Prototype vanishing integrals

sx(U) =20
/UEO(n) A( )
unless A is of the form 2u.
U)=20
/UESIO(Qn) sx(U)

unless X is of the form u2.

e Nonzero values are “nice” (in fact, 1)

e Come from symmetric spaces U(n)/ O(n),
u(2n)/Sp(2n)



Orthogonal cases:

/SA(...xi,xi—l...)

I] @- xflx§2) =0
1<i<g<n
s1,so==1

—1
/S)\(...xz',fljz- .., 1,-1)
2s S1,.852Y\
H (1—2x7) H (1—267;33]-)—0
1<i<n 1<i<5<n
s==+1 $1,so==1

unless X is of the form 2u or 2u + 127

/SA(...xi,xz-_l...,l)
I (-2 ]I (1—33;1£B§2) =0

1<:<n 1<i<53<n
s==1 s$1,so==1

—1
/SA(...:ci,a:i o, —1)
S1 .S
1<i<n 1<i<5<n
s==1 $1,8o==1

unless X is of the form 2u or 2u 4+ 127+1



Symplectic case:

—1
/SA(---%;% o)
2s $1,.52\ —
1<i<n 1<i<y<n
s==1 51,50==1

unless \ is of the form u2



Macdonald polynomials

Define an inner product on symmetric func-
tions by:

| | (1 — ¢
LA TT 800 = T gt =2

1<i  1<i 1<

(I.e., p; are independent complex Gaussian,

i(1—q")
1 — ¢

E(lp;|?) =

The Macdonald polynomials Py(;q,t) are de-
fined by:

P\Gag,t) = ) cyuyma, o =1
p<A

(PG a5 1), Pu(i g, 1)) q,t < Oy,

(When g = ¢, these are the Schur functions)

Are there vanishing integrals for these?



Nonzero values

Evaluating at z71,... 21 has kernel

(e; —eop_; 1 <i<mn)

In particular, applying the Sp(2n) vanishing in-
tegral to

(e1 —eon—1)Pr(; q,1)

gives 0. Expanding in Macdonald polynomials,
only two terms survive: this gives a recurrence
for the nonzero values. (Values are “nice”)

For orthogonal cases, each of the generators
of the kernel gives at most two terms with
nonzero integrals; the different recurrences all
agree. So exists unique symmetric formal Lau-
rent series giving vanishing “integral’ .

Symplectic: can only prove unigueness.



Univariate cases 1

Want density A(z) on unit circle T! such that

/PA(aﬁ, 1/z;q,t)A(x) =0

unless A1 = A» (mod 2), A3 = 0.
Solve for coefficients of Laurent series. . .

When t = ¢2¢*+1 get (apparent) polynomial:
_ (a2™2¢7),
(tz*2; ¢°)
_ (%2 q)
(2, 2l Vet —ViaEl; )

A(z)

Special case of Askey-Wilson integral:

(x%2; q)

JAN ; ,b7 7d’ =
(x;a,b,¢,d; q) (ax*l brTl cx*l dx*l;q)




Univariate cases 2

Other orthogonal cases:
/P)\(:I:, 1/x,1; ¢, ) A(z;t,—1,Vt, -Vt q)
/P)\(az, 1/x,—1; ¢, ) A(z; 1, —t,Vt,—Vt; q)
/P)\(aﬁ, 1/x,1,—1; ¢, ) A(z; t, —t,Vt,—Vt; q)
Symplectic case:

[ P, 1/ 0,0 A VE —VEVaE —at 0)



There is a natural multivariate analogue of the
Askey-Wilson integral!

Koorwinder density:

A(n)(ml, xo,...Tn,a,b, c,dq, t)

— 2t (azFl ol cxi17d$il;q)
1 1
(zi i Q)

H (t:ljj:l ;I:l’q)

1<i<5<n

Conjecture: Replacing Askey-Wilson density
by Koornwinder density gives multivariate van-
ishing integrals.

q = t: reduces to Schur function case



The Schur case of the vanishing integral has
another generalization:

Eycom)s2a(AU) = (}I_rpl P\(AAt; q,qY?)
Byesp(n)$2(AU) = lim PA\(AJA" ¢,¢%)

(nonzero otherwise)

Consider

Er eo(2n) sx(U1U2)
U>eSp(2n)

This is 0 unless X has the form 2u2, so
Eyesp(n) C}i_rHPA(UUt; q,q%/?)
Eyeo) q”_r]ﬂlPA(UJUt: )

are vanishing integrals.

