Upper bounds on the number of the scattering poles

PLAMEN STEFANOV

Purdue University

Let P be a compactly supported perturbation of the Laplacian, $n \geq 2$, odd, such that $P = -\Delta$ outside $B(0, R)$. Assume the "black-box" conditions. Typical example:

$$
P = -\Delta_g + V(x)
$$

with Dirichlet or Neumann B.C. on the boundary of the obstacle $\mathcal{O} \subset B(0,R)$ (can be empty).

Let P be a compactly supported perturbation of the Laplacian, $n \geq 2$, odd, such that $P = -\Delta$ outside $B(0, R)$. Assume the "black-box" conditions. Typical example:

$$
P = -\Delta_g + V(x)
$$

with Dirichlet or Neumann B.C. on the boundary of the obstacle $\mathcal{O} \subset B(0,R)$ (can be empty).

Classical Resonances: Poles of the meromorphic continuation of the resolvent

$$
\chi(P - \lambda^2)^{-1}\chi
$$
 from $\Im \lambda > 0$ to C,

where χ is a cut-off, $\chi = 1$ on $B(0, R)$.

Let P be a compactly supported perturbation of the Laplacian, $n \geq 2$, odd, such that $P = -\Delta$ outside $B(0, R)$. Assume the "black-box" conditions. Typical example:

$$
P = -\Delta_g + V(x)
$$

with Dirichlet or Neumann B.C. on the boundary of the obstacle $\mathcal{O} \subset B(0,R)$ (can be empty).

Classical Resonances: Poles of the meromorphic continuation of the resolvent

$$
\chi(P - \lambda^2)^{-1}\chi
$$
 from $\Im \lambda > 0$ to C,

where χ is a cut-off, $\chi = 1$ on $B(0, R)$.

Also, they are poles of the *scattering* matrix $S(\lambda) : L^2(S^{n-1}) \to L^2(S^{n-1})$.

Let P be a compactly supported perturbation of the Laplacian, $n \geq 2$, odd, such that $P = -\Delta$ outside $B(0, R)$. Assume the "black-box" conditions. Typical example:

$$
P = -\Delta_g + V(x)
$$

with Dirichlet or Neumann B.C. on the boundary of the obstacle $\mathcal{O} \subset B(0,R)$ (can be empty).

Classical Resonances: Poles of the meromorphic continuation of the resolvent

 $\chi(P - \lambda^2)^{-1}\chi$ from $\Im \lambda > 0$ to **C**,

where χ is a cut-off, $\chi = 1$ on $B(0, R)$.

Also, they are poles of the *scattering* matrix $S(\lambda) : L^2(S^{n-1}) \to L^2(S^{n-1})$.

Semi-classical Resonances

 $P(h) = -h^2 \Delta$ outside $B(0, R)$. S.C. Resonances: poles of

$$
\chi(P(h)-z)^{-1}\chi
$$

from $\Im z > 0$ to a neighborhood of $E_0 > 0$ in **C**. Scattering matrix $S(z)$.

$$
N^{\#}(r) = \{ \# \text{ of eigenvalues } \lambda^2 \le r^2 \}
$$

$$
N^{\#}(r) = \{ \# \text{ of eigenvalues } \lambda^2 \le r^2 \}
$$

Assume

$$
N^{\#}(r) \le C(r+1)^{n^{\#}}, \quad n^{\#} \ge n.
$$

In most interesting cases, $n^{\#} = n$.

$$
N^{\#}(r) = \{ \# \text{ of eigenvalues } \lambda^2 \le r^2 \}
$$

Assume

$$
N^{\#}(r) \le C(r+1)^{n^{\#}}, \quad n^{\#} \ge n.
$$

In most interesting cases, $n^{\#} = n$.

Counting Function:

$$
N(r) = \{\lambda - \text{resonance}, \, |\lambda| \le r\}.
$$

$$
N^{\#}(r) = \{ \# \text{ of eigenvalues } \lambda^2 \le r^2 \}
$$

Assume

$$
N^{\#}(r) \le C(r+1)^{n^{\#}}, \quad n^{\#} \ge n.
$$

In most interesting cases, $n^{\#} = n$.

