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Oriented Digital Boiling (ODB).

A two-dimensional interface, which changes in time, is
described by {(z,y) : z ¢ Z,y < hy(z)},t =0,1,2... and

the height function h; evolves according to the following rule:

(1) he < hyyy.
(2) If he(x — 1) > he(z), then hyyq(z) = he(z —1).

3) Otherwise, hy\1(z) = h,(z) + 1 with probability p,
+
(independently of other locations and times)

Alternatively, one can toss the Pz—colns in advance to get,

independent Bernoulli random variables €z,t, £ > 0,8 > (.

Think of the points (x,t) for which ezt = 1 as marked. Then

he(z) = max{h,_(z — 1), he 1 (%) + €p4-1}.

We will assume that the initial state is

0, it x =0,
ho(x) = {

—00, otherwise.

Eventually: p, L1d., with d.f. F.



Three ODB simulations. hy as in text. F (s)=1—1(1—-2s)".
Clockwise from top left: n =0.1.3
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Two ODB simulations for n = 1,5 = 3. at large times.



Path description.

A space-time point (z,t),z < t, has backwards lightcone:
L(z,t) ={(z",t):0<a' <z,2' <t <2 +t—z}.

Let H be the longest sequence (z;, t1),...,(zk, tx) of marked
points such that

(1) Ti—1 S T,

(2) 2 —z; 1 +1<t;,—t,_4.

Alternatively, let m = t—g and n = z+1, and A a random

m X n matrix with Bernoulli entries ; ;, where Ple; ; =1)

pj. Label columns as usual, but rows started at the bottom..

Then H = H(m,n) is the longest sequence of 1’s in A, with

(1) column index non—decreasing,

(2) row index strictly increasing.

Lemma. h,(z) = H(m,n).

This is often called a lgst passage property. From now on,
we formulate all the results for i , with n. = am.
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Figure 2: Oriented Digital Boiling Process. The number in a box is the time this box was

added and if the box is colored, then the box was added stochastically according to Rule 3.
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Figure 3:  The backwards lightcone of the point (z,t) = (3,7) for the process shown in
Iig. 2. The Xx’s denote the marked points and polyogonal line gives a longest increasing
path. The length of this path is equal to the number of x’s in the path. This length equals
hi(z).



A little history.

Longest increasing sequences in random matrices are re-
lated to Ulam’s problem of estimating the longest increas-
Ing subsequence in a random permutation of length n. This
has been studied by Hammersley (1972), Logan—Shepp and
Vershik-Kerov (1977), Aldous—Diaconis (1995), and Baik—
Deift-Johansson (1999). Methods: subadditivity, exclusion
process representation, random Young tableaux and random

matrices.

The largest increasing sequence in a random 01-matrix has
been first studied by Seppéliinen ( 1998), who used a particle
system approach to compute the limiting shape: that is,
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when z/t is constant. Johansson (1999) computed the fluc-
tuations in (universal regime of) this limit law, by a random

matrix approach, using orthogonal polynomials.

The disordered case, when p, are initially chosen at ran-

dom, is related to the Seppéldinen-Krug model (1999).
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The main theorem for the homogeneous case Dz = P
‘uwtversal veqime ¢
If 0 <a<(1-p)/p, then define

¢c=2Va/p(l—p)+(1-a)p,
g=a"?(p(1—p))"/°

(L -appi-p)+0-2)va)”.

Then, as m — oo,

where -
Fy(s) = exp (— / (x — s)q(x)? d:v)
and g solves

/

¢ =sq+2¢°, q~ Ai(s) as s = oo.

Fluctuations are also known for fixed n (order /m), for

n = ((1 -p)/p) - m+ o(y/m) (tight), and & > (1 — p)/p
nonexistent).



Main steps in proving the theorem.

Step 1: Combinatorics and algebra. The dual RSK algo-
rithm, Gessel’s theorem (1990) and Borodin-Okounkov iden-
tity (1999) establishes a connection between 01-matrices and
determinants of operators, the final result being

P(hs(z) < h) = det(I — Kp),

where K}, : £2 — £? is the product of two matrices, given by
(4, k)—entries

wilh) = 5o [t ray e et g,

1
2
1

a]_k(h) /(1 +rz) "z — 1) Memhmizk=2 4,

o

The contours for both integrals go around the origin once
counterclockwise; in the second integral 1 is inside and —1 /T

1S outside.

re 2
-p
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Step 2: Analysis. In the universal regime, we take h = ¢m +

sm'/3, j =ml/3z, k= m'/3y. Then, e.g.,

1 , 1/3
+ - = A Am " (zty+s)
ajy,(h) = o /¢(2)( z) T dz.

The asymptotics of the integrals are computed by the steep-
est descent method. To get a nontrivial limit, we need to
choose ¢ = ¢; so that the - log(z) has a double 0, the
third derivative of log(z) then determines cy;. The limit
is another Fredholm determinant, of an operator on L?0, 1]
with the Airy kernel.

The main technical effort is in establishing trace—class con-

vergence of the approximations.



Inhomogeneous ODB.

Now assume that A is an m x n random matrix with
P(e;j = 1) = p;. Here p; are i.i.d., with P(p; <) = F(x),
where F': [0,1] — [0, 1] is some distribution function. Recall:
H 1s the longest increasing path of 1’s in A.

This corresponds to a random environment version of ODB:
every x € Z decides before the dynamics starts, at random
according to F', on the probabilities of its coin flips. In this

case, the following can be proved:
(1) Time constant can be explicly determined in terms of F'.
(2) Quenched and annealed fluctuations differ.

(3) If the right tails of F are sufficiently thin, there is a com-
posite (or glassy) regime for small o = n/m. This regime

can be identified with a different luctuations scaling.

Lemma. Once pq,...,p, are determined, the distribution of
H does not depend on their order. That 18, the distribution
of H is a function of the e.d.f.
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Time constant.

Let p have dist. funct. F' and (-) be the integration w.r.t.
dF'. Denote
b = maxsupp dF,

and q
c=cla,F)= lim —.
m—0o0 17

Define the following critical values:

—1
p
Qe = ( ——
<1—p>

Theorem 1. If b = 1, then c(a, F) = 1 for all «, while if
b <1, then

b+a(l=b){p/(b-p)), ifa<la,
cla, F) =< a+a(l —a)(p/(a—p)), ifa,<a<a,
17 if()éc < a.

Here a = a(a, F) € [b,1] is the unique solution to
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Variational formula for the time constant.
Let c(a, z) = c(a, 6,) and ¢(y,z) =y - c(1/y,z). Then

Cly,z) = { 2yvzr(l —z) + (y — D, z/(1—-1z) <y,

Ly, z/(1—z)>y.

The fact that c(a, F) is given by the most advantageous
choice of transition points between the columns of A leads

to
cla, F) = mgx/o (W' (aF(z)),z) adF(z),

where 9 : [0,a] — [0,1] are nondecreasing functions with

¥(0) =0 and ¥ (a) = 1.

This variational problem can be solved. If o < al., the
minimizer has a jump of size 1 — o /o, at o, hence one would

expect that largest probabilities have a significant influence.

A variational approach was used by Deuschel-Zeitouni
(1995), to study a variant of Ulam’s problem in which a num-
ber of points in the unit square is chosen independently ac-
cording to some distribution with a density, then a longest
sequence, increasing in both coordinates, is extracted from

this sample.
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Fluctuations, quenched case, pure regime.

Theorem 2. Assume that b < 1 and o, < a < a.. Then
there exists a sequence of random variables ¢, € o{p1,...,Pn}
and a constant g # 0 (both depending on «) such that, as

m — 00,

H —c¢,m
P(mﬁs | pla--'7pn) — Fh(s),

almost surely, for any fived s.

In fact, ¢, are obtained the same way as in Theorem 1,
except that the e.d.f. is used to compute (-). Furthermore, g

is given by an appropriate third derivative.

The proof is a uniform version of the proof for fixed p.
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Fluctuations, annealed case, pure regime.

Theorem 3. Assume that b <1 and o’ < a < a.. Let a be

as in Theorem 1 and
1 —
T2=Va7’<—-——————( a)p).
a—p

Then, as m — oo,

H —cm d
» N(0,1).
a - mi/? (0.1)

From the Brownian bridge convergence, it follows that ¢,

satisty a CLT: \/m(c — ¢,) converges to a Gaussian variable.

Theorem 3 then follows from Theorem 2.
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Annealed scaling: shape (top), variance (bottom), and the

shape for p, = (p) (middle) vs. z/t, for n =1,n = 3.
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Fluctuations, composite regime.
Assume (a technical condition and) that
1—Fb—-2z)~Kz" asz —0,

for some K and > 2. Then o/, > 0. Assume also that b < 1
and o < a, and let

72:5(1—b)<é—§7).

C

Theorem 4. As m — oo,

H —c,m+27ry/n
P < ooy Pn | = P(s),
(Y ) e

almost surely, for any fized s.

Theorem 5. For s > 0, as m — oo,

H—c
P(“%:n/ng‘s) e
v

where vy = K=Y/ (1/q — 1/al).
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Why are the fluctuations increased?

The maximal increasing path has s, nearly vertical segment
of length asymptotic to (1-a/a’)m in (or near) the column
of A which uses the largest probability p,. Therefore, this
vertical part of the path dominates the fluctuations, as the
rest presumably has o(y/m) fluctuations. (These are most
likely not of the order exactly m!/3 a5 they correspond to
the critical case o = a.) The variables in the p1—column are
Bernoulli with variances about b(1~b), thus the contribution

of the vertical part to the variance is about

(BT =0)(1 —a/al)ym)V/2 = 7 /n.

Annealed fluctuations are governed by p; since

cn:c~(1~&/aé)('b~p1)+0(b~p1).
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Three questions.
e What happens in either critical case?

e What happens if ODB is started from a flat initial state
ho =07

e Do answers change for the (two—sided.) DB given by

hir1(z) = max{hs(z — 1), hy(z + 1), h(z) + €z ¢ }7?




Herel ODB = 00 Filsy = 1+ (1 - 257 The top of Figure 1 iflustrates the ODB on 600

pro it e 6060 On the Jofto s = 1 e o is unitform on 1,2 while p = 3 on the

SHLON
reht Do the prre regiime. the boundary of the growing set reaches a local equilibrinm. while
e the composite vegine the houndary apparently divides into dowains, which are populated
by dillerent equilibria and grow sublinearlv. The bottomn of the figure features a log log plot
of quenched standard deviation (estimated over 1000 independent trials) of A (0) vs. ¢ up to

= 00t The o= 1 case is drawn with +'s (thinner curve) and the n = 3 case with

o

~ Lhicker curvels the two least squares approximations lines (with slopes 0.339 and 0.317.

respectivelyvt are also drawn
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Previous page: ODB, ho=0, F(s) =1-(1- 2s)7.

The top of Figure 1 illustrates the ODB on 600 sites,
run until time 600. On the left, n = 1 (i.e., p is uniform
on [0,1/2]), while n = 3 on the right. In the pure regime,
the boundary of the growing set reaches a local equilibrium,
while in the composite regime the boundary apparently di-
vides into domains, which are populated by different equilib-
ria, and grow sublinearly. The bottom of the figure features a
log-log plot of quenched standard deviation (estimated over
1000 independent trials) of h¢(0) vs. ¢ up to ¢ = 10,000. The
n =1 case is drawn with +’s (thinner curve) and the n = 3
case with x’s (thicker curve); the two least squares approxi-
mations lines (with slopes 0.339 and 0.517, respectively) are
also drawn.



Hereo DB given by
By () = max{h (o~ Db (o+ 1) (0} + 5,0 1

O top o= 0.2 (deft) and 5 = 1 (right). The figures only show evolution near time £ = 5000.
Fhe plot of quenched deviations is analogous to the one in the previous figure, the least squares

lines have slopes 00395 (5 = 0.2y and 019 (5 = 1}
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Previous page: DB, given by
hiy1(z) = max{hy(z — 1), he(z + 1), he(z) + €4}

Initial state: hg = 0. On top: n = 0.2 (left) and n = 1
(right). The figures only show evolution near time ¢ = 5000.
The plot of quenched deviations is analogous to the one in

the previous figure, the least squares lines have slopes 0.395
(m =0.2) and 0.49 (y = 1).
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Connections with other growth models.

Consider the Threshold Growth Model (TGM) with

T+ N ="

6———1,]?1:]), andp2:1-

Assume A, C Z? is given. Then the updated set Aiiq is
obtained by adjoining a site x € Z2

e automatically if [(x + N) N Z?| > 2, and
e independently with prob. p if |(z + M) N Z2| = 1.

This TGM is equivalent to ODB when Ay = {(z,y) : z >
0,y < —x}. What if Ay = {0} (or any other finite set)?

The asymptotic shape L, = lim; ., A;/t can be com-
pletely described. So can the fluctuations of A, around ¢- L,
in any direction v = z/t except in the diagonal direction
when p < 1/2. Such fluctuations are not known for any lo-
cal growth model in a direction where the asymptotic shape
has a kink. (Ezcept in cases when the shape is the same as
deterministic: L, = L, G-Griffeath, 2002.)



ODB. with p = 0.5, started from the wedge*

A, -
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ODB shapes for p = 0.6,0.5,0.3,0.1.
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Connections with other growth models, cont.

Construct G(M, N) on Z% by
G(M7N) :ma‘X{G(M_ 17N)7G(M7N__ 1)}+9(M7N)/

where g(M, N) are i.i.d. and P(g(M,N) = k) = p*(1 — p),
k> 0.

An observation by Prahofer couples h(z,t) and G(M, N)

so that
h(M,G(M,N)+ M + N) = G(M, N),

and so at least the time constant follows from the classic
result by Rost (1981). It is not clear whether the Prihofer
coupling can connect the fluctuation result to Johansson’s
(2000) result on G.

The disordered version of ODB corresponds to the case
when p = pys are independently randomly chosen (but con-
stant, for a fixed M). In the particle interpretation, this gives
rise totally asymmetric simple exclusion with random jump
probabilities associated with particles, thus it provides an
alternative approach to the Seppéldinen-Krug traffic model
(1999).



