Fastest Mixing Markov Chain on ^a Graph

Stephen Boyd (Elec. Engr.) Persi Diaconis (Stat. & Math) Lin Xiao (Aero/Astro.)

Stanford University

SDP workshop, MSRI Berkeley, 10/7/2002

Markov chain on ^a graph

 $\bullet\,$ connected undirected graph $\mathcal{G}=(\mathcal{V},\,\,\mathcal{E})$

 $\mathcal{V} = \{1,\ldots,n\}, \qquad \mathcal{E} = \{(i,j) \mid i \text{ and } j \text{ connected}\}$

we'll assume each vertex has self-loop, $\it{i.e.},\; (i,i) \in \mathcal{E}$

- $\bullet\,$ each edge $(i,j)\in\mathcal{E}$ labeled with transition probability P_{ij} ; we'll take $P_{ij}=0$ for $(i,j)\not\in\mathcal{E}$, and $P_{ij}=P_{ji}$
- $\bullet\,$ defines Markov chain on vertices $X(t)\in\{1,\ldots,n\}$, with transition probabilities

$$
P_{ij} = \mathbf{Prob}(X(t+1) = i \mid X(t) = j)
$$

 \bullet P must satisfy $P_{ij} \geq 0$, $\mathbf{1}^T P = \mathbf{1}$ T , $P = P$ T , $P_{ij}=0$ for $(i,j)\neq\mathcal{E}$

example:

self-loop transition probabilities not shown; $P_{ii} = 1 - \sum_{j \neq i} P_{ji}$

since $P=P^T$, uniform distribution $\pi_i = \mathbf{1}/n$ is stationary

Mixing rate

 $\bullet\,$ since $P=P^{T}$, all eigenvalues are real; can order as

$$
\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n
$$

 $\lambda_1(P)=1$; $|\lambda_i|\leq 1$ for $i\neq 1$

• asymptotic rate of convergence to equilibrium distribution determined by second largest (in magnitude) eigenvalue

$$
\lambda^*(P) = \max_{i=2,\dots,n} |\lambda_i| = \max\{\lambda_2(P), -\lambda_n(P)\}\
$$

- \bullet distribution of $X(t)$ approaches uniform as $\lambda^{\star}(P)^t$ (if $\lambda^{\star}(P) < 1)$
- $\bullet\,$ the smaller $\lambda^{\star}(P)$ is, the faster the Markov chain mixes

Fastest mixing Markov chain problem

fastest mixing Markov chain (FMC) problem:

minimize
$$
\lambda^*(P)
$$

\nsubject to $P\mathbf{1} = \mathbf{1}, \quad P = P^T$
\n $P_{ij} \ge 0, \quad i, j = 1, ..., n$
\n $P_{ij} = 0, \quad (i, j) \notin \mathcal{E},$

- $\bullet\,$ optimization variable is $P;$ problem data is graph
- can add other constraints

another interpretation: find fastest mixing symmetric Markov chain with fixed sparsity pattern $(i.e.,$ allowed transitions)

Two common suboptimal schemes

let d_i be degree of vertex i , $i.e.,$ number of edges connected to vertex i (not counting self-loops)

 $\bullet\,$ maximum degree chain: with $d_{\max}=\max_{i\in\mathcal{V}}d_i$

$$
P_{ij} = \frac{1}{d_{\text{max}}}, \quad i \neq j, \ (i, j) \in \mathcal{E}
$$

• Metropolis-Hastings chain

$$
P_{ij} = \min\left\{\frac{1}{d_i}, \frac{1}{d_j}\right\}, \quad i \neq j, \ (i, j) \in \mathcal{E}
$$

diagonal entries determined by $P_{ii} = 1$ $-\sum_{j\neq i}P_{ji}$

A simple example

• maximum degree and Metropolis-Hastings

$$
\lambda_{\rm md}^\star = \lambda_{\rm mh}^\star = 2/3
$$

• can we do better? yes!

$$
\lambda_{\rm opt}^\star=3/7
$$

is, in fact, optimal for FMC

• can we always find the best? how difficult is it? how suboptimal is maximum degree or Metropolis-Hastings?

