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Introduction

We consider the unitary ensemble of random
matrices,

N
dun (M) = Zy' exp <——T—Tr V(M)) dM,
where
N
Iy = / exp (——Tr V(M)) dM,
Hy T
on the space H, of Hermitian N x N matrices
M = (M~- , where V(x) is a polynomial,

ZJ)lgi,jgN

V(x) = vpaP + vp_la:p_l + ...,

of an even degree p with v, > 0.



The ensemble of eigenvalues A = {\;, j =
1,...,N} of M is given then by the formula

dun(X\) = Zyt exp (~NHy (X)) d),
where
Zn :/ exp (= NHy(N)) dA,

AN
where Ay is the symmetrized RY,

Ay =RY/S(N),
and

2

1 N
Hy\) = ——= > 10g|Xj — Ag| + = Y V().
1<j<k<N j=1



Let dvy(xz) = py(x)dx be the distribution of
the eigenvalues on the line, so that for any

test function ¢(x) € Cg°,

1 N
//\N [szzjl ¢()‘j)

As N — oo, there exists a weak limit of dvy(x),

o

duy ) = [ ¢(2) dvn(a).

dvoo(x) = NliﬂoQ dvn(x) .

To determine the limit consider the energy func-
tional on the space of probability measures on
the line,

Hv()) = -5 [[ 100 |~ yldv(z) du(y)
1
+ 2 [ V@dv(y).

where § = 2.



Then
Hy(A) = NI(dv(z; N)) ,

where

N
dv(xz; \) = Z 6(x — Aj)dz.

1
N
Hence,
_ _ -1 2 .
duny(\) = Zytexp (-N I(du(a:,A))) d\ .

Because of the factor N2 in the exponent,
one can expect that as N — oo, the measures
dupy(A) are localized in a shrinking vicinity of an
equilibrium measure dveq(x), which minimizes
the functional I(dv(x)), and therefore, one ex-
pects the limit to exist with dvso(z) = dreq(x).



A rigorous proof of the existence of the limit
liMpy_ oo dvy(x) = dreq(z), was given by A.
Boutet de Monvel, L. Pastur, and M. Shcherbina,
and by K. Johansson.

A. Boutet de Monvel, L. Pastur, and M. Shcherbina,
On the statistical mechanics approach in the
random matrix theory: Integrated density of
states, J. Statist. Phys. 79 (1995), 585—611.

K. Johansson, On fluctuations of eigenvalues
of random hermitian matrices, Duke Math. J.
91 (1988), 151-204.



For the existence and uniqueness of the equi-
librium measure and its analytic properties see
also

E. Saff and V. Totik, Logarithmic potentials
and external fields, Springer-Verlag, New York,
1997.

P. Deift, T. Kriecherbauer, K. T-R. McLaugh-
lin, New results on the equilibrium measure for
logarithmic potentials in the presence of an ex-
ternal field, J. Appr. Theory 95 (1998) 399-
475.



Properties of the equilibrium measure

e dreq(x) is supported by a finite number of
segments [a;,b;], j = 1,...,q, and it is
absolutely continuous with respect to the
Lebesgue measure, dreq(xz) = p(z)dx,

e the density function p(x) is of the form
1 1/2
p(z) = %;h(x)R_i_ (),

q
R(z) = |] (& — aj)(= — b)),

j=1
where h(x) is a polynomial of the degree,
degh =p—-¢q—1, and R_ll_/z(:c) means the
value on the upper cut of the principal sheet
of the function R/2(z) with cuts on J,



The equilibrium measure is uniquely determined
by the Euler-Lagrange conditions: for some
real constant [,

Q/R l0g |z — s|dveq(s) — V(x) =,

q . -
for =z € Uj____l[aj,bj] ;

2 /R l0g |z — s|dveq(s) — V(x) <,
for zeR\ U;J-Zl[a,j, bj] .

See

P. Deift, T. Kriecherbauer, K. T-R. McLaugh-
lin, S. Venakides, and X. Zhou, Uniform asymp-
totics for polynomials orthogonal with respect
to varying exponential weights and applications
to universality questions in random matrix the-
ory, Commun. Pure Appl. Math., 52 (1999)
1335-1425



The Euler-Lagrange conditions imply that
V'(2)  h(z)RY?(2)

— *
w(2) = E
where
d
w(z) = p(z) d =2 14+0(:"?), z— oo,
J z—1x
and

. 1/2
/ba]_;_lh(a:)RQ ($)dx:07 j=1,...,9q—1,

()
which shows that h(xz) has at least one zero on
each interval b; <z <ajy1;, J=1,...,4—1.