The corresponding densities are the limits of
the conjectured Koornwinder densities.



n — oo

Express the formal logarithm of the Koorn-
winder density in terms of pp(...x;, 1/x;...).

Take

ok

|Og(CIZ, Q) ~ = Z ]C(l . qk)'

1<k

Obtain:

log A (;a,b,¢,d; q,t)
s (a¥ 4+ bF + & 4 d¥)py, — poi

1<k k(1 — qk)
1tk p%—n—pzk
k(1 — g") 2

This is quadratic in p,, so suggests a (real)
independent Gaussian limit.

Diaconis-Shashahani: This works for O%(n),
Sp(2n).

The general Gaussian limit follows.
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n — oo, continued

Macdonald polynomials satisfy:

>_P@)P\(y) = ]] Qziysia)/(ziyj: q)
A

1<i,j

_ pr(@)pr(y) (1 — tk))
exp (%:1 e (1 — o)

Integrate both sides over the n — oo limit of
the O%(n) vanishing integrals. LHS becomes:

> eaPox(y)
)

while RHS can be computed by completing the
square. Result: Macdonald’s Littlewood iden-
tities for Macdonald polynomials.

So conjectures hold in n — oo limit.

Note: Littlewood identities are dual to each

other!
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Rationality in T' = t"

Theorem. For any partition A, there exists a
rational function Fy(a,b,c,d; q,t;T) such that

/P)\(xitlw n 1Q7t)
A<n)(x1, ...xTn,a,b,c,d;q,t)
— FA(CI,, b7 C, d, q,t, tn)

for generic a,b,c,d,q,t <1 and all n > 1.
(Genericity conditions are tractable)

Duality:

F\(a,b,c,d; q,t;T)
Vi@ il VT V@
a d

F
)‘/( b C

t,q,1/T)

With other symmetries, we find that all five
conjectures are equivalent.
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More special cases:

Theorem. If 4(\) < 1, then the O (n) vanish-
ing conjecture holds for P,.

Sketch: Use Cauchy identity with only one
variable y; obtain a basic hypergeometric gen-
erating function. The conjectures then be-
comes a (known) quadratic transformation.

No nontrivial multivariate quadratic transfor-
mations are known!

Theorem. If \{ < 4, then the O%(n) vanishing
conjecture holds for Pj.

Sketch: Compare the Cauchy identity for Mac-
donald polynomials to the Cauchy identity for
Koornwinder polynomials. Reduce to Dj-type
Macdonald polynomials, and apply triality.

(Dual statements hold for Sp(2n))

Smallest remaining case is A = 51
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Other symmetric spaces:

G X G/G: known orthogonality results for Mac-
donald and Koornwinder polynomials.

For other cases, uniqueness falls through; harder
to guess densities!

Approach 1: Look at the classical case, and
make a wild guess

U(p+q)/U(p) x U(q): just take product of in-
dependent Macdonald densities. (Works for
small p, g) Nonzero values appear to be “nice”.

Other Grassmannian cases should be analo-
gous, but are difficult to test (we must replace
Macdonald polynomials by Koornwinder poly-
nomials).

14



Approach 2: Use other cosets to fix nonzero
values.

For U(2n)/U(n) x U(n), exchange involution
gives another coset; can solve for nonzero val-
ues and guess density.

/PMU( :I:\/_er7t)H

(xz/x] q2)
(tz /x] q°)
Suitable sign changes give nonzero values for
identity coset. Gives different density from
Approach 1! Conjectured density is “nice”,
but even normalization isn't known (Both ap-

proaches agree when g = t, and give “nice”
nonzero values)

X Opw

Approach 2 also gives conjectures for other
classical symmetric spaces; Macdonald poly-
nomials become Koornwinder polynomials.
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