Counting Function:

$$
N(r) = \{\lambda - \text{resonance}, \, |\lambda| \le r\}.
$$

Melrose, Sjöstrand, Zworski, Vodev, etc.:

 $N(r) \leq C_n(r+1)^n$, if $n^{\#} = n$, $N(r) \leq C\Phi(Cr)$, otherwise,

where $N^{\#}(r) \leq \Phi(r)$.

$$
N^{\#}(r) = \{ \# \text{ of eigenvalues } \lambda^2 \le r^2 \}
$$

Assume

$$
N^{\#}(r) \le C(r+1)^{n^{\#}}, \quad n^{\#} \ge n.
$$

In most interesting cases, $n^{\#} = n$.

Counting Function:

$$
N(r) = \{\lambda - \text{resonance}, \, |\lambda| \le r\}.
$$

Melrose, Sjöstrand, Zworski, Vodev, etc.:

 $N(r) \leq C_n(r+1)^n$, if $n^{\#} = n$, $N(r) \leq C\Phi(Cr)$, otherwise,

where $N^{\#}(r) \leq \Phi(r)$. In S.C. case: $N(\Omega) = O(h^{-n^{\#}})$, where Ω is a small neighborhood of $E_0 > 0$.

\bullet How sharp are those estimates?

\bullet How sharp are those estimates?

 \bullet • In particular, in $N(r) \leq C_n(r+1)^n$,

\bullet How sharp are those estimates?

 \bullet • In particular, in $N(r) \leq C_n(r+1)^n$,

$C_n = ?$

 \bullet Sharp estimates in various neighborhoods of **R**?

 $O(|\lambda|^{-N})$ (respectively $O(h^N)$) **close** to the real axis If $P = -\Delta_g + V$ in \mathbb{R}^n , then for some $N \gg 1$, [S] $\#\text{Res}(P) \cap \{1 \le |\lambda|; -\Im \lambda \le C|\lambda|^{-N}\} \le C_n r^n (1+o(1))$ with

$$
C_n = 2(2\pi)^{-n} \text{vol}(\mathcal{T}),
$$

T being the *trapped set* in $\{p_0(x,\xi)\leq 1\}$. In a presence of an obstacle, $N=\infty$.

 $O(|\lambda|^{-N})$ (respectively $O(h^N)$) close to the real axis If $P = -\Delta_g + V$ in \mathbb{R}^n , then for some $N \gg 1$, [S] $\#\text{Res}(P) \cap \{1 \leq |\lambda|; -\Im \lambda \leq C |\lambda|^{-N}\} \leq C_n r^n (1+o(1))$

with

$$
C_n = 2(2\pi)^{-n} \text{vol}(\mathcal{T}),
$$

T being the *trapped set* in $\{p_0(x,\xi) \leq 1\}$. In a presence of an obstacle, $N = \infty$. In the S.C. case,

 $\#\text{Res}(P(h)) \cap \{0 < a \leq \Re z \leq b; \ 0 \leq -\Im z \leq Ch^{-N}\} \leq C_n h^{-n} (1 + o(1)),$ with

$$
C_n = (2\pi)^{-n} \text{vol}\left(\mathcal{T} \cap p_0^{-1}[a, b]\right),
$$

 $O(|\lambda|^{-N})$ (respectively $O(h^N)$) **close** to the real axis If $P = -\Delta_g + V$ in \mathbb{R}^n , then for some $N \gg 1$, [S] $\#\text{Res}(P) \cap \{1 \leq |\lambda|; -\Im \lambda \leq C |\lambda|^{-N}\} \leq C_n r^n (1+o(1))$

with

$$
C_n = 2(2\pi)^{-n} \text{vol}(\mathcal{T}),
$$

T being the *trapped set* in $\{p_0(x,\xi) \leq 1\}$. In a presence of an obstacle, $N = \infty$. In the S.C. case,

 $\#\text{Res}(P(h)) \cap \{0 < a \leq \Re z \leq b; \ 0 \leq -\Im z \leq Ch^{-N}\} \leq C_n h^{-n} (1 + o(1)),$ with

$$
C_n = (2\pi)^{-n} \text{vol}\left(\mathcal{T} \cap p_0^{-1}[a, b]\right),
$$

Those estimates are sharp in some cases (potential barrier).