J
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From (*) we obtain that

V'(2) = Pol [h(z)Rl/Q(z)} ,

(***)
Res |h(2)RY?(2)] = -2,
and
_ V'(2)
h(z) = Pol [Rl/z(z)jl :

where Pol [f(z)] is the polynomial part of f(z)
at z = oo. The latter equation expresses h(z)
in terms of V(z) and the end-points, aq, b1,...,
ag, bg. The end-points can be further found
from (***), which gives ¢ + 1 equation on
ai,...,bqg, and from (**), which gives the re-
maining q — 1 equation.

11



The equilibrium measure dveq(x) is called reg-
ular (otherwise singular), see [DKMVZ], if

h(z) #0 for e Ul_;laj,b;]

and

2/ 09 |x — s| dreq(s) — V(z) < I,
for € R\ U?zl[aj, b]] .
The polynomial V(z) is called critical if the
corresponding equilibrium mesaure dveq(x) is
singular. If V(z) is a critical polynomial then
the set S of its singular points consists of the
points where either h(z) =0, z € U‘?:l[aj,bj],
or
2/|Og |z — s|dveq(s) — V(z) =1,

reR \ U;I':]_[a’ja b]] .

12



Free Energy and Eigenvalue Correlation Func-
tions

Free energy.
T
N
Ty = / exp (———~Tr V(M)) dM.
H T
Proposition 1. There exists the limit,

F= |Iim Fhy.
N—)ooN
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Correlation functions. For any test function
¢(x) € C5°, define

N
=1

J
The m-point correlation measure dv,,,n(x1,... ,ZTm)
is defined by the condition that for any m test

functions ¢q1(x),... ,om(x),

m
/ (H dw]) dun ()

Ay \ =y

m

= 1] ¢;(zj) | dvipn (1, szm).
R\ L
=1
In fact, dvy(z1,... ,zm) is Lebesgue absolutely

continuous on the set {a:]- #* xp},

dI/N(wl,. .- ,:Um) — KmN(xla c o ,CBm) d:Bl . ..da:m,

and K,,ny(x1,...,zm) is the m-point correlation
function.
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Orthogonal Polynomials

Consider monic orthogonal polynomials P, (z) =
A I

/OO Po(2) Pp(2)e NV @ dz = hpopy,

Define
1

Yn(z) = __i_/_Q_pn(x)e—NV(w)/Q.

Recurrence relation:

rpn () = ’Yn+1¢n+1($) + Bntn(x) + Yntbp—1(x).

Consider the matrix Q of the operator of mul-
tiplication by z, f(z) — zf(x) in the basis
{vn(x)}; Q is a symmetric tridiagonal matrix,

Bo v1 O
_|lm B1
¢ 0O v B3
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Discrete String Equations

( [V/(Q)]nn = 0,

Tn [V/(Q)]n,n—l —

\

n
N
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Lax Pair Equations

Define W, (z) = (wwi(ii» .

Differential equation:

U (z) = NAn(2)Wp(a),

where
_V (z) — Ynun(x) Ynon(x)
~nvp—1(x) 5 + nun(x)
and
Un<£[)) — [W(va)]n,n—17
vn(z) = [W(Q, z)]nn,
where

VI(Q) — V(=)
Q- |

W(Q,x) =

17



Recurrence equation:

Wy 1(2) = Un(2)Wn(a),

where

Un(z) = (v;ilwlc ) -

—1
n+11m
O

)
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Correlation functions in terms of orthogo-
nal polynomials

Formula of Dyson

KmN($]_, R 7£Um) = det (QN(xka 331))Z,Ll=1 9

where

N—-1
Qn(z,y) = Z Yn(z)Yn(y)

n=0
Christoffel-Darboux Formula
N—-1
Qn(z,y) = D> UYn(z)¢¥n(y)
n=0

YN @)YN_1(y) —Yn_1(x)YNn(y)
TN .

— S
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Theorem 2. If the equilibrium measure,

dveq(x; T,v1,... ,Up),

is regular (in the sense of [DKMVZ]) then the
free energy F(T,vi,...,vp) is analytic in T,
v1,...,vp (@t a given point).

We will be interested in the following problems:

e Singularity of F' at critical points.

e Asymptotic expansion of Fy—F as N — oo
both at regular and critical points.

e Double scaling limit of correlation func-
tions at critical points.