Outline

- convex optimization & SDP formulation of FMC
- examples
- subgradient method
- Lagrange dual of FMC and interpretations
- optimality conditions
- extension to reversible Markov chains

Convexity of mixing rate

λ *?* (P) is convex function of P

 $\bullet\,$ variational characterization of λ *?* (P) :

$$
\lambda^*(P) = \max\{\lambda_2(P), -\lambda_n(P)\}
$$

= $\max\{\sup\{v^T P v \mid ||v|| \le 1, v \in \mathbf{1}^\perp\},\$
 $\sup\{-v^T P v \mid ||v|| \le 1, v \in \mathbf{1}^\perp\}\}$

 \bullet λ *?* (P) is spectral norm of P on $\mathbf{1}^{\perp}$:

$$
\lambda^*(P) = || (I - (1/n)\mathbf{1}\mathbf{1}^T) P (I - (1/n)\mathbf{1}\mathbf{1}^T) || = || P - (1/n)\mathbf{1}\mathbf{1}^T ||
$$

 $\bullet\,$ for $X=X$ T , $\lambda_1(X) + \lambda_2(X)$ and $-\lambda_n(X)$ are convex; here $\lambda_1=1$, so $\max\{\lambda_2(X), -\lambda_n(X)\}$ is convex

Convex optimization formulation of FMC

minimize
$$
\lambda^*(P) = ||P - (1/n)\mathbf{1}\mathbf{1}^T||
$$

subject to $P\mathbf{1} = \mathbf{1}, \quad P = P^T$
 $P_{ij} \ge 0, \quad i, j = 1, ..., n$
 $P_{ij} = 0, \quad (i, j) \notin \mathcal{E},$

- **convex optimization** problem
- nondifferentiable objective function, linear constraints
- hence, can solve efficiently; have duality theory, . . .

SDP formulation of FMC

minimize
$$
s
$$

\nsubject to $-sI \preceq P - (1/n)\mathbf{1}\mathbf{1}^T \preceq sI$
\n $P\mathbf{1} = \mathbf{1}, \quad P = P^T$
\n $P_{ij} \geq 0, \quad i, j = 1, ..., n$
\n $P_{ij} = 0, \quad (i, j) \notin \mathcal{E}$

a semidefinite program (SDP) in variables P , s

Extensions

can add other convex constraints on the transition probabilities

fastest local degree chain: require probability on edge to be function of degrees of vertices:

$$
P_{ij} = \phi(d_i, d_j), \quad i \neq j, \ (i, j) \in \mathcal{E}
$$

- \bullet diagonal entries determined by $P_{ii} = 1 \sum_{j \neq i} P_{ji}$
- includes Metropolis-Hastings as special case
- $\bullet\,$ for convex/SDP formulation, add linear equality constraints

$$
P_{ij} = P_{kl}
$$
 whenever $d_i = d_k < d_j = d_l$

Small example (a)

$$
\lambda_{\rm md}^* = \lambda_{\rm mh}^* = \lambda_{\rm ld}^* = \lambda_{\rm opt}^* = \lambda_2 = -\lambda_n = \sqrt{2}/2
$$

Small example (c)

 $\lambda^{\star}_{\rm md} = \lambda^{\star}_{\rm mh} = -\lambda_n = 2/3 \qquad \quad \lambda^{\star}_{\rm ld} = \lambda^{\star}_{\rm opt} = \lambda_2 = -\lambda_n = 3/7$

lefthand chain is Metropolis-Hastings and maximum degree; both are optimal, with $\lambda^* = \lambda_2 = -\lambda_n = 1/3$

A larger example

random grap^h with ⁵⁰ vertices and ²²⁶ edges (276 transition probabilities)

eigenvalue distributions

Solution methods

- $\bullet\,$ for small FMC problems, up to 1000 variables: standard SDP solvers
- $\bullet\,$ local degree FMC: can exploit sparsity in P , other problem structure
- large problems: subgradient method

Subdifferential of λ*?*

 $G = G^T$ is a subgradient of λ^\star at P if for all $\tilde{P} = \tilde{P}^T$,

$$
\lambda^*(\tilde{P}) \ge \lambda^*(P) + \sum_{i,j} G_{ij}(\tilde{P}_{ij} - P_{ij})
$$

 $\boldsymbol{\mathsf{subd}}$ fferential $\partial \lambda^\star$ at P is set of subgradients

$$
\partial \lambda^*(P) = \mathbf{Co}(\{vv^T \mid Pv = \lambda^*v, \ \|v\| = 1\}
$$

$$
\cup \{-vv^T \mid Pv = -\lambda^*v, \ \|v\| = 1\})
$$

$$
= \{Y \mid Y = V - W, \ V = V^T \succeq 0, \ W = W^T \succeq 0,
$$

$$
\mathbf{Tr}\,V + \mathbf{Tr}\,W = 1, \ PV = \lambda^*V, \ PW = -\lambda^*W\}
$$