For simplicity, $N = \infty$. Consider the resonant states u:

$$
(P - \lambda^2)^k u = 0, \quad k = O(|\lambda|^{n^{\#}})
$$

For simplicity, $N = \infty$. Consider the resonant states u:

$$
(P - \lambda^2)^k u = 0, \quad k = O(|\lambda|^{n^{\#}})
$$

Then

$$
(P - \lambda^2)u = O(|\lambda|^{-\infty})
$$

and $WF(u) = T$.

For simplicity, $N = \infty$. Consider the resonant states u:

$$
(P - \lambda^2)^k u = 0, \quad k = O(|\lambda|^{n^{\#}})
$$

Then

$$
(P - \lambda^2)u = O(|\lambda|^{-\infty})
$$

and $WF(u) = T$.

Then choose $P^{\#}$ to be s.a. with discrete spectrum, elliptic outside \mathcal{T} .

For simplicity, $N = \infty$. Consider the resonant states u:

$$
(P - \lambda^2)^k u = 0, \quad k = O(|\lambda|^{n^{\#}})
$$

Then

$$
(P - \lambda^2)u = O(|\lambda|^{-\infty})
$$

and $WF(u) = T$.

Then choose $P^{\#}$ to be s.a. with discrete spectrum, elliptic outside \mathcal{T} . "Close" to **^R**, we have (semi-classical max principle)

$$
\frac{1}{\text{dist}(\lambda^2, \text{spec}(P_{\theta}))} \le ||(P_{\theta} - \lambda^2)^{-1}|| \le \frac{|\lambda|^M}{\text{dist}(\lambda^2, \text{spec}(P_{\theta}))}
$$

with $M = M(n)...$

For simplicity, $N = \infty$. Consider the resonant states u:

$$
(P - \lambda^2)^k u = 0, \quad k = O(|\lambda|^{n^{\#}})
$$

Then

$$
(P - \lambda^2)u = O(|\lambda|^{-\infty})
$$

and $WF(u) = T$.

Then choose $P^{\#}$ to be s.a. with discrete spectrum, elliptic outside \mathcal{T} . "Close" to **^R**, we have (semi-classical max principle)

$$
\frac{1}{\text{dist}(\lambda^2, \text{spec}(P_{\theta}))} \le ||(P_{\theta} - \lambda^2)^{-1}|| \le \frac{|\lambda|^M}{\text{dist}(\lambda^2, \text{spec}(P_{\theta}))}
$$

with $M = M(n)$... but there are still difficulties connected to the fact that the resonant states are not asymptotically orthogonal, may cluster, etc.

$O(1)$ (respectively $O(h)$) **close** to the real axis

SJÖSTRAND: hyperbolic flow, additional assumptions:

$$
Res(P(h)) \cap \left\{ [E_1, E_2] + i[-\delta, 0] \right\} \le Ch^{-n} \delta^{\mu/2 - \epsilon},
$$

where $Ch \leq \delta \leq 1/C$ and μ is the Minkowski codimension of T. If $\delta \sim h$, we have

 $O(h^{-d/2-\epsilon})$

resonances with $d = n - \mu$ (the Minkowski dimension of \mathcal{T}).

Resonances in sectors $0 \le -\arg \lambda \ll 1$

SJÖSTRAND, ZWORSKI: Define $P_{\epsilon}^{\#}$ in an ϵ -neighborhood K_{ϵ} of the convex hull of the "black box" with Dirichlet B.C. Then

 $\#\text{Res}(P) \cap \{-\theta < \arg \lambda \leq 0\} \leq 2(1 + C\epsilon)N_{\epsilon}^{\#}(r) + C\epsilon r^{n},$

where $\epsilon = \theta^{2/7}$ and $N_{\epsilon}^{\#}(r)$ satisfies reasonable conditions.

