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Markov chain on a graph

• connected undirected graph G = (V, E)

V = {1, . . . , n}, E = {(i, j) | i and j connected}

we’ll assume each vertex has self-loop, i.e., (i, i) ∈ E

• each edge (i, j) ∈ E labeled with transition probability Pij; we’ll take
Pij = 0 for (i, j) 6∈ E , and Pij = Pji

• defines Markov chain on vertices X(t) ∈ {1, . . . , n}, with transition
probabilities

Pij = Prob(X(t + 1) = i | X(t) = j)

• P must satisfy Pij ≥ 0, 1TP = 1T , P = PT , Pij = 0 for (i, j) 6= E
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example:

0.3

0.1 0.20.2

0.4 0.1

0.3

self-loop transition probabilities not shown; Pii = 1 − ∑
j 6=i Pji

since P = PT , uniform distribution πi = 1/n is stationary
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Mixing rate

• since P = PT , all eigenvalues are real; can order as

λ1 ≥ λ2 ≥ · · · ≥ λn

λ1(P ) = 1; |λi| ≤ 1 for i 6= 1

• asymptotic rate of convergence to equilibrium distribution determined
by second largest (in magnitude) eigenvalue

λ?(P ) = max
i=2,...,n

|λi| = max{λ2(P ),−λn(P )}

• distribution of X(t) approaches uniform as λ?(P )t (if λ?(P ) < 1)

• the smaller λ?(P ) is, the faster the Markov chain mixes
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Fastest mixing Markov chain problem

fastest mixing Markov chain (FMC) problem:

minimize λ?(P )
subject to P1 = 1, P = PT

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E ,

• optimization variable is P ; problem data is graph

• can add other constraints

another interpretation: find fastest mixing symmetric Markov chain with
fixed sparsity pattern (i.e., allowed transitions)
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Two common suboptimal schemes

let di be degree of vertex i, i.e., number of edges connected to vertex i
(not counting self-loops)

• maximum degree chain: with dmax = maxi∈V di

Pij =
1

dmax
, i 6= j, (i, j) ∈ E

• Metropolis-Hastings chain

Pij = min
{

1
di

,
1
dj

}
, i 6= j, (i, j) ∈ E

diagonal entries determined by Pii = 1 − ∑
j 6=i Pji
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A simple example

• maximum degree and Metropolis-Hastings

λ?
md = λ?

mh = 2/3

1/3

• can we do better? yes!

λ?
opt = 3/7

is, in fact, optimal for FMC

2/7

• can we always find the best? how difficult is it?
how suboptimal is maximum degree or Metropolis-Hastings?
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Outline

• convex optimization & SDP formulation of FMC

• examples

• subgradient method

• Lagrange dual of FMC and interpretations

• optimality conditions

• extension to reversible Markov chains
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Convexity of mixing rate

λ?(P ) is convex function of P

• variational characterization of λ?(P ):

λ?(P ) = max{λ2(P ),−λn(P )}
= max

{
sup{vTPv | ‖v‖ ≤ 1, v ∈ 1⊥},

sup{−vTPv | ‖v‖ ≤ 1, v ∈ 1⊥}}

• λ?(P ) is spectral norm of P on 1⊥:

λ?(P ) =
∥∥(

I − (1/n)11T
)
P

(
I − (1/n)11T

)∥∥ =
∥∥P − (1/n)11T

∥∥

• for X = XT , λ1(X) + λ2(X) and −λn(X) are convex; here λ1 = 1, so
max{λ2(X),−λn(X)} is convex
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Convex optimization formulation of FMC

minimize λ?(P ) =
∥∥P − (1/n)11T

∥∥
subject to P1 = 1, P = PT

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E ,

• convex optimization problem

• nondifferentiable objective function, linear constraints

• hence, can solve efficiently; have duality theory, . . .
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SDP formulation of FMC

minimize s
subject to −sI ¹ P − (1/n)11T ¹ sI

P1 = 1, P = PT

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E

a semidefinite program (SDP) in variables P , s
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Extensions

can add other convex constraints on the transition probabilities

fastest local degree chain: require probability on edge to be function of
degrees of vertices:

