
Prototype vanishing integrals

∫
U∈O(n)

sλ(U) = 0

unless λ is of the form 2µ.
∫
U∈Sp(2n)

sλ(U) = 0

unless λ is of the form µ2.

• Nonzero values are “nice” (in fact, 1)

• Come from symmetric spaces U(n)/O(n),

U(2n)/Sp(2n)
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Orthogonal cases:∫
sλ(. . . xi, x

−1
i . . . )

∏
1≤i<j≤n
s1,s2=±1

(1 − x
s1
i x

s2
j ) = 0

∫
sλ(. . . xi, x

−1
i . . . ,1,−1)

∏
1≤i≤n
s=±1

(1 − x2s
i )

∏
1≤i<j≤n
s1,s2=±1

(1 − x
s1
i x

s2
j ) = 0

unless λ is of the form 2µ or 2µ+ 12n

∫
sλ(. . . xi, x

−1
i . . . ,1)

∏
1≤i≤n
s=±1

(1 − xsi)
∏

1≤i<j≤n
s1,s2=±1

(1 − x
s1
i x

s2
j ) = 0

∫
sλ(. . . xi, x

−1
i . . . ,−1)

∏
1≤i≤n
s=±1

(1 + xsi)
∏

1≤i<j≤n
s1,s2=±1

(1 − x
s1
i x

s2
j ) = 0

unless λ is of the form 2µ or 2µ+ 12n+1
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Symplectic case:∫
sλ(. . . xi, x

−1
i . . . )

∏
1≤i≤n
s=±1

(1 − x2s
i )

∏
1≤i<j≤n
s1,s2=±1

(1 − x
s1
i x

s2
j ) = 0

unless λ is of the form µ2
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Macdonald polynomials

Define an inner product on symmetric func-

tions by:

〈 ∏
1≤i

p
ci
i ,

∏
1≤i

p
di
i 〉q,t =

∏
1≤i

δcidici!
i(1 − qi)

1 − ti

(I.e., pi are independent complex Gaussian,

E(|pi|2) =
i(1 − qi)

1 − ti

The Macdonald polynomials Pλ(; q, t) are de-

fined by:

Pλ(; q, t) =
∑
µ≤λ

cλµmλ, cλλ = 1

〈Pλ(; q, t), Pµ(; q, t)〉q,t ∝ δλµ

(When q = t, these are the Schur functions)

Are there vanishing integrals for these?
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Nonzero values

Evaluating at x±1
1 , . . . x±1

n has kernel

〈ei − e2n−i : 1 ≤ i < n〉
In particular, applying the Sp(2n) vanishing in-

tegral to

(e1 − e2n−1)Pλ(; q, t)

gives 0. Expanding in Macdonald polynomials,

only two terms survive: this gives a recurrence

for the nonzero values. (Values are “nice”)

For orthogonal cases, each of the generators

of the kernel gives at most two terms with

nonzero integrals; the different recurrences all

agree. So exists unique symmetric formal Lau-

rent series giving vanishing “integral”.

Symplectic: can only prove uniqueness.

5



Univariate cases 1

Want density ∆(x) on unit circle T1 such that
∫
Pλ(x,1/x; q, t)∆(x) = 0

unless λ1 ≡ λ2 (mod 2), λ3 = 0.

Solve for coefficients of Laurent series. . .

When t = q2k+1, get (apparent) polynomial:

∆(x) =
(qx±2; q2)

(tx±2; q2)
?

=
(x±2; q)

(x±1,−x±1,
√
tx±1,−√

tx±1; q)

Special case of Askey-Wilson integral:

∆(x; a, b, c, d; q) :=
(x±2; q)

(ax±1, bx±1, cx±1, dx±1; q)
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Univariate cases 2

Other orthogonal cases:∫
Pλ(x,1/x,1; q, t)∆(x; t,−1,

√
t,−√

t; q)∫
Pλ(x,1/x,−1; q, t)∆(x; 1,−t,√t,−√

t; q)∫
Pλ(x,1/x,1,−1; q, t)∆(x; t,−t,√t,−√

t; q)

Symplectic case:∫
Pλ(x,1/x; q, t)∆(x;

√
t,−√

t,
√
qt,−√

qt; q)

7



There is a natural multivariate analogue of the

Askey-Wilson integral!

Koorwinder density:

∆(n)(x1, x2, . . . xn; a, b, c, d; q, t)

=
∏

1≤i≤n

(x±2; q)

(ax±1, bx±1, cx±1, dx±1; q)

∏
1≤i<j≤n

(x±1
i x±1

j ; q)

(tx±1
i x±1

j ; q)

Conjecture: Replacing Askey-Wilson density

by Koornwinder density gives multivariate van-

ishing integrals.

q = t: reduces to Schur function case
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The Schur case of the vanishing integral has

another generalization:

EU∈O(n)s2λ(AU) = lim
q→1

Pλ(AA
t; q, q1/2)

EU∈Sp(n)sλ2(AU) = lim
q→1

Pλ(AJA
t; q, q2)

(nonzero otherwise)

Consider

EU1∈O(2n)
U2∈Sp(2n)

sλ(U1U2)

This is 0 unless λ has the form 2µ2, so

EU∈Sp(n) lim
q→1

Pλ(UU
t; q, q1/2)

EU∈O(n) lim
q→1

Pλ(UJU
t; q, q2)

are vanishing integrals.

The corresponding densities are the limits of

the conjectured Koornwinder densities.
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n → ∞

Express the formal logarithm of the Koorn-
winder density in terms of pk(. . . xi,1/xi . . . ).
Take

log(x; q) ∼ − ∑
1≤k

xk

k(1 − qk)
.

Obtain:

log ∆(n)(; a, b, c, d; q, t)

∼ ∑
1≤k

(ak + bk + ck + dk)pk − p2k

k(1 − qk)

− 1 − tk

k(1 − qk)

p2
k − n− p2k

2

This is quadratic in pk, so suggests a (real)
independent Gaussian limit.

Diaconis-Shashahani: This works for O±(n),
Sp(2n).

The general Gaussian limit follows.
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n→ ∞, continued

Macdonald polynomials satisfy:
∑
λ

Pλ(x)Pλ(y) =
∏

1≤i,j
(txiyj; q)/(xiyj; q)

= exp


 ∑
k≥1

pk(x)pk(y)(1 − tk)

k(1 − qk)




Integrate both sides over the n → ∞ limit of

the O±(n) vanishing integrals. LHS becomes:
∑
λ

cλP2λ(y)

while RHS can be computed by completing the

square. Result: Macdonald’s Littlewood iden-

tities for Macdonald polynomials.

So conjectures hold in n→ ∞ limit.

Note: Littlewood identities are dual to each

other!
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Rationality in T = tn

Theorem. For any partition λ, there exists a

rational function Fλ(a, b, c, d; q, t;T) such that
∫
Pλ(x

±1
1 , . . . x±1

n ; q, t)

∆(n)(x1, . . . xn; a, b, c, d; q, t)

= Fλ(a, b, c, d; q, t; t
n)

for generic a, b, c, d, q, t < 1 and all n ≥ 1.

(Genericity conditions are tractable)

Duality:

Fλ(a, b, c, d; q, t;T) ∝
Fλ′(

−√
qt

a
,
−√

qt

b
,
−√

qt

c
,
−√

qt

d
; t, q; 1/T)

With other symmetries, we find that all five

conjectures are equivalent.
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More special cases:

Theorem. If !(λ) ≤ 1, then the O±(n) vanish-
ing conjecture holds for Pλ.

Sketch: Use Cauchy identity with only one
variable y; obtain a basic hypergeometric gen-
erating function. The conjectures then be-
comes a (known) quadratic transformation.

No nontrivial multivariate quadratic transfor-
mations are known!

Theorem. If λ1 ≤ 4, then the O±(n) vanishing
conjecture holds for Pλ.

Sketch: Compare the Cauchy identity for Mac-
donald polynomials to the Cauchy identity for
Koornwinder polynomials. Reduce to D4-type
Macdonald polynomials, and apply triality.

(Dual statements hold for Sp(2n))

Smallest remaining case is λ = 51
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Other symmetric spaces:

G×G/G: known orthogonality results for Mac-

donald and Koornwinder polynomials.

For other cases, uniqueness falls through; harder

to guess densities!

Approach 1: Look at the classical case, and

make a wild guess

U(p+ q)/U(p) × U(q): just take product of in-

dependent Macdonald densities. (Works for

small p, q) Nonzero values appear to be “nice”.

Other Grassmannian cases should be analo-

gous, but are difficult to test (we must replace

Macdonald polynomials by Koornwinder poly-

nomials).
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Approach 2: Use other cosets to fix nonzero

values.

For U(2n)/U(n) × U(n), exchange involution

gives another coset; can solve for nonzero val-

ues and guess density.

∫
Pµν(· · · ± √

xi; q, t)
∏
i �=j

(xi/xj; q
2)

(t2xi/xj; q2)
∝ δµν

Suitable sign changes give nonzero values for

identity coset. Gives different density from

Approach 1! Conjectured density is “nice”,

but even normalization isn’t known (Both ap-

proaches agree when q = t, and give “nice”

nonzero values)

Approach 2 also gives conjectures for other

classical symmetric spaces; Macdonald poly-

nomials become Koornwinder polynomials.
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