Resonances in sectors $0 \le -\arg \lambda \ll 1$

SJÖSTRAND, ZWORSKI: Define $P_{\epsilon}^{\#}$ in an ϵ -neighborhood K_{ϵ} of the convex hull of the "black box" with Dirichlet B.C. Then

 $\#\text{Res}(P) \cap \{-\theta < \arg \lambda \leq 0\} \leq 2(1 + C\epsilon)N_{\epsilon}^{\#}(r) + C\epsilon r^{n},$

where $\epsilon = \theta^{2/7}$ and $N_{\epsilon}^{\#}(r)$ satisfies reasonable conditions.

ZERZERI: K_{ϵ} might be an ϵ -neighborhood of the "black box" (no convexity) but then we have to add $2(2\pi)^{-n} \times$ the measure of the "trapped rays" ×rⁿ (not the same as $\mathcal T$ above).

Resonances in larger **sectors** $0 \le -\arg \lambda < \pi/2 - \delta$ $(-\Im z = O(1))$ SJÖSTRAND, PETKOV-ZWORSKI: "bottle theorem"

$$
N^{\#}((1 - \epsilon)r) - E_-(r) \le N_{\delta}(r) \le N^{\#}((1 + \epsilon)r) + E_+(r),
$$

where

$$
0 \leq E_{\pm}(r) \leq C_1 \epsilon r^{n^{\#}} + C_2(R_0, \epsilon) r^n + \dots
$$

 $C_{1,2}$ independent of P! In particular, if P depends on a parameter so that $N^{\#}(r)/r^n \gg 1$ (and $n^{\#}=n$), then we have almost an asymptotic formula! If $n^# > n$, i.e., if $N^{\#}(r)$ dominates, (hypoelliptic operators), then we have true asymptotics (VODEV, SJÖSTRAND, PETKOV-ZWORSKI).

Resonances in larger **sectors** $0 \le -\arg \lambda < \pi/2 - \delta$ $(-\Im z = O(1))$ SJÖSTRAND, PETKOV-ZWORSKI: "bottle theorem"

$$
N^{\#}((1 - \epsilon)r) - E_-(r) \le N_{\delta}(r) \le N^{\#}((1 + \epsilon)r) + E_+(r),
$$

where

$$
0 \le E_{\pm}(r) \le C_1 \epsilon r^{n^{\#}} + C_2(R_0, \epsilon) r^n + \dots
$$

 $C_{1,2}$ independent of P! In particular, if P depends on a parameter so that $N^{\#}(r)/r^n \gg 1$ (and $n^{\#}=n$), then we have almost an asymptotic formula! If $n^# > n$, i.e., if $N^{\#}(r)$ dominates, (hypoelliptic operators), then we have true asymptotics (VODEV, SJÖSTRAND, PETKOV-ZWORSKI).

Seimi-classical version: PETKOV-ZWORSKI

Resonances in a disk $|\lambda| \leq r$

$$
P = -\Delta + V(r), \quad \text{supp } V \subset [0, R]
$$

ZWORSKI:

$$
N(r) \le C_n R^n r^n, \quad \text{for } r \gg 1,
$$

where C_n depends on n only!

Resonances in a disk $|\lambda| \leq r$

$$
P = -\Delta + V(r), \quad \text{supp } V \subset [0, R]
$$

ZWORSKI:

$$
N(r) \le C_n R^n r^n, \quad \text{for } r \gg 1,
$$

where C_n depends on n only!

If

 $V(R-0) \neq 0,$

then there is an asymptotic formula:

 $N(r) = C_n R^n r^n + o(r^n).$

Resonances in a disk $|\lambda| \leq r$

$$
P = -\Delta + V(r), \quad \text{supp } V \subset [0, R]
$$

ZWORSKI:

$$
N(r) \le C_n R^n r^n, \quad \text{for } r \gg 1,
$$

where C_n depends on n only!

If

 $V(R - 0) \neq 0,$

then there is an asymptotic formula:

$$
N(r) = C_n R^n r^n + o(r^n).
$$

$$
C_n=?
$$

Black box in $B(0, R)$, $n^{\#} = n$ odd. Define the continuous functions

$$
M(r) = \int_0^r \frac{N(t)}{t} dt, \quad M^\#(r) = \int_0^r \frac{N^\#(t)}{t} dt.
$$

Assume also that $N^{\#}(r+1) - N^{\#}(r) = O(r^{n-\epsilon})$, with some $\epsilon \in (0,1]$.

