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Markov chain on a graph

e connected undirected graph G = (V, &)
V=A{1,...,n}, E={(i,7) | © and j connected}
we'll assume each vertex has self-loop, i.e., (i,i) € £

e cach edge (i,7) € £ labeled with transition probability P;;; we'll take
Pz'j — ( for (Z,]) Qg, and Pij:sz'

e defines Markov chain on vertices X (¢) € {1,...,n}, with transition
probabilities

e P must satisfy P;; >0, 1P =1", P=P" P, =0 for (i,j) # &
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example:

self-loop transition probabilities not shown; P;; = 1 — Z#i Py

since P = P71, uniform distribution ; = 1/n is stationary
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Mixing rate

e since P = P’ all eigenvalues are real; can order as
AL Z A2 2 Ay

)\1(P) = 1;

Al <1 fori#1

e asymptotic rate of convergence to equilibrium distribution determined
by second largest (in magnitude) eigenvalue

A(P) = max |\ = max{\a(P), —An(P)}

1=2,...,mn

e distribution of X (¢) approaches uniform as A*(P)* (if \*(P) < 1)

e the smaller \*(P) is, the faster the Markov chain mixes
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Fastest mixing Markov chain problem

fastest mixing Markov chain (FMC) problem:
minimize  A\*(P)
subjectto Pl1=