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Introduction

We consider the unitary ensemble of random
matrices,

where

N
dM =[] dRM;;dSM;; [ dMy;
1<i<j<N i=1

and
In :/ e~ NTT V(M) s
Hn

on the space Hjy of Hermitian N X N matrices
M = (Mij)lgi,jgN' Here V(x) is a polynomial,
V(z) = vpzP + Up_lscp—l + ...,

of an even degree p with v, > 0.



We will be interested in correlations between
eigenvalues A1 < ... < Ay of M when N is
large. The ensemble of eigenvalues is given by
the Weyl formula,

N
duv(N) = Z T i = 312 TT e MV a,
1< 1=1
where

2N NV (A
ZN_/HI)\ A2 T e NV d,

1< 1=1
It is convenient to rewrite it in the Gibbs form,

duy(\) = Zpyte NN gy

where

N
Hy(\) = _% S log A — Ml S V).

1<j<k<N j=1



Let dvy(xz) = py(z)dz be the distribution of
the eigenvalues on the line, so that for any
a <b,

1 b
[ |n#0 sa < <0} duy ) = [(duw(@).
a
As N — oo, there exists a weak limit of dvy (),
dvec(x) = lim dvy(x),
N —o0

and the limiting distribution, dreo(xz), minimizes
the energy functional on the space of proba-
bility measures on the line,

I(dv(z)) = ~ [[ ,1og |e — yldv(z) dv(y)
+ [ V@)dv(y).

Thus, dveo(x) is the equilibrium measure of the
energy functional.



A rigorous proof of the existence of the limit
limy_ o dvy(x) = dreq(x), was given by A.
Boutet de Monvel, L. Pastur, and M. Shcherbina,
and by K. Johansson.

A. Boutet de Monvel, L. Pastur, and M. Shcherbina,
On the statistical mechanics approach in the

random matrix theory: Integrated density of
states, J. Statist. Phys. 79 (1995), 585—611.

K. Johansson, On fluctuations of eigenvalues
of random hermitian matrices, Duke Math. J.
91 (1998), 151—204.



For the existence and uniqueness of the equi-
librium measure and its analytic properties see
also

E. Saff and V. Totik, Logarithmic potentials
and external fields, Springer-Verlag, New York,
1997.

P. Deift, T. Kriecherbauer, K. T-R. McLaugh-
lin, New results on the equilibrium measure for
logarithmic potentials in the presence of an ex-
ternal field, J. Appr. Theory 95 (1998) 399-

475.



Properties of the equilibrium measure

e dveq(z) is supported by a finite number
of segments [a;,b;], 7 = 1,...,q, and it is
absolutely continuous with respect to the
Lebesgue measure, dreq(x) = p(x)dz;

e the density function p(z) is of the form
1 1/2
= —h(x)R :
p(2) = ——h(@)RY ()

q
R(z) = ] (z —a;)(x - b)),
j=1
where h(x) is a polynomial of the degree,
degh = p—q — 1, and R}|_/2(ac) means the
value on the upper cut of the principal sheet
of the function R/2(z) with cuts on J,

J = U;I-:l[aj,bj] :



T he equilibrium measure is uniquely determined
by the Euler-Lagrange conditions: for some
real constant [,

Q/R l0g |x — s| dreq(s) — V(x) =1,

q B
for :ceujzl[aj,b]],

Q/R log |z — s| dreq(s) — V(x) <,

for zeR\ U;]-_:l[aj, b]] .

See

P. Deift, T. Kriecherbauer, K. T-R. McLaugh-
lin, S. Venakides, and X. Zhou, Uniform asymp-
totics for polynomials orthogonal with respect
to varying exponential weights and applications
to universality questions in random matrix the-
ory, Commun. Pure Appl. Math., 52 (1999)
1335-1425



The Euler-Lagrange conditions imply that for
z & J,

V/(z)  h(z)RY2(2)
> 2

w(z) = : (*)

where

w(z)E/JE(x_)fc =" 14+0G"?, - .

Z
In addition, for any j=1,...,q — 1,

/ajﬂ AR () de =0, (%)
b; 2

which shows that h(x) has at least one zero on
each interval b; <z <ajqy1; 3=1,...,9—1.