Black box in $B(0, R)$, $n^{\#} = n$ odd. Define the continuous functions

$$
M(r) = \int_0^r \frac{N(t)}{t} dt, \quad M^\#(r) = \int_0^r \frac{N^\#(t)}{t} dt.
$$

Assume also that $N^{\#}(r+1) - N^{\#}(r) = O(r^{n-\epsilon})$, with some $\epsilon \in (0,1]$.

Theorem 1 *There exists* $C_n > 0$ *depending on the dimension only, such that*

$$
M(r) \le 2M^{\#}(r) + C_n R^n r^n + o(r^n). \tag{1}
$$

As a consequence, for any $0 < \varepsilon \leq 1$ *,*

 $N(r) \leq 2(1+\varepsilon)N^{\#}((1+\varepsilon)r) + C_n R^n r^n / \varepsilon + o_{\varepsilon}(r^n).$ (2)

Black box in $B(0, R)$, $n^{\#} = n$ odd. Define the continuous functions

$$
M(r) = \int_0^r \frac{N(t)}{t} dt, \quad M^\#(r) = \int_0^r \frac{N^\#(t)}{t} dt.
$$

Assume also that $N^{\#}(r+1) - N^{\#}(r) = O(r^{n-\epsilon})$, with some $\epsilon \in (0,1]$.

Theorem 1 *There exists* $C_n > 0$ *depending on the dimension only, such that*

$$
M(r) \le 2M^{\#}(r) + C_n R^n r^n + o(r^n). \tag{1}
$$

As a consequence, for any $0 < \varepsilon \leq 1$,

$$
N(r) \le 2(1+\varepsilon)N^{\#}((1+\varepsilon)r) + C_n R^n r^n / \varepsilon + o_{\varepsilon}(r^n). \tag{2}
$$

If we know more about the regularity of $N(r)$, then (1) is true for $N(r)$ and $N^{\#}(r).$

The proof follows R. FROESE (where $P = -\Delta + V$), and PETKOV-ZWORSKI (semiclassical version). Denote $s(\lambda)$ = scattering matrix, $\sigma(\lambda)$ = scattering phase.

The proof follows R. FROESE (where $P = -\Delta + V$), and PETKOV-ZWORSKI (semiclassical version). Denote $s(\lambda)$ = scattering matrix, $\sigma(\lambda)$ = scattering phase.

Lemma 1 *For any* $r > 0$ *we have*

$$
M(r) = 2\int_0^r \frac{\sigma(t)}{t} dt + \frac{1}{2\pi} \int_0^{\pi} \log|s(re^{i\theta})| d\theta.
$$

The proof follows R. FROESE (where $P = -\Delta + V$), and PETKOV-ZWORSKI (semiclassical version). Denote $s(\lambda)$ = scattering matrix, $\sigma(\lambda)$ = scattering phase.

Lemma 1 *For any* $r > 0$ *we have*

$$
M(r) = 2\int_0^r \frac{\sigma(t)}{t} dt + \frac{1}{2\pi} \int_0^{\pi} \log|s(re^{i\theta})| d\theta.
$$

Proof: Integrate along the semi-disk $[-r, r] \cup r \exp(i[0, \pi])$ using $s'/s = 2\pi i \sigma'$.

$$
N(t) = \frac{1}{2\pi i} \oint \frac{s'(z)}{s(z)} dz = \Im \frac{1}{2\pi} \oint \frac{s'(z)}{s(z)} dz
$$

$$
= \int_{-t}^{t} \sigma'(z) dz + \frac{1}{2\pi} \int_{0}^{\pi} t \frac{d}{dt} \log |s(te^{i\theta})| d\theta
$$

$$
= 2\sigma(t) + \frac{1}{2\pi} \int_{0}^{\pi} t \frac{d}{dt} \log |s(te^{i\theta})| d\theta.
$$

Divide by t and integrate to get the lemma.

