Pseudospectra and Applications

E.B. Davies

May 2003

Highly non-self-adjoint matrices and differential operators may have approximate eigenvalues which are not close to the spectrum of the operators. We will describe the relevance of semi-classical analysis to such 'pseudospectral' phenomena.

Bases

We say that $\{v_n\}$ forms a basis if every $f \in \mathcal{H}$ has a norm convergent expansion

$$f = \sum_{n=1}^{\infty} P_n f = \sum_{n=1}^{\infty} \langle f, \hat{v}_n \rangle v_n.$$
 (1)

By the uniform boundedness theorem this implies that there exists a constant k such that

$$||P_n|| = ||v_n|| \, ||\widehat{v}_n|| \le k$$

for all n.

$$M = f'' + f'$$

Abel-Type Expansions

Even if $\{v_n\}$ do not form a basis it has been shown by Lidskii, Agranovich, Katznelson and others that for usa elliptic differential operators one often has Abel-type convergence.

This involves some adaptation of the formula

$$f = \lim_{t \to 0+} \sum_{n=1}^{\infty} e^{-\lambda_n^{\beta} t} \langle f, \hat{v}_n \rangle v_n$$

where $\beta > 0$, depending on the particular features of the operator involved.

The set of eigenvalues of A is invariant under similarity transformations of the form $A \to TAT^{-1}$. Another such invariant is the asymptotic behaviour of $||P_n||$ as $n \to \infty$, where the eigenvalues are suitably ordered.

We say that the spectral projections are polynomially bounded if there exist constants c, α such that

$$||P_n|| \leq cn^{\alpha}$$

for all n.

Approximate Eigenvalues

One needs to be careful not to suppose that if $Af \simeq zf$ then z is close to the spectrum of A. One always has a bound of the type

$$||(zI - A)^{-1}|| \ge \operatorname{dist}(z, \operatorname{Spec}(A))^{-1}$$
 (2)

The existence of a reverse inequality of the form

$$||(zI - A)^{-1}|| \le k \operatorname{dist}(z, \operatorname{Spec}(A))^{-1}$$
 (3)

is a definite assumption.

Lemma 1 If (3) and

$$||Af - zf|| < \varepsilon ||f||$$

for some non-zero $f \in Dom(A)$ then

$$\operatorname{dist}(z,\operatorname{Spec}(A)) < k\varepsilon.$$

Pseudospectrum

We define

$$\operatorname{Spec}_{\varepsilon}(A) = \{ z \in \mathbf{C} : \|(z - A)^{-1}\| > \varepsilon^{-1}.$$

Theorem 2 Given $\varepsilon > 0$ one has

$$\operatorname{Spec}_{\varepsilon}(A) = \operatorname{cl}\left\{\bigcup_{\|B\| \leq \varepsilon} \operatorname{Spec}(A+B)\right\}$$

where cl denotes the closure.

The Harmonic Oscillator

We describe the harmonic oscillator with a complex coupling constant

$$Hf(x) = -f''(x) + cx^2 f(x)$$

acting in $L^2(\mathbf{R})$. We assume that Im (c) > 0.

If one initially defines H on Schwartz space \mathcal{S} , then the closure has compact resolvent. One may prove by direct computation or analytic continuation from the real case that the operator has eigenvalues $\lambda_n = c^{1/2}(2n+1)$ where n=0,1,..., the corresponding eigenfunctions being Hermite functions which all lie in \mathcal{S} and form a complete set in $L^2(\mathbf{R})$.

Theorem 3 If $z = re^{i\theta}$ where $0 < \theta < arg(c)$ then

$$\lim_{r\to\infty}\|(zI-H)^{-1}\|=\infty.$$

On the other hand if $arg(c) < \theta < 2\pi$ then the value of the limit is 0.

Semi-Classical Limit

Consider the operator

$$H_h f(x) = -h^2 f''(x) + V(x) f(x)$$

where h>0 and V is any smooth complexvalued potential on ${\bf R}$. We do not need to specify the full domain of H_h but only to suppose that it contains $C_c^\infty({\bf R})$. The following theorem shows that as $h \to 0$ the pseudospectrum of H_h expands to fill up the range of the complex classical Hamiltonian $H(p,q) = p^2 + V(q)$, p,q being restricted to taking real values.

Theorem 4 Let $z = p^2 + V(q)$ for some $p, q \in \mathbb{R}$ and suppose that $\text{Im } (V'(q)) \neq 0$. For all m > 0 one has

$$||(zI - H_h)^{-1}|| \ge h^{-m}$$

for all sufficiently small h > 0.

SHKALIKOV

$$Hf = -\frac{1}{2}f'' + i \vee f$$

$$Hf = -\frac{1}{2}f'' + i \vee f$$

REDPARTH

$$V(x) = \begin{cases} x+S & \text{if } x>0 \\ x-S & \text{if } x<0 \end{cases}$$

Redparth's Theorem

Now assume that $H_h = -h^2 \Delta + V$ on $L^2(\Omega)$, where h > 0, V is a complex-valued continuous function on the closure of the bounded region $\Omega \subseteq \mathbf{R}^n$ and we impose Dirichlet boundary conditions.

