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Hyperbolic torus automorphisms (Arnold’s cat maps)

We consider the map on the 2-dimensional torus T2 = R2/Z2, given by a
hyperbolic matrix M ∈ SL(2,Z)
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 On T  :   

λ > 0 uniform Lyapunov ⇒ the map M is Anosov ⇒ ergodic, mixing etc..

Many invariant measures µ ∈ M: Lebesgue measure dx; periodic orbits
δP (rational coordin.). {δP} are dense in M [Sigmund].
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Quantization of M [Han-Ber,DeEsp,Bou-DeBiè]

For any ~ > 0, the linear map M on R2 is quantized into a metaplectic
transformation M̂~ unitary on L2(R).
∀v ∈ R2 −→ the quantum translation T̂v,~ = exp{i(q̂v2 − p̂v1)/~} acts
on S ′(R).
If (2π~)−1 = N ∈ N, the ”space of torus states”

HN =
{
|ψ〉 ∈ S ′(R), T̂(0,1),~|ψ〉 = T̂(1,0),~|ψ〉 = |ψ〉

}

is nontrivial, and invariant through M̂~ (if M ∈ Γθ).

HN =the range of the projector P̂T2: S(R) → S ′(R)

P̂T2 = P̂T2,~ =
∑

n∈Z2

(−1)Nn1n2 T̂n,~.

HN ≈ CN can be given a Hilbert structure −→ M̂~ = M̂N is a N × N
unitary matrix on HN : a “quantum map” on T2.
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Semiclassical measures of M

We want to describe sequences of eigenstates {|ψj,~〉}~→0 of M̂~.

To each state |ψ~〉 ∈ HN is associated a Husimi measure ρψ~.

We are interested in the weak−∗ limits µ = lim~→0 ρψj,~ for sequences of
eigenstates. Any such limit µ ∈ Msc is called a semiclassical measure
of M .

Proposition. [Egorov] Msc ⊂ M.

For an ergodic system (symplectic map/Hamiltonian flow), one has a
general result: Quantum Ergodicity

Theorem. [Schn, CdV, Zel, He-Ma-Ro, Ge-Le, Ze-Zw etc.]

Let M be an ergodic map on T2, and M̂~ its quantization. For almost
all sequences of eigenstates {|ψj,~〉}~→0 of M̂~, the associated Husimi
measures converge to the Lebesgue measure on T2.

This theorem holds in particular for the quantum cat map M̂~.

Question: can some exceptional sequence of eigenstates converge towards
another invariant measure?
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Quantum unique ergodicity

Quantum unique ergodicity means that all semiclassical sequences of
eigenstates converge to the Lebesgue measure: Msc = {dx}.
QUE holds if M is a uniquely ergodic map: M = {dx} [Mar-Rud].

QUE was recently proven [Lindenstrauss] for Hecke eigenstates of the
Laplacian on arithmetic surfaces (all eigenstates?).

A counterexample to QUE was obtained by [Schubert et al.] by quantizing
some ergodic (non-mixing) interval-exchange maps lifted on the torus.

For the cat map M , QUE was proven

• for “Hecke eigenstates” [Kurl-Rud]

• for all eigenstates along subsequences {~k} [DeEs-Gra-Is,Ku-Ru].

These results use “hard” number theory.
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Exceptional sequences exist for cat maps

Theorem 1. [F-N-DB]

For any periodic orbit P of M , there is a semiclassical sequence of
eigenstates

{|Φ~k〉
}
~k→0

of M̂~k whose Husimi densities weakly converge

to 1
2dx + 1

2δP as ~k → 0.

Since Msc is a closed subset of M, one gets:

Corollary. For any µ ∈ M, the inv. measure measure 1
2(dx + µ) ∈ Msc.

On the other hand, not all invariant measures can be semiclassical mea-
sures:

Theorem 2. [F-N]

If µ ∈ Msc, then its pure point and Lebesgue components satisfy
µpp(T2) ≤ µLeb(T2), which implies µpp(T2) ≤ 1/2.

Main tool: time evolution of localized states.
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Time evolution of a coherent state
Take a coherent state (“circular” Gaussian wave packet) at the origin
(fixed point) |0~〉T2 = P̂T2|0~〉. Study |ψ(t)〉T2 = M̂ t

~|0~〉T2

The evolved state wraps itself on

h eλ  tq

p
h

t=0
h

the torus =⇒ need to consider
the Ehrenfest time

TE(~) =
| log 2π~|

λ

.