To estimate the scattering phase, we apply results by T. CHRISTIANSEN to get

$$
M(r) = 2\left[M^{\#}(r) - \tau_n \frac{r^n}{n}\right] + \frac{1}{2\pi} \int_0^{\pi} \log |s(re^{i\theta})| d\theta + O(r^{n-\epsilon}),
$$

with $\tau_n = (2\pi)^{-n} \text{Vol}(\mathbf{T}_R \times B(0, 1)).$

To estimate the scattering phase, we apply results by T. CHRISTIANSEN to get

$$
M(r) = 2\left[M^{\#}(r) - \tau_n \frac{r^n}{n}\right] + \frac{1}{2\pi} \int_0^{\pi} \log|s(re^{i\theta})| d\theta + O(r^{n-\epsilon}),
$$

with $\tau_n = (2\pi)^{-n}$ Vol $(\mathbf{T}_R \times B(0, 1)).$

To estimate the scattering determinant $s(\lambda)$, we proceed in the usual way. The scattering operator $S(\lambda)$ is given by

$$
S(\lambda) = I + c_n \lambda^{n-2} \mathbf{E}_{-}(\lambda) [\Delta, \chi_2] R(\lambda) [\Delta, \chi_1]^{\dagger} \mathbf{E}_{+}(\lambda), \tag{3}
$$

where

$$
[\mathbf{E}_{\pm}(\lambda)f](\omega) = \int e^{\pm i\lambda \omega \cdot x} f(x) dx = \hat{f}(\mp \lambda \omega), \quad \omega \in S^{n-1},
$$

and $[\Delta, \chi_j]$, are supported in $(R - \delta, R)$.

To estimate the scattering phase, we apply results by T. CHRISTIANSEN to get

$$
M(r) = 2\left[M^{\#}(r) - \tau_n \frac{r^n}{n}\right] + \frac{1}{2\pi} \int_0^{\pi} \log|s(re^{i\theta})| d\theta + O(r^{n-\epsilon}),
$$

with $\tau_n = (2\pi)^{-n} \text{Vol}(\mathbf{T}_R \times B(0,1)).$

To estimate the scattering determinant $s(\lambda)$, we proceed in the usual way. The scattering operator $S(\lambda)$ is given by

$$
S(\lambda) = I + c_n \lambda^{n-2} \mathbf{E}_{-}(\lambda) [\Delta, \chi_2] R(\lambda) [\Delta, \chi_1]^{\dagger} \mathbf{E}_{+}(\lambda), \tag{3}
$$

where

$$
[\mathbf{E}_{\pm}(\lambda)f](\omega) = \int e^{\pm i\lambda \omega \cdot x} f(x) dx = \hat{f}(\mp \lambda \omega), \quad \omega \in S^{n-1},
$$

and $[\Delta, \chi_j]$, are supported in $(R - \delta, R)$.

We estimate the characteristic values of the scattering amplitude which reduces to an estimate of

$$
\Delta_{\theta}^{m} e^{i\lambda x \cdot \theta}, \quad |x| \le R.
$$

We need to work here in a sector $0 < \delta \leq \arg \lambda \leq \pi - \delta$. Using a standard argument, to cover the missing sectors $0 \le \arg \lambda \le \delta$ and $\pi - \delta \le \arg \lambda \le \pi$, we use the fact that $|s| = 1$ on **R** and the Phragmen-Lindelöff principle.

Modified estimate:

$$
M(r) \le 2\left[M^{\#}(r) - \tau_n \frac{r^n}{n}\right] + \frac{1}{n}C_n R^n r^n + o(r^n).
$$

Modified estimate:

$$
M(r) \le 2\left[M^{\#}(r) - \tau_n \frac{r^n}{n}\right] + \frac{1}{n}C_n R^n r^n + o(r^n).
$$

Here

$$
M^{\#}(r) - \tau_n \frac{r^n}{n} = \begin{cases} 0, & \text{if } P = -\Delta + V, \\ -\frac{1}{n}(2\pi)^{-n} \int_{x \in \mathcal{O}, |\xi| \le 1} dx \, d\xi & \text{in obstacle scattering,} \\ \frac{1}{n}(2\pi)^{-n} \int_{|\xi| \le 1} \left(|g|^{1/2} - 1\right) dx \, d\xi & \text{for } P = -\Delta_g. \end{cases}
$$

Modified modified estimate: Let $P^{\#}$ be equal to P in $B(0, R)$ with Dirichlet B.C.

Modified modified estimate: Let $P^{\#}$ be equal to P in $B(0, R)$ with Dirichlet B.C.

Then

$$
nM(r) \le 2nM^{\#}(r) + C_n'R^n r^n + o(r^n),
$$

where $C'_n = C_n - (2\pi)^{-n}$ vol $(B(0, 1))^2$, and

$$
nM^{\#}(r) = \begin{cases} (2\pi)^{-n} \int_{|x| \le R, |\xi| \le 1} dx d\xi, & \text{if } P = -\Delta + V, \\ (2\pi)^{-n} \int_{x \in B(0,R) \backslash \mathcal{O}, |\xi| \le 1} dx d\xi & \text{in obstacle scattering,} \\ (2\pi)^{-n} \int_{|x| \le R, |\xi| \le 1} |g|^{1/2} dx d\xi & \text{for } P = -\Delta_g. \end{cases}
$$

Modified modified estimate: Let $P^{\#}$ be equal to P in $B(0, R)$ with Dirichlet B.C.

Then

$$
nM(r) \le 2nM^{\#}(r) + C_n'R^n r^n + o(r^n),
$$

where $C'_n = C_n - (2\pi)^{-n}$ vol $(B(0, 1))^2$, and

$$
nM^{\#}(r) = \begin{cases} (2\pi)^{-n} \int_{|x| \le R, |\xi| \le 1} dx d\xi, & \text{if } P = -\Delta + V, \\ (2\pi)^{-n} \int_{x \in B(0,R) \backslash \mathcal{O}, |\xi| \le 1} dx d\xi & \text{in obstacle scattering,} \\ (2\pi)^{-n} \int_{|x| \le R, |\xi| \le 1} |g|^{1/2} dx d\xi & \text{for } P = -\Delta_g. \end{cases}
$$

 $C'_n = ?$

Resonances of the unit sphere, Dirichlet B.C.

 $n = 3$, resonances are the zeros of $H_{k+1/2}^{(1)}(\lambda)$, $k = 0, 1, \ldots$ Multiplicity $= 2k + 1$.

OLVER: Asymptotically, the sphere resonances are given by

$$
\lambda_{k,s} \sim \nu \zeta^{-1} \left(-\nu^{-\frac{2}{3}} e^{\frac{i\pi}{3}} a_s \right), \qquad s = 1, 2, \dots, k; \quad k = 1, 2, \dots,
$$

where $\nu = k + \frac{1}{2}$, and $\ldots < a_2 < a_2 < a_1 < 0$ are the zeros of Ai(s), and

$$
\frac{2}{3}\zeta^{\frac{3}{2}}(z) = \log\left(\frac{1+\sqrt{1-z^2}}{z}\right) - \sqrt{1-z^2}
$$

OLVER: Asymptotically, the sphere resonances are given by

$$
\lambda_{k,s} \sim \nu \zeta^{-1} \left(-\nu^{-\frac{2}{3}} e^{\frac{i\pi}{3}} a_s \right), \qquad s = 1, 2, \dots, k; \quad k = 1, 2, \dots,
$$

where $\nu = k + \frac{1}{2}$, and $\ldots < a_2 < a_2 < a_1 < 0$ are the zeros of Ai(s), and

$$
\frac{2}{3}\zeta^{\frac{3}{2}}(z) = \log\left(\frac{1+\sqrt{1-z^2}}{z}\right) - \sqrt{1-z^2}
$$

 $N_{S^2}(r) = C_{S^2}r^3 + O(r^2).$

$$
N_{S^2}(r) = C_{S^2}r^3 + O(r^2).
$$

Is C_{S^2} equal to $(2\pi)^{-3}$ vol $(B(0, 1) \times B(0, 1)) = (2\pi)^{-3}(4\pi/3)^2$?

$$
N_{S^2}(r) = C_{S^2}r^3 + O(r^2).
$$

Is C_{S^2} equal to $(2\pi)^{-3}$ vol $(B(0, 1) \times B(0, 1)) = (2\pi)^{-3}(4\pi/3)^2$? It should not be \dots

$$
N_{S^2}(r) = C_{S^2}r^3 + O(r^2).
$$

Is C_{S^2} equal to $(2\pi)^{-3}$ vol $(B(0,1) \times B(0,1)) = (2\pi)^{-3}(4\pi/3)^2$? It should not be. . .

Numerically,

 $C_{S^2} = (2\pi)^{-3} (4\pi/3)^2 42.595...$

(based on $r = 50$ and counting $N_{S^2}(50) = 216452$ resonances).

$$
N_{S^2}(r) = C_{S^2}r^3 + O(r^2).
$$

Is C_{S^2} equal to $(2\pi)^{-3}$ vol $(B(0,1) \times B(0,1)) = (2\pi)^{-3}(4\pi/3)^2$? It should not be. . .

Numerically,

$$
C_{S^2} = (2\pi)^{-3} (4\pi/3)^2 42.595 \dots
$$

(based on $r = 50$ and counting $N_{S^2}(50) = 216\,452$ resonances).

 C_{S^2} can be expressed as a certain integral involving ζ^{-1} .

Resonances of $P = -\Delta + \mathbf{1}_{B(0,R)}$, $n = 3$

Recall that there is an asymptotic (ZWORSKI:) $N(r) = C_n R^n r^n + o(r^n)$.

Resonances of $P = -\Delta + \mathbf{1}_{B(0,R)}$, $n = 3$

Recall that there is an asymptotic (Zworski:) $N(r) = C_n R^n r^n + o(r^n)$. Resonances are the zeros of

 $\lambda_1 j'_k(\lambda_1) h_k(\lambda) - \lambda j_k(\lambda_1) h'_k(\lambda), \quad \lambda_1 := \sqrt{\lambda^2 - 1},$

where $h_k(\lambda) = h_k^{(1)}(\lambda) = \lambda^{-1/2} H_{k + \frac{1}{2}}(\lambda)$ and $j_k(\lambda) = \lambda^{-1/2} J_{k + \frac{1}{2}}(\lambda)$.

Resonances of $P = -\Delta + \mathbf{1}_{B(0,R)}$, $n = 3$

Recall that there is an asymptotic (ZWORSKI:) $N(r) = C_n R^n r^n + o(r^n)$. Resonances are the zeros of

 $\lambda_1 j'_k(\lambda_1) h_k(\lambda) - \lambda j_k(\lambda_1) h'_k(\lambda), \quad \lambda_1 := \sqrt{\lambda^2 - 1},$ where $h_k(\lambda) = h_k^{(1)}(\lambda) = \lambda^{-1/2} H_{k + \frac{1}{2}}(\lambda)$ and $j_k(\lambda) = \lambda^{-1/2} J_{k + \frac{1}{2}}(\lambda)$. $10 -$ 6. 8. $12 \qquad \qquad$ 14 and 14 16 0 -6 -8

 $k = 6$

 $k=6$

It appears that

$$
N(r) = C_B r^3 + C_{S^2} r^3 + o(r^3),
$$

where $C_B = (2\pi)^{-3}$ vol $(B(0, 1))^2$.

 $k=6$

It appears that

$$
N(r) = C_B r^3 + C_{S^2} r^3 + o(r^3),
$$

where $C_B = (2\pi)^{-3}$ vol $(B(0, 1))^2$.

So, at least in this case,

$$
C_n^{\prime}=C_{S^{n-1}}
$$

What happens in the general case?

What happens in the general case?

Let as above, $P^{\#}$ be a reference operator equal to P in $B(0, R)$ with Dirichlet B.C. on $\partial B(0, R)$.

What happens in the general case?

Let as above, $P^{\#}$ be a reference operator equal to P in $B(0, R)$ with Dirichlet B.C. on $\partial B(0, R)$.

$$
N(r) \leq N^{\#}(r) + C_{S^{n-1}} R^n r^n + o(r^n).
$$