20



We will consider the critical density

1
pe(x) = (z —2¢1)%V4 — 27,
27TTC

where T, = 1 + 4¢% and

cp =Ccosme, —-1<e<]1.

(Many results are extended to the critical den-
sity of a more general form:

pe(x) = ho(w)(w — 2¢1)%/4 — 22,

where hg(x) > 0 for real x.) The critical poly-
nomial is

1
Vi (z) = T V(z),
1 4
V(iz) = 1 t — 3 c1x> 4 cox® + 8cyz,

where we denote

cp = COSkme, s = Sinkme.

21



Free energy near the critical point. To evaluate
the singularity the free energy F(T) at T = T,
consider the function

_2d (F(T)
I =1 dT( T )
= Iim ——! iTr V(M)

N .
X exp (———7—; Tr V(M)) dM.

It can be evaluated as
Fi(T) = = § V(2)w(zT)dz,
2w JC
where C is any contour with positive orienta-
tion around J(T'), the support of equilibrium
measure and

o p(x; T)dx
w(zT) = /J(T) 2—x

22



Theorem 3. The free energy F(T) can be an-
alytically continued through T = 1T, both from
below and from above T.. In addition, F(T)
and its first two derivatives, F'(T), F"(T) are
continuous at T' = T., while the third deriva-
tive, F""'"(T") has a jump at T = T, (third order
phase transition).

(Extension of a result in

D. Gross and E. Witten, Possible third-order
phase transition in the large-N lattice gauge
theory, Phys. Rev. D 21 (1980) 446-453.)

23



Double Scaling Limit for Recurrence Co-
efficients

We start with the following ansatz, which re-
produces the quasiperiodic behavior of the re-
currence coefficients:

no_ —2/3
— =14+ N t,
N +

%% =1+ N—1/3u(t) COS 2nme
+ N—2/3 [vo(t) + v1(t) cOs2nme
+vo(t) cos 4nme]
+ N7t [wo(t) + wi (t) cOsS2nme
+ wo(t) cosdnme + w3 (t) COS bnme
+wq(t) sin4nme],
Bn =0+ N_1/3u(t) cos (2n + 1)me
= N72/3 [55(t) + 91(¢) cos (2n + 1) e
+-v5(t) cos (4n + 2)7e]
+ N7 [wo(t) + wq(t) cos (2n + 1)me
+ wo(t) cos (4n + 2)mwe + w3 (t) cos (6n + 3)we
+w4(t) sin (4n + 2)me],
where u(t), vo(t),...,wa(t) are unknown func-

tions.
24



We substitute the ansatz into string equations.

Order N—1/3. Our ansatz is automatically sat-
isfied at this order.

Order N—2/3, We obtain that

2 2
_ ¢ o, 1+

vg = — u + tle,

0T a2 454 °

and

25



Order N—1. We obtain wq,... ,@ws and a non-
linear equation on u(t),

which is the Painlevé II equation. When ¢ =
1/2 it reduces to 2u” = u3 4+ tu. The function
u(t) behaves as

1
u(t) ~ — =Tt u(t) ~ Ai(kt),
t——+o00

t——00 S1

1/3
K= (%) . (The Hastings-McLeod solution
1

of Painlevé II).

26



Scaled Differential Equations at the Ciriti-
cal Point

To derive a scaled system at the critical point
r = 2c1 we set

z = 2c; +yN~1/3
and

=03 (n+ 1) e 0 s 4+ 1) et

Un-1(@) = cos (n — ) me fy) —sin (n - =) meg(v),

The scaled system is
wnls) =
s1 dy
v (P +5+25) +vu)
(y + % + >—|—yu —s1u/ <g)

the differential y-equation for Painlevé Il equa-

tion.
27



Universal Kernel for Correlation Functions

We scale:

The Dyson integral kernel for the double scal-
ing limit correlation functions is then:

f(w1)g(¥2) — 9(y1) f(©2)
Y1 — Y2 '

K(y1,y2) =

28



Nonlinear Hierarchy

Form =1,2,..., we consider the model critical
density
1
p(z) = (z — 2¢1)?™\/4 — 2,
27TTC
where

1 2
T, = 2—/ Q(w — 2¢1)°™V4 — 22 dz.
7'(' —_—

The corresponding polynomial V(x) is such that

Vi(z) = %— Pol [(w —2¢1)%™M\ /4 — 332’ ,
C

29



In the double scaling limit we define variables
K, t and y as

K — N—l/(2m+1)7 n

=14 K%Mt
N + 1

r = 2c1 + 2Ky.
Our ansatz for the orthogonal polynomials is
the following:

Y(n, )
=cos(n+ 1/2)we f(t,y) —sin(n+ 1/2)weg(t,y)
+ K [cos(n + 1/2)me f1(t,y) —sin(n+ 1/2)meg1(t,y)
+ cos3(n+ 1/2)we f(t,y) —sin3(n + 1/2)weg(t, y)}
+ O(K?),
and for the recurrence coefficients,

vn = 1 4+ Ku(t) cos2nmre + O(K?),

Bn = 2Ku(t) cos (2n + 1)me + O(K?2)

30



When we substitute the ansatz into the 3-term
recurrence relation, we obtain the equation

f(t,y) f(t,y)
O = [
! <g(t,y)> (g(t,y)> ’
7= 0 y + u(t)
T\ =y + u(t) 0
We would like to derive a differential equation

in y,
f&y))\ _ fty)
%y <g<t,y>> = D{ty) <g<t,y>) '

We are looking for D(t,y) in the form

_(  -Aty) By +Cty)
bt y) = <y3<t,y)_%<t,y> T )

where A, B and C are even polynomials in y of
the following degrees:

degA=2m—2, degB =2m — 2,
deg C = 2m.

31



We will assume that C is a monic polynomial,
so that C = y2™4.... The general case can be
reduced to this one by the change of variables,
t =xt, y= —Z— u(t) = J,@ which preserves the
structure of the operator L.

The consistency condition of the differential
equations in t and y,

(D, L] = 8,L — ,D = (_01 é) _a,D.

Implies that

oeB =2A, 0,C=1+42uA,
OtA = —QyQB + 2uC'.

We would like to solve these equations in poly-
nomials of the degree

deg A =2m -2, degB =2m — 2,
deg C = 2m.

32



Define recursively functions An(t,y), Bm(t,y),
Cm/(t,y) by the equations

Crnp1 = y°Crm + fm(u),
By = yQBm + Rm(u),

1
Am—l—l — QQAm + ‘2— OtRm(u) ,

where Ry (u), fm(u) solve the recursive equa-
tions

| 1
Ry41(u) = ufm(u) — ZattRm(u)a
atfm(U) — ’U,atRm(’U/), fm(o> — 07
with the initial data
Ap=Bg=0, Co=1, Ro(u)=u,

2
fo(u) =

u
5 .

33



We find that

1 1
Ry(u) = —u3 — "
1(u) 2u 2
1 1
f1(uw) = —8—u — Zuu” gu’z;
3 5 5 1
Ro(u) = Zu® — —u?u - 2 wu'® M),
38 3 8 16 )
S5 6 O 3y 5 o 2 (4)
uw) = —u’ — —uu' — —u‘u —uu
f2lu) = 75 8 16 * 16
1 " 2
16 + :
57354// 35 3,2, 7 2 (3
R = = _
3(w) 16“ 32" 16” M
21 9 1
1.1 22 P — =, (6)
+ w3t + 64
and so on,

2m)! (- 1) _
Rmcu):QQm(m!)2 w2t 2, (2m)

34



In addition,

1
Al = —u,
175
1
A — /2
2 2”
_ 2
By = uy© +
Cr=y*+

35



Theorem 4. Define

Dt y) = (me(t, y) — C(t,y) ’ +Am(t,y) )

Then if u(t) is a solution of the equation

Rpym(u) +tu=0.
(the Painleve II hierarchy), then the matrix

D(t,y) = (ft é) + Din(t, y)

iIs a solution to the equation

[D,L] = 8yL — 8;D. ()

More generally, if t1,... ,tm are arbitrary con-
stants and u(t) is a solution of the equation

m
Z tpRi(u) + tu = 0,
k=1

then the matrix

Dt = (5 o)+ X unt) (b

k=1
36



is a solution to (7).

The meaning of the constants t1,...,tm IS the
following. Observe that the differential equa-
tion in y describes the double scaling limit for
a critical polynomial of degeneracy 2m. In
this case the space of transversal fluctuations
to the manifold of critical polynomials has di-
mension m. The variables tq4,...,tm Serve as
coordinates in the space of transversal fluctu-
ations, and the above general solution gives
the matrix describing the double scaling limit
of the recurrence coefficients in the direction
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