0 T/2 T−T/2 t3T/2−T−3T/2

~1

localized at 0 equidistributedequidistributed

6



To test the spreading of |ψ(t)〉T2, use the autocorrelation function

C(t) def= T2〈0~|ψ(t)〉T2 =T2〈ψ(−t/2)|ψ(t/2)〉T2

=
∑

n∈Z2

eiδn〈ψ(−t/2)|T̂n|ψ(t/2)〉

For t < TE, only the n = 0 term

n1

n2

h eλ  t/2

=⇒ C(t) ∼ e−λt/2.

For t > TE, contributions of
Nt ∼ ~eλt homoclinic intersec-
tions. Each contribution '
eiϕne−λt/2

=⇒ C(t) ∼ e−λt/2
∑Nt

1 eiϕn.

If random phases,
C(t) ∼ e−λt/2

√Nt ≈
√
~.

If rigid phases, |C(t)| ∼ e−λt/2Nt ' ~eλt/2

|t| > 2TE → full revival of |0~〉T2 possible.
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Sketch of the autocorrelation function C(t) (linear + logarithmic plots)
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Transition localized → equidistributed

Consider a finite finite set of periodic orbits S = {P1, . . . ,Ps}, and an
invariant probability measure δS,α =

∑
i αiδPi

.

Proposition 1. [Bonechi-DeBièvre] Let a sequence of states {|ψS,~〉}
converge to the measure δS,α. Then, the sequence

{|ψ′S,~〉 def= M̂
TE
~ |ψS,~〉} converges to the Lebesgue measure.

Notice: For any k ∈ Z2, the plane wave Fk(q, p) = exp{2iπ(qk2 − pk1)}
is Weyl-quantized on HN into the infinitesimal translation T̂hk.

Therefore, equidistribution of {|ψ′S,~〉} means that

∀k ∈ Z2, 〈ψ′S,~|T̂hk|ψ′S,~〉 h→0−−−→ 0

Proposition 2. Let ν be an invariant measure s.t. ν(S) = 0, and
{|ψν,~〉} another sequence converging towards ν.

Then, ∀k ∈ Z2, 〈ψν,~|T̂hk|ψS,~〉 h→0−−−→ 0 (obvious)

and also 〈ψν,~|M̂−TE
~ T̂hkM̂

TE
~ |ψS,~〉 h→0−−−→ 0 (less obvious).
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Proof of Proposition 1

Exact Egorov property:

∀t ∈ Z, M̂−t
~ T̂hkM̂

t
~ = T̂hM−tk

Therefore, for any k ∈ Z2 \ 0,

〈ψ′S,~|T̂hk|ψ′S,~〉 = 〈ψS,~|T̂hM−TEk|ψS,~〉

The operator on the RHS is now a finite translation:

hM−TEk = hM−TEkstable + hM−TEkunstable = kstable +O(~2).

S is a set of rational points, and kstable has an irrational slope
=⇒ S + kstable is at a finite distance from S.

=⇒ |ψS,~〉 and its translate by kstable do not interfere.

¤
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1st application: upper bound for scarring

Proof of Thm 2

Let {|ψ~〉} be a sequence of eigenstates of M̂~ converging towards µ.

Assume µ = βδS,α + (1− β)ν with ν(S) = 0, and 0 ≤ β ≤ 1.

Using a smooth function ϑε(x) localized near S, we can construct a
“microlocal projector” θ̂ε(~) such that

– |ψS,~〉 def= θ̂ε(~)|ψ~〉 converges to the measure βδS,α.

– |ψν,~〉 def= (1− θ̂ε(~)|ψ~〉} converges to the measure (1− β)ν.

Now, we play with time evolution:

〈ψ~|T̂hk|ψ~〉 = 〈ψ~|M̂−TE
~ T̂hkM̂

TE
~ |ψ~〉

〈ψS,~|T̂hk|ψS,~〉+ 〈ψν,~|T̂hk|ψν,~〉+ c.t. = 〈ψ′S,~|T̂hk|ψ′S,~〉+ 〈ψ′ν,~|T̂hk|ψ′ν,~〉+ c.t.

as ~→ 0, βδS,α(Fk) + (1− β)ν(Fk) = βdx(Fk) + (1− β)ν?(Fk)

The Lebesgue component on the LHS is in ν =⇒ (1− β) ≥ β. ¤
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2d application: Quasimodes of maximal scarring

We want to construct a quasimode for M̂~ by evolving the coherent state
|0~〉T2. For any φ ∈ [−π, π], we define:

|Φφ〉 def=
3TE/2∑

t=−TE/2

e−iφt M̂~
t|0~〉T2.