Computing ^a subgradient

we'll use $\mathbf{free\ variables}\ P_{ij}\text{, }\ i < j\text{, }\ (i,j)\in\mathcal{E}\ \text{ (}i\text{.}e\text{.}, \text{ }e\text{.}e\text{.}$ probabilities) to find ^a subgradient w.r.t. free variable P*ij*:

if $\lambda_2=\lambda$ *?*,

- $\bullet\,$ find unit eigenvector u associated with λ_2
- $G_{ij} = -(u_i u_j)^2$

 $\textsf{otherwise}~(i.e.,~-\lambda_n=\lambda^\star),$

- $\bullet\,$ find unit eigenvector u associated with λ_n
- $G_{ij}=(u_i-u_j)^2$

can use efficient method to compute $\lambda_2,~\lambda_n,$ and associated eigenvectors, for large sparse matrix

Subgradient method

repeat:

 $\bullet\,$ find a subgradient G w.r.t. free variables, at iterate $P^{(k)}$

$$
\bullet \ \text{update: } P_{ij}^{(k+1)} = P_{ij}^{(k)} - \alpha_k G_{ij}
$$

• \bullet (approximately) project $P_{ij}^{(k+1)}$ back to feasible set

step lengths satisfy $\alpha_k \geq 0$, $\alpha_k \to 0$, $\sum_k \alpha_k = \infty$

A large example using subgradient method

random graph with 1000 vertices and 10000 edges; step length $\alpha_k = 1/\sqrt{k}$ starting point: Metropolis-Hastings (with λ $\mathrm{\star} = 0.73)$

Dual of FMC problem

primal FMC:

$$
\begin{array}{ll}\text{minimize} & \lambda^{\star}(P) = \left\| P - (1/n) \mathbf{1} \mathbf{1}^{T} \right\| \\ \text{subject to} & P\mathbf{1} = \mathbf{1}, \quad P = P^{T} \\ & P_{ij} \ge 0, \quad i, \ j = 1, \dots, n \\ & P_{ij} = 0, \quad (i, j) \notin \mathcal{E} \end{array}
$$

 $\boldsymbol{\mathsf{dual}}$ $\boldsymbol{\mathsf{FMC}}$ (with variables Y , z):

maximize
$$
\mathbf{1}^T z
$$

\nsubject to $(z_i + z_j)/2 \leq Y_{ij}, (i, j) \in \mathcal{E}$
\n $Y\mathbf{1} = 0, \qquad Y = Y^T$
\n $||Y||_* = \sum_{i=1}^n |\lambda_i(Y)| \leq 1$

 $k(x)$ is indeed the dual of the spectral norm)

Weak duality

if P primal feasible, and $Y, \; z$ dual feasible, then $\mathbf{1}^Tz \leq \lambda^{\star}(P)$ quick proof:

$$
\begin{aligned} \mathbf{Tr}\,Y\left(P - (1/n)\mathbf{1}\mathbf{1}^T\right) &\leq \quad \|Y\|_* \|P - (1/n)\mathbf{1}\mathbf{1}^T\| \\ &\leq \quad \|P - (1/n)\mathbf{1}\mathbf{1}^T\| \\ &= \quad \lambda^\star(P) \end{aligned}
$$

$$
\begin{aligned}\n\mathbf{Tr}\,Y\left(P - (1/n)\mathbf{1}\mathbf{1}^T\right) &= \mathbf{Tr}\,YP = \sum_{i,j} Y_{ij} P_{ij} \\
&\geq \sum_{i,j} (1/2)(z_i + z_j) P_{ij} \\
&= (1/2)(z^T P \mathbf{1} + \mathbf{1}^T P z) \\
&= \mathbf{1}^T z\n\end{aligned}
$$

Strong duality

- primal and dual FMC problems are solvable, and have same optimal value
- \bullet there are primal feasible P^{\star} , and dual feasible $Y^{\star},\;z^{\star}$ with $||P^* - (1/n)\mathbf{1}\mathbf{1}^T|| = \mathbf{1}^T z^*$

Optimality conditions

• primal feasibility

 $P^{\star} = P^{\star T}, \quad P^{\star}\mathbf{1} = \mathbf{1}, \quad P_{ij}^{\star} \geq 0, \quad P_{ij}^{\star} = 0 \,\, \text{for} \,\, (i,j) \notin \mathcal{E}$

• dual feasibility

 $Y^\star = Y^{\star T}, \quad Y^\star \mathbf{1} = 0, \quad \|Y^\star\|_* \leq 1, \quad (z_i^\star + z_j^\star)/2 \leq Y_{ij}^\star \text{ for } (i,j) \in \mathcal{E}$