Pij = φ(di, dj), i 6= j, (i, j) ∈ E

• diagonal entries determined by Pii = 1 − ∑
j 6=i Pji

• includes Metropolis-Hastings as special case

• for convex/SDP formulation, add linear equality constraints

Pij = Pkl whenever di = dk < dj = dl
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Small example (a)

1/21/21/2

λ?
md = λ?

mh = λ?
ld = λ?

opt = λ2 = −λn =
√

2/2
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Small example (b)

1/3

1/3 1/3

1/3

λ?
md = λ2 = 2/3

1/3

1/3 1/3

1/2

5/11

3/11 3/11

4/11

λ?
mh = λ2 = 2/3 λ?

ld = λ?
opt = λ2 = 7/11
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Small example (c)

1/3 2/7

λ?
md = λ?

mh = −λn = 2/3 λ?
ld = λ?

opt = λ2 = −λn = 3/7
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Small example (d)

1/3

1/3
1/3

1/3

1/3

1/3

1/3
1/6

1/3

1/3

lefthand chain is Metropolis-Hastings and maximum degree; both are
optimal, with λ? = λ2 = −λn = 1/3
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A larger example

random graph with 50 vertices and 226 edges (276 transition probabilities)
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MSRI, 10/7/02 16



Solution methods

• for small FMC problems, up to 1000 variables: standard SDP solvers

• local degree FMC: can exploit sparsity in P , other problem structure

• large problems: subgradient method
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Subdifferential of λ?

G = GT is a subgradient of λ? at P if for all P̃ = P̃T ,

λ?(P̃ ) ≥ λ?(P ) +
∑
i,j

Gij(P̃ij − Pij)

subdifferential ∂λ? at P is set of subgradients

∂λ?(P ) = Co({vvT | Pv = λ?v, ‖v‖ = 1}
∪{−vvT | Pv = −λ?v, ‖v‖ = 1})

= {Y | Y = V − W, V = V T º 0, W = WT º 0,

TrV + TrW = 1, PV = λ?V, PW = −λ?W}
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Computing a subgradient

we’ll use free variables Pij, i < j, (i, j) ∈ E (i.e., edge probabilities)

to find a subgradient w.r.t. free variable Pij:

if λ2 = λ?,

• find unit eigenvector u associated with λ2

• Gij = −(ui − uj)2

otherwise (i.e., −λn = λ?),

• find unit eigenvector u associated with λn

• Gij = (ui − uj)2

can use efficient method to compute λ2, λn, and associated eigenvectors,
for large sparse matrix
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Subgradient method

repeat:

• find a subgradient G w.r.t. free variables, at iterate P (k)

• update: P
(k+1)
ij = P

(k)
ij − αkGij

• (approximately) project P
(k+1)
ij back to feasible set

step lengths satisfy αk ≥ 0, αk → 0,
∑

k αk = ∞

MSRI, 10/7/02 20



A large example using subgradient method

random graph with 1000 vertices and 10000 edges; step length αk = 1/
√

k
starting point: Metropolis-Hastings (with λ? = 0.73)
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Dual of FMC problem

primal FMC:

minimize λ?(P ) =
∥∥P − (1/n)11T

∥∥
subject to P1 = 1, P = PT

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E

dual FMC (with variables Y , z):

maximize 1Tz
subject to (zi + zj)/2 ≤ Yij, (i, j) ∈ E

Y 1 = 0, Y = Y T

‖Y ‖∗ =
∑n

i=1 |λi(Y )| ≤ 1

(‖ · ‖∗ is indeed the dual of the spectral norm)
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Weak duality

if P primal feasible, and Y, z dual feasible, then 1Tz ≤ λ?(P )

quick proof:

TrY
(
P − (1/n)11T

) ≤ ‖Y ‖∗‖P − (1/n)11T‖
≤ ‖P − (1/n)11T‖
= λ?(P )

TrY
(
P − (1/n)11T

)
= TrY P =

∑
i,j YijPij

≥ ∑
i,j(1/2)(zi + zj)Pij

= (1/2)(zTP1 + 1TPz)

= 1Tz
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Strong duality

• primal and dual FMC problems are solvable, and have same optimal
value

• there are primal feasible P ?, and dual feasible Y ?, z? with
‖P ? − (1/n)11T‖ = 1Tz?
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Optimality conditions

• primal feasibility

P ? = P ?T , P ?1 = 1, P ?
ij ≥ 0, P ?

ij = 0 for (i, j) /∈ E

• dual feasibility

Y ? = Y ?T , Y ?1 = 0, ‖Y ?‖∗ ≤ 1, (z?
i + z?

j )/2 ≤ Y ?
ij for (i, j) ∈ E

• complementary slackness

(
(z?

i + z?
j )/2 − Y ?

ij

)
P ?

ij = 0

Y ? = V ? − W ?, V ? = V ?T º 0, W ? = W ?T º 0

P ?V ? = λ?V ?, P ?W ? = −λ?W ?
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Interpretation of dual FMC

fix variable Y in dual FMC, to obtain linear program (LP) with variable z

maximize 1Tz
subject to (zi + zj)/2 ≤ Yij, (i, j) ∈ E

interpretation:

• zi: reward for visiting node i

• expected reward (uniform distribution is equilibrium):

lim
t→∞E zX(t) = (1/n)1Tz

• so problem is to choose rewards to maximize expected reward, subject
to limit Yij on average reward between connected vertices
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dual of (maximum expected reward) LP:

minimize TrPY =
∑

i,j PijYij

subject to P1 = 1, P = PT

Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E

with variable P

interpretation:

• Yij: cost of transitioning over edge (i, j)

• expected transition cost is limt→∞ EYX(t+1)X(t) = (1/n)TrPY

• problem is to choose P to minimize expected transition cost

define MTC(Y ) as optimal value; MTC is concave function of Y
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Dual FMC in terms of minimum transition cost

can express dual FMC as

maximize MTC(Y )
subject to Y 1 = 0, Y = Y T

‖Y ‖∗ ≤ 1

• Max-min problem: choose matrix Y to maximize MTC, which is the
minimum expected transition cost over all Markov chains on graph

• interpretation of P ?: P ? minimizes expected transition cost for edge
costs Y ?
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Extension: fastest mixing to nonuniform distribution

• we are given desired equilibrium distribution π = (π1, . . . , πn)

• we consider P with same sparsity pattern as graph, but not symmetric

• we do require reversible chain: Pijπj = Pjiπi

• same as designing weights for the edges (including self-loops)

wij = wji = πjPij = πiPji

• random walk on weighted graph: assign transition probability as

Pij =
wij∑

(k,j)∈E wkj
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• with Π = diag(π), the matrix Π−1/2PΠ1/2 is symmetric, with same
eigenvalues as P

• eigenvector of Π−1/2PΠ1/2 associated with maximum eigenvalue
(which is one) is

q = (
√

π1, . . . ,
√

πn)

• asymptotic rate of convergence of distribution to π determined by

λ?(P ) =
∥∥∥Π−1/2PΠ1/2 − qqT

∥∥∥
which is convex in P
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• FMC as SDP:

minimize s
subject to −sI ¹ Π−1/2PΠ1/2 − qqT ¹ sI

1TP = 1T

Pijπj = Pjiπi, i, j = 1, . . . , n
Pij ≥ 0, i, j = 1, . . . , n
Pij = 0, (i, j) /∈ E .
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Summary

FMC problem (and many variations) are convex problems, in fact SDPs

• can solve modest problems exactly and easily

• can solve larger problems via subgradient method

• interesting duality theory
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