This state can be split into |Φφ,loc〉+ |Φφ,equi〉, with

|Φφ,loc〉 def=
TE/2∑

t=−TE/2

e−iφt M̂~
t|0~〉T2 and |Φφ,equi〉 def= M̂

TE
~ |Φφ,loc〉.

|Φφ,loc〉 is made of localized coherent states =⇒ is localized at 0.

From the simplicity of the autocorrelation function C(t) for |t| ≤ TE, we
can compute its norm ‖Φφ,loc‖HN

∼ S(φ)
√

TE.
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We have a sequence {|Φφ,loc〉n} converging to the measure δ0.

• Prop. 1=⇒ |Φφ,equi〉n is equidistributed

• =⇒ |Φφ,loc〉n and |Φφ,equi〉n are “independent”.

Consequences:

• ‖|Φφ〉‖ ∼ S(φ)
√

2TE =⇒ |Φφ〉n is a quasimode of M̂~:

‖(M̂~ − eiφ)|Φφ,equi〉n‖ ≤ C√
TE

• the states {|Φφ〉n} converge to the semiclassical measure δ0+dx
2 .

Similarly, by propagating a coherent state |x0,~〉T2 localized at a point
x0 on a periodic orbit P, one constructs quasimodes converging to the
measure δP+dx

2 .

These quasimodes are not yet eigenstates...
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Figure 1: The two components of the quasimode at
the origin for N=500, φ = 0

|Φ   >loc n |Φ    >equi n
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Figure 2: Quasimode |Φφ〉 at the origin for N=500,
φ = 0: linear (left) and logarithmic (right) plots of the
Husimi function
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Periodicity of quantum cat maps

Each quantum cat map M̂~ is a periodic matrix [Hannay-Berry,Keating]:
∀~ = 1

2πN , there is a quantum period P (~) s.t.

M̂
P (~)
~ = eiϕ(~) 1̂HN

.

=⇒ eigenvalues φj = ϕ(N)+2πj
P (N) , with degeneracies ' N

P (N).

Proposition. [Kurlberg-Rudnick]

– for all integers N , c log N ≤ P (N) ≤ C N log log N .

– P (N) ≥ N1/2 for almost all integers =⇒ QUE for these integers.

From our discussion on the correlation function C(t), we must have
P (N) & 2TE(N).
• One can construct an infinite explicit (sparse) sequence {Nk} s.t.
P (Nk) = 2TE +O(1): “short periods” [Bonechi-DeBièvre]

16



N

P

N

P

Log(N)

PLog(P)

ln(N)

2ln(N)/ λ

N

3N

N1/2

N

17



From quasimodes to eigenstates

Proof of Thm. 1

If φj is an eigenvalue of M̂~, then

Π̂φj
=

1
P (~)

t0+P (~)∑
t=t0

e−iφjt M̂ t
~

is the spectral projector for this eigenvalue.

In the case of a “short period” P (~k) ' 2TE(~k),
this projector is the operator we used to construct the quasimode |Φφ〉.
=⇒ for x0 on a periodic orbit P, the projection of the coh. state |x0,~k〉T2

onto any eigenspace of M̂~k yields a sequence of eigenstates {|Φφ〉}
satisfying:

ρΦφ
dx → dx+δP

2 (remainder = O(| log ~|−1/2
)
).

We also control ‖ρ(norm)
Φφ

‖Ls ∼ C(s,φ/λ)

~1−
1
s | log ~|

, for any 1 < s ≤ ∞. ¤
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Perspectives

• Thm. 2shows that Msc is a nowhere dense closed subset of M. Can
Msc contain measures with a Lebesgue component < 1/2 ? Can a
semiclassical measure have a small entropy ?

• The spectral degeneracy ∼ N
log N is a non-generic feature, seems

to disappear for (nonlinear) perturbations of the cat map of type

e−iεĤT2/~ ◦ M̂~. Strong scarring of eigenstates is unlikely for pert. cat
maps.

• Control the time evolution of localized states for perturbed cat maps
up to (or beyond) Ehrenfest time (cf. R. Schubert’s work on hyperbolic
surfaces)

→ prove a “transition localized → equidistributed”
→ constrain Msc for nonlinear maps?
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