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Highly non-self-adjoint matrices and differen-
tial operators may have approximate eigenval-
ues which are not close to the spectrum of the
operators. We will describe the relevance of
semi-classical analysis to such ‘pseudospectral’
phenomena.



Bases

We say that {v,} forms a basis if every f € H
has a norm convergent expansion

o0

f= Z Pnf = Z (f, Un)vn. (1)
n=1

n=1

By the uniform boundedness theorem this im-
plies that there exists a constant k£ such that

| Prll = ||vn|] ||on]| < k

for all n.
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Abel-Type Expansions

Even if {v,} do not form a basis it has been
shown by Lidskii, Agranovich, Katznelson and
others that for nsa elliptic differential operators
one often has Abel-type convergence.

This involves some adaptation of the formula

== Ilm Z e"’\ﬁt(f,vn

where 3 > O, dependmg on the particular fea-
tures of the operator involved.



The set of eigenvalues of A is invariant un-
der similarity transformations of the form A —
TAT—1. Another such invariant is the asymp-
totic behaviour of ||P,|| as n — oo, where the
eigenvalues are suitably ordered.

VVie say tiiatl tiie spectral projections are poly-
nomially bounded if there exist constants c,«
such that

| Pnl] < en®

for all n.



Approximate Eigenvalues

One needs to be careful not to suppose that if
Af ~ zf then z is close to the spectrum of A.
One always has a bound of the type

(21 — A)™1|| > dist(z,Spec(4))™ ! (2)

The existence of a reverse inequality of the
form

I(zI — A)7H|| < kdist(z,Spec(A))™t  (3)
iIs a definite assumption.
Lemma 1 If (3) and
|Af = zf|| <ellfll

for some non-zero f € Dom(A) then

dist(z,Spec(A)) < ke.



Pseudospectrum

We define
Spec.(A) ={zeC:|(z—A)7 Y > .

Theorem 2 Given € > 0 one has

Spec.(A) = cl |J Spec(A+ B)
|B||<e

where cl denotes the closure.






The Harmonic Oscillator

We describe the harmonic oscillator with a com-
plex coupling constant

Hf(z) = —f"(z) + cz®f()
acting in L2(R). We assume that Im (¢) > O.

If one initially defines H on Schwartz space S,
then the closure has compact resolvent. One
may prove by direct computation or analytic
continuation from the real case that the oper-
ator has eigenvalues A\, = c1/2(2n + 1) where
n = 0,1,..., the corresponding eigenfunctions
being Hermite functions which all lie in § and
form a complete set in L2(R).



Theorem 3 If z = re' where 0 < 4 < arg(c)
then

lim ||(zI — H)7!|| = .

T—00

On the other hand if arg(c) < 8 < 2w then the
value of the limit is O.



Semi-Classical Limit

Consider the operator

Hpf(z) = —h2f"(z) + V(z) f(2)

where h > 0 and V is any smooth complex-
valued potential on R. We do not need to
specify the full domain of Hy but only to sup-
pose that it contains CP(R).



The following theorem shows that as h — O
the pseudospectrum of Hp expands to fill up
the range of the complex classical Hamiltonian

H(p,q) = p% + V(q), p,q being restricted to
taking real values.

Theorem 4 Let z = p?+ V(q) for some p,q €

R and suppose that Im (V/(q)) # 0. For all
m > 0 one has

I(zI — Hp)™H| > h7™

for all sufficiently small h > O.
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Redparth’s Theorem

Now assume that Hy = —h2A + V on L?(Q),
where h > 0, V is a complex-valued continuous
function on the closure of the bounded region
2 C R™ and we impose Dirichlet boundary con-
ditions.

Theorem 5 Put

® = Ran(V) + [0, o0)
IfF A€ & then

I = Hp)™H| = o0
as h — 0. If, however, A ¢ ® then

limsup ||(A — Hp) 1| < dist(\, )71,

h—0
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Quasi-Orthogonal Polynomials

We consider polynomials pn, which are orthog-
onal with respect to a complex weight o on
[0, 00) in the following sense. We suppose that
pn IS Of degree n and

/OOO pm(w)Pn(fE)U(ﬂf)z dz = 0m,n

for all non-negative integers m, n.
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As an example consider the non-self-adjoint
harmonic oscillator

(Hf)(z) = —f"(z) + z*2° f (=)

acting in L2(R) for some complex z. In this
situation the relevant weight is

o(z) = o=7"7%/2
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Our goal is to obtain bounds on the quantities

[ 2
No= | " Ipn(2)o (@) da.

In the case of the harmonic oscillator. these
are the norms of the spectral projections.

The asymptotic behaviour as n — oo should be

regarded as a question in semi-classical asymp-
totics.
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We assume that

o(e"r)| > cgo(spr) (4)

for all || < « and all » > 0, where ¢y > 0 and
0 < sp < 1.

Theorem 6 Under the assumption (4) we have
Nn,z Z CgSEQn—l
provided z = re¥ and |6] < «a.
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Let
o(2) = 21/2e*

where v > —1 and 8> 0. If »r > 0 and
18] < 7/(26) then

o (re'?)| = cgo(ser)

where sy = {cos(68)}1/8 and ¢y = 30—7/2.

After replacing (0,00) by (—o0,00), the partic-
ular choice v = 0 and 8 = 2 leads one to the
study of the Hermite polynomials with a com-
plex scaling, which is relevant to the non-self-
adjoint harmonic oscillator. The choice g =1
leads to the Laguerre polynomials Lj.
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Theorem 7 If

o(x) = exp{— En: cjasj}

=1
for allz € (0,00), wherec; € R forall j and cp >
0, then o satisfies (4) provided || < w/(2n).
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When considering the Hermite polynomials we
restrict attention to the case of even integers;
the treatment of odd integers is very similar.

Theorem 9 Ifo(z) = e~%°/2 and z = e where

0| < /4, and put sy = (cos(26))1/2. Then
for all non-negative integers n.
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Theorem 10 There exists an explicit t; > O
such that the spectral expansion

oo
e—Ht — Z e-—AntP’n
n=0

of the nsa harmonic oscillator is norm conver-
gent ift >ty and is norm divergent if 0 <t < t,.
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Numerical Results

The second column lists the constants

352 = sec(26) associated with the lower bound
of Theorem 6. The the third column provides
the numerical results. The fourth column lists
the constants

4s,% = 4sec(20) associated with the upper
bound of Theorem 9.

6 sp°  p1oo(8)  4sp”
0 1 1 4
0.025 1.012 1.165 4.050
0.05 1.0561 1.369 4.206
0.1 1236 1.953 4.945
0.15 1.701 3.062 6.806
0.20 3.236 6.282 12.945
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