From (*) we obtain that
'(5) — ARL/2(,
V'(2) = Pol |h(x)RY2(2)], (i
Res |h(z)RY2(2)] = -2,

and

h(z) = Pol [ V'(2) } |

Rl/z(z)

where Pol [f(z)] is the polynomial part of f(z)
at z = oo. The latter equation expresses h(z)
in terms of V(z) and the end-points, aq, b1, ...,
aq, bq.

The end-points can be further found from (***),
which gives ¢+1 equation on aq,..., by (Observe
that degh = degV — ¢ — 1), and from (*%*),
which gives the remaining g — 1 equation.
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The equilibrium measure drveq(x) is called reg-
ular (otherwise singular), see [DKMVZ], if

h(x) Z0 for x¢€ U?zl[aj,bj]
and
2 / log |z — s|dreq(s) — V(x) <,
for ze€R\UI_,lajbj].

The polynomial V(x) is called critical if the
corresponding equilibrium mesaure dveq(x) is
singular. If V(x) is a critical polynomial then
the set S of its singular points consists of the
points where either h(z) = 0, = € U?:l[aj,bj],
or

2/|Og |z — 8| dveq(s) — V(z) =,
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Example. V(z) = %:c“ + La2.

Equilibrium measure density:

0.8 0.8 0.8
0.6 t=-1 0.6 t=-2 0.6 t=-3
0.4 0.4 0.4
0.2 M 0.2 0.2
07 0 2 7 0 2 7 0 2

Here t. = —2 is a critical point. In general, we
will be interested in the following problems:

e Critical asymptotics of the free energy.

e Double scaling limit of correlation func-
tions at the critical point.

e Double scaling limit of recurrence coeffi-
cients at the critical point.

12



Correlation functions. For any test function
¢(x) € Cg°, define

qu()\), )\:{)\1,...,)\]\[}.

7.._
The m-point correlation measure dv,,, ny(z1,...,2Zm)
is defined by the condition that for any m test

functions ¢1(x), ..., dm(x),

N (H b; [A]) diun (M)

m
- Rm™ ( . ¢](x])> deN(aj17"‘7xm)'
J

In fact, dvn(zq,...,xm) is Lebesgue absolutely
continuous on the set {z; # x;},

dvn(z1,...,2m) = K, ,n(z1,...,2m)dzq...dTm,

and K,,n(x1,...,zm) is the m-point correlation
function.

13



Scaling limits of correlation functions

Scaling limit in the bulk of the spectrum. Let
z € UJ_,(a;,b;), so that the density of eigen-
values p(x) > 0. The scaling limit of correla-
tion functions is defined as

Km(ul7 cee 7Um)

1 Um,
= |im K N + — y L - >
N—oo (Np(z))m ™ < Np(af) Np(zx)
The problem is to prove the existence of the
limit and to evaluate Ky (uq,...,um).

Scaling limit at the regular end-point. Let x
be a regular end-point, z = a;,b;, h(x) # O.
The scaling limit of correlation functions at
the regular end-point is defined as

Km(Ul, . .- ,’U/m>

1 Um
= |im
N (eN2/3ym (o4 3ot s
The problem again is to prove the existence of
the limit and to evaluate Ky (u1,...,um) (¢ >0

is an appropriate normalization factor).
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Double scaling limit at the critical point. Let
x be a critical point. The double scaling limit
of correlation functions at the critical point is
defined as

1
K e y) = |lim
m(u1 Um, y) N oo (CN"‘:)m

Ul m Y
X KN (B—I' CN’“V“’x—'_cN"i’,UCT—l— N’)’)’

where k,v > 0 are appropriate critical expo-
nents, and ver + ]—\% IS a perturbation of the
coefficients of the critical polynomial Vg-(z).
The problem is to determine « and ~, to prove
the existence of the limit, and to evaluate
Km(ui,...,um;y) (¢ > 0 is an appropriate nor-
malization factor).
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Correlation functions in terms of orthogo-
nal polynomials

Consider monic orthogonal polynomials Pn(x) =
z™ + ... on the line with respect to the weight
e~ NV(2) 5o that

/OO Pn(a:)Pm(:U)e_NV(x)da: =0, n*m.

—00
Let
®.@)
hn———/ Pn(a;)ze_NV(x)da:.
— 0
Set
In(2) = ——Pa(a)e 2"
Xr) — €I )e
n \/7?/—7?: mn

Formula of Dyson-Mehta

Kpn(z1, .. zm) = det (Qn(zg, 2)) g i=1»
where Qn(x,y) is the Szegd kernel,
N—1

Qn(z,y) = Z Yn(z)n(y).

n=0
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Scaling and double scaling limits for the
Szedgo kernel

The problem of the scaling limit in the bulk of
the spectrum reduces to the one for the Szego
kernel,

Q(uy,up)

I ug U2

o ]\/!Too N'p(a:)QN (SB + Np(xyx + Np(x)) |
sO that

Km(21, ... om) = det (Q(ag, ) =1

17



Similarly, the scaling limit of the Szegd kernel
at the regular end-point, =z = aj, bj, is

7
Q(uy,u2)

. 1 Ul u” )
= |Iim = e
N N2 39N <$+CN2/3’“7 cN2/3)’
and at the critical point,

Q(u1,u2;y)
L 1 U1 uo Y
=AM RN ("” TN T e ver tfv?) ’
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Main Results

Scaling limit in the bulk of the spectrum

Theorem 1. The scaling limit of the Szegd ker-
nel in the bulk of the spectrum exists and is
equal to the sine kernel,
sin 7r(u1 — u2)

m(uy — uo)

Q(uy,up) =

V(z) = z2: Dyson, 1971.

V(z) = %:1:4--!—%3:2: Bleher, Its, 1997 (Riemann-
Hilbert approach).

General V(z): Boutet de Monvel, Pastur, Shcherbina
1998 (mean-field theory approach); Deift, Kriecherba
McLaughlin, Venakides, and Zhou, 1999 (Riemann-
Hilbert approach).
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Scaling limit at the regular end-point

Theorem 2. The scaling limit of the Szegb ker-

nel at a regular end-point exists and is equal

to the Airy kernel,

Ai (up)Ai "(un) — Ai "(u)Ai (ur)
(w1 —u2) '

Q(u1,uz) =
V(z) = z?: Bowick and Brézin, 1991; Tracy,
wWidom, 1992.

V(z) = 2z* + £22: Bleher, Its, 1997.

General V(z): it follows from the results of
Deift, Kriecherbauer, McLaughlin, Venakides,
and Zhou, 1999.
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Double scaling limit at a critical point

Theorem 3. Assume that V(z) = za* + La2.
The double scaling limit of the Szegb kernel

at the critical point t. = —2 exists and is equal
to the Painlevé II kernel,
uj U CoY
lim - Y
NeoochBQN <cN1/3’ N3 T J2/3)
— Q(’LL]_,'U,Q; y)7

where ¢ = 272/3, ¢q = 21/3,
o(u1; ) (uz; y) — ¢’ (ug; y)p(uo; y)

Q(u,un;y) =
Uy — U

so that ¢(u; y) = [®(u; y)]1, where ®(u;y) solves
the 2 x 2 linear differential psi-equation associ-
ated with the critical solution to the Painlev’e
Il equation,

B (uiy) = F(ui ) (i),
cos (%LE + yu>
—sin <%§E + yu)

J

S (u;y) ~ ly| — oo.

21



The matrix F(u;y) is

F(u;y)
_ < 4q(y)u 4u? + 2p(y) + r(y)>
—4u? 4+ 2p(y) — r(y) Ap(y)u |

where q(y) is the critical, Hastings-MclLeod so-
lution to the Painlevé II equation,

¢ = yqg+ 24>,

q~\V—-2y, y— —oo,

g~ Ai(y), y— oo,
and

p(v) =d (), r(y)=y+20°®).

Bleher and Its, 2002;

See also Baik, Deift, and Johansson, 1999 (cir-
cular ensemble, critical asymptotics of the re-

currence coefficients).
22



Semiclassical Asymptotics for Orthogonal
Polynomials

Christoffel-Darboux Formula

T hree term recurrence relation:

rYn(z) = ’)’n+1¢n—|—1($) ~+ Bnn(x) +mn—1(x).

If Q: f(x) — xf(x), then in the basis {yn(x)};
() i1s a symmetric tridiagonal matrix,

Bo v1 O

o= |M b1 72
O 72 B3

Christoffel-Darboux formula:

N-—1
Qn(z,y) = Z Yn(z)Yn(y)

n=0
N%bN(iE)wN—l(?ﬂ —Yn_1(z)Yn(y) |
r—1Y

23



Lax Pair Equations

Define W, (z) = <¢¢”§3€;)> .

Differential equation:

W/ (2) = NAp(z)Wn(z),

where
—V (z) — Ynun(z) Ynon(x)
An(z) = 5 V(z)
—YnUp—1(x) 5 + Ynun(x)

and

un(z) = W(Q,x)]nn-1,

vn(x) = [W(Q, x)]nn,
where

Vi(Q) —V'(z)
Q—x |

W(Q,z) =

24



Recurrence equation:

W,p1(2) = Un(2)Wn(a),
Un(z) = (77;41_1(§ — 0Bn) — T:_|1_17n>

O

Discrete String Equations

( [V,(Q>]nn =0,

V' ( @lnn-1 =

25



Lax pair for the quartic model

Let V(z) = 42* 4 522, g > 0, and

Differential equation

\D;z(z) — NAn(Z)\Dn(Z)a

where
3 1/2
ar = (BT F o) B2 400
n\<) — 3
~Ri/?(922 + 0p-1) %+ % + g2Rn
and

O0n =t+ gRn+ gRnt1, Rn =17

26



Recurrence equation

ZP?”L(Z) — Pn—|—1(z) + Rnpn—l<z)7

(orthogonal polynomials) or

Wpp1 = Un(2)Wn(2),

where
—-1/2 —-1/2 ,1/2

String equation

Uy, = N(A,+1Un — UnAp),

or

n
N = Rp(t +9gRy—1 + gRn + an—I—l)-

27



Recurrence coefficient Ry, versusn (g =1, t =
—1, N = 400)

_______________________________________________

oo 120 140 deO 180 200
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Scaling Limit Ansatz for the Recurrence Coef-
ficients

N N
and
mn mn
R”:“<N>’ N

Critical point: ¢ = jr—zg (t < 0).

Scaling functions (from the string equation):

t t2 — 4Ag\
a(A) = ——, b)) = \/ I A< A,
249 2

and

29



Double Scaling Limit Ansatz

Rn= —— 4+ N3 1) leiq(y) +N—2/3cor(y)

2g
+O(N—1),
where

1
o=1(1 )"
2 = 2\ 2Jtlg '

Then the string equation reads
0= Rn(t+gR,_1+ gRn+ an+1) — %

= N_2/3co (r -— 2q2 — y)

_I_N—l(_]_)’n (q// . qr) + 0 (N—4/3> ’
the Painlevé II on ¢, and r = 2¢% + y.
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Substitute the double scaling limit ansatz for
R, to the differential equation for orthogonal
polynomials,

W,(2) = NAn(2)Un(2),

where
3
ay =[BT Hon) B2 400
nAes 1/2 3
— n/ (922+9n—1) %—I—%—l—ngn
and

Op =t+ gRn+9gR,11, BRn= %%7

and solve it in the semiclassical approximation
on the complex plane.
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Semiclassical Solution on the Complex Plane

Divide the complex plane into regions:

™N :f|-
I

|
.

]_ ' Re z

Define W9(2) as
[ WWKB(,), zeC\Q
VP (z), zeqf

wi(z) =« ,
WP, 2eQlu(-ab),

WWKB(), 2 QiU (=)

\
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where WWKB(2) is the WKB solution, W TP (2)
is the turning point solution (simple turning
points), and WP (%) is the critical point solu-
tion (4 merging turning points).

The estimate of the error term in both the dou-
ble scaling Ansatz for recurrence coefficients
and the semiclassical solution comes from the
Riemann-Hilbert problem.
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e Conclusion

Using the Riemann-Hilbert problem we proved
the semiclassical asymptotics of orthogonal poly-
nomials with respect to the exponential quartic
weight in the double scaling limit. This proved
the asymptotics for recurrence coefficients,

12
Rn = =5+ N7Y3(—1)"c1q(y) +N—2/3¢or(y)
+O(N—Y),

where ¢g(y) is the Hastings-MclLeod solution to
Painlevé II,
n

N et coN /3y,

and local asymptotics of correlations between
eigenvalues in the double scaling limit:
e Sine-kernel in the bulk of the spectrum,

e Airy-kernel at the edges of the spectrum,

e Painlevé II-kernel in the critical point.
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