannay-Berry,Keating]: $\forall \hbar = \frac{1}{2\pi N},$ there is a *quantum period* $P(\hbar)$ *s.*t.

$$
\hat{M}_{\hbar}^{P(\hbar)} = e^{i\varphi(\hbar)} \hat{1}_{\mathcal{H}_N}.
$$

 \implies eigenvalues $\phi_j = \frac{\varphi(N) + 2\pi j}{P(N)}$ $\frac{N)+2\pi j}{P(N)}$, with degeneracies $\simeq \frac{N}{P(N)}$ $\frac{N}{P(N)}$

Proposition. [Kurlberg-Rudnick]

– for all integers N, $c \log N \le P(N) \le C N \log \log N$.

 $P(N) \ge N^{1/2}$ for almost all integers \Longrightarrow QUE for these integers.

From our discussion on the correlation function $C(t)$, we must have $P(N) \geq 2T_E(N)$.

• One can construct an infinite explicit (sparse) sequence $\{N_k\}$ s.t. $P(N_k) = 2T_E + \mathcal{O}(1)$: "short periods" [Bonechi-DeBièvre]

From quasimodes to eigenstates

Proof of Thm. 1

If ϕ_j is an eigenvalue of \hat{M}_{\hbar} , then

$$
\hat{\Pi}_{\phi_j} = \frac{1}{P(\hbar)} \sum_{t=t_0}^{t_0+P(\hbar)} e^{-i\phi_j t} \hat{M}_{\hbar}^t
$$

is the spectral projector for this eigenvalue.

In the case of a "short period" $P(\hbar_k) \simeq 2T_E(\hbar_k)$,

this projector is the operator we used to construct the quasimode $|\Phi_{\phi}\rangle$. \implies for x_0 on a periodic orbit $\mathcal P$, the projection of the coh. state $|x_{0,\hbar_k}\rangle_{\mathbb T^2}$ onto *any* eigenspace of $\hat{M}_{\hbar_{k}}$ yields a sequence of eigenstates $\{|\Phi_{\phi}\rangle\}$ satisfying: ¡ ¢

$$
\rho_{\Phi_{\phi}}dx \to \frac{dx + \delta_{\mathcal{P}}}{2} \text{ (remainder = } \mathcal{O}(|\log \hbar|^{-1/2})).
$$

We also control $\|\rho_{\Phi_{\phi}}^{(norm)}\|_{L^{s}} \sim \frac{C(s, \phi/\lambda)}{\hbar^{1-\frac{1}{s}}|\log \hbar|}$, for any $1 < s \leq \infty$.

Perspectives

- Thm. 2shows that \mathfrak{M}_{sc} is a nowhere dense closed subset of \mathfrak{M} . Can \mathfrak{M}_{sc} contain measures with a Lebesgue component $< 1/2$? Can a semiclassical measure have a small entropy ?
- The spectral degeneracy $\sim \frac{N}{\log N}$ $\frac{N}{\log N}$ is a **non-generic feature**, seems to disappear for (nonlinear) perturbations of the cat map of type ${\rm e}^{-{\rm i}\epsilon \hat{H}_{\mathbb{T}^2}/\hbar}\circ\hat{M}_\hbar$ Strong scarring of eigenstates is unlikely for pert. cat maps.
- Control the time evolution of localized states for perturbed cat maps up to (or beyond) Ehrenfest time (cf. R. Schubert's work on hyperbolic surfaces)
	- \rightarrow prove a "transition localized \rightarrow equidistributed"
	- \rightarrow constrain \mathfrak{M}_{sc} for nonlinear maps?