Theorem 5 Put

$$\Phi = \overline{\operatorname{Ran}(V)} + [0, \infty)$$

If $\lambda \in \Phi$ then

$$\|(\lambda I - H_h)^{-1}\| \to \infty$$

as $h \to 0$. If, however, $\lambda \notin \Phi$ then

$$\limsup_{h\to 0} \|(\lambda I - H_h)^{-1}\| \leq \operatorname{dist}(\lambda, \Phi)^{-1}.$$

Quasi-Orthogonal Polynomials

We consider polynomials p_n which are orthogonal with respect to a complex weight σ on $[0,\infty)$ in the following sense. We suppose that p_n is of degree n and

$$\int_0^\infty p_m(x)p_n(x)\sigma(x)^2 dx = \delta_{m,n}$$

for all non-negative integers m, n.

As an example consider the non-self-adjoint harmonic oscillator

$$(Hf)(x) = -f''(x) + z^4x^2f(x)$$

acting in $L^2(\mathbf{R})$ for some complex z. In this situation the relevant weight is

$$\sigma(x) = \mathrm{e}^{-z^2 x^2/2}$$

$$|A| = S_r \left(S_r J_s + S_r O_s \right)$$

$$\lambda_n = 2^2 (2n+1)$$
 $n=0,1,2,...$

Our goal is to obtain bounds on the quantities

$$N_n = \int_0^\infty |p_n(x)\sigma(x)|^2 dx.$$

In the case of the harmonic oscillator. these are the norms of the spectral projections.

The asymptotic behaviour as $n \to \infty$ should be regarded as a question in semi-classical asymptotics.

We assume that

$$|\sigma(e^{i\theta}r)| \ge c_{\theta}\sigma(s_{\theta}r)$$
 (4)

for all $|\theta| < \alpha$ and all r > 0, where $c_{\theta} >$ 0 and 0 $< s_{\theta} <$ 1.

Theorem 6 Under the assumption (4) we have

$$N_{n,z} \ge c_{\theta}^2 s_{\theta}^{-2n-1}$$

provided $z=r\mathrm{e}^{i\theta}$ and $|\theta|<\alpha$.

Let

$$\sigma(z) = z^{\gamma/2} e^{-z^{\beta}}$$

where $\gamma>-1$ and $\beta>0$. If r>0 and $|\theta|<\pi/(2\beta)$ then

$$|\sigma(re^{i\theta})| = c_{\theta}\sigma(s_{\theta}r)$$

where $s_{\theta} = \{\cos(\theta\beta)\}^{1/\beta}$ and $c_{\theta} = s_{\theta}^{-\gamma/2}$.

After replacing $(0,\infty)$ by $(-\infty,\infty)$, the particular choice $\gamma=0$ and $\beta=2$ leads one to the study of the Hermite polynomials with a complex scaling, which is relevant to the non-self-adjoint harmonic oscillator. The choice $\beta=1$ leads to the Laguerre polynomials L_n^{γ} .

Theorem 7 If

$$\sigma(x) = \exp\{-\sum_{j=1}^{n} c_j x^j\}$$

for all $x \in (0, \infty)$, where $c_j \in \mathbf{R}$ for all j and $c_n > 0$, then σ satisfies (4) provided $|\theta| < \pi/(2n)$.

When considering the Hermite polynomials we restrict attention to the case of even integers; the treatment of odd integers is very similar.

Theorem 9 If
$$\sigma(x) = e^{-x^2/2}$$
 and $z = e^{i\theta}$ where $|\theta| < \pi/4$, and put $s_{\theta} = (\cos(2\theta))^{1/2}$. Then $N_{2n} \le \pi(n+1)^{1/2} 2^{4n+2} s_{\theta}^{-4n-1}$.

for all non-negative integers n.

Theorem 10 There exists an explicit $t_z > 0$ such that the spectral expansion

$$e^{-Ht} = \sum_{n=0}^{\infty} e^{-\lambda_n t} P_n$$

of the nsa harmonic oscillator is norm convergent if $t > t_z$ and is norm divergent if $0 \le t < t_z$.

Numerical Results

The second column lists the constants $s_{\theta}^{-2} = \sec(2\theta)$ associated with the lower bound of Theorem 6. The the third column provides the numerical results. The fourth column lists the constants

 $4s_{\theta}^{-2} = 4\sec(2\theta)$ associated with the upper bound of Theorem 9.

	θ	s_{θ}^{-2}	$ ho_{100}(heta)$	$4s_{\theta}^{-2}$
	0	1	1	4
0.	025	1.012	1.165	4.050
0	.05	1.051	1.369	4.206
(0.1	1.236	1.953	4.945
0	.15	1.701	3.062	6.806
0	.20	3.236	6.282	12.945