• complementary slackness

$$
((z_i^* + z_j^*)/2 - Y_{ij}^*) P_{ij}^* = 0
$$

\n
$$
Y^* = V^* - W^*, \quad V^* = V^{*T} \succeq 0, \quad W^* = W^{*T} \succeq 0
$$

\n
$$
P^*V^* = \lambda^*V^*, \quad P^*W^* = -\lambda^*W^*
$$

Interpretation of dual FMC

fix variable Y in dual FMC, to obtain linear program (LP) with variable z

$$
\begin{array}{ll}\text{maximize} & \mathbf{1}^T z\\ \text{subject to} & (z_i + z_j)/2 \le Y_{ij}, \quad (i, j) \in \mathcal{E} \end{array}
$$

interpretation:

- \bullet z_i : reward for visiting node i
- expected reward (uniform distribution is equilibrium):

$$
\lim_{t \to \infty} \mathbf{E} z_{X(t)} = (1/n) \mathbf{1}^T z
$$

• so problem is to choose rewards to maximize expected reward, subject to limit Y_{ij} on average reward between connected vertices

dual of (maximum expected reward) LP:

minimize
$$
\mathbf{Tr} PY = \sum_{i,j} P_{ij} Y_{ij}
$$

subject to $P\mathbf{1} = \mathbf{1}, \quad P = P^T$
 $P_{ij} \ge 0, \quad i, j = 1, ..., n$
 $P_{ij} = 0, \quad (i, j) \notin \mathcal{E}$

with variable P

interpretation:

- $\bullet\, \ Y_{ij}$: cost of transitioning over edge (i,j)
- \bullet expected transition cost is $\lim_{t\to\infty} {\mathbf E}\, Y_{X(t+1)X(t)} = (1/n) \, {\mathbf Tr}\, PY$
- $\bullet\,$ problem is to choose P to minimize expected transition cost

define ${\sf MTC}(Y)$ as optimal value; ${\sf MTC}$ is ${\sf concave}$ function of Y

Dual FMC in terms of minimum transition cost

can express dual FMC as

maximize
$$
MTC(Y)
$$

subject to $Y\mathbf{1} = 0$, $Y = Y^T$
 $||Y||_* \le 1$

- $\bullet\,$ Max-min problem: choose matrix Y to maximize MTC, which is the minimum expected transition cost over all Markov chains on graph
- \bullet interpretation of $P^{\star}\colon P$ *?* minimizes expected transition cost for edge costsY*?*

Extension: fastest mixing to nonuniform distribution

- $\bullet\,$ we are given desired equilibrium distribution $\pi=(\pi_1,\ldots,\pi_n)$
- $\bullet\,$ we consider P with same sparsity pattern as graph, but not symmetric
- $\bullet\,$ we do require ${\sf reverseible}$ chain: $P_{ij}\pi_j = P_{ji}\pi_i$
- $\bullet\,$ same as designing weights for the edges (including self-loops)

$$
w_{ij} = w_{ji} = \pi_j P_{ij} = \pi_i P_{ji}
$$

• random walk on weighted graph: assign transition probability as

$$
P_{ij} = \frac{w_{ij}}{\sum_{(k,j)\in\mathcal{E}} w_{kj}}
$$

- $\bullet\,$ with $\Pi = \mathbf{diag}(\pi)$, the matrix $\Pi^{-1/2}P\Pi^{1/2}$ is symmetric, with same eigenvalues as P
- eigenvector of ^Π−¹*/*²PΠ¹*/*² associated with maximum eigenvalue (which is one) is

$$
q=(\sqrt{\pi_1},\ldots,\sqrt{\pi_n})
$$

 $\bullet\,$ asymptotic rate of convergence of distribution to π determined by

$$
\lambda^*(P) = \left\| \Pi^{-1/2} P \Pi^{1/2} - q q^T \right\|
$$

which is convex in P

• FMC as SDP:

minimize
$$
s
$$

\nsubject to $-sI \preceq \Pi^{-1/2}P\Pi^{1/2} - qq^T \preceq sI$
\n $\mathbf{1}^T P = \mathbf{1}^T$
\n $P_{ij}\pi_j = P_{ji}\pi_i, \quad i, j = 1, ..., n$
\n $P_{ij} \geq 0, \quad i, j = 1, ..., n$
\n $P_{ij} = 0, \quad (i, j) \notin \mathcal{E}.$

Summary

FMC problem (and many variations) are convex problems, in fact SDPs

- can solve modest problems exactly and easily
- can solve larger problems via subgradient method
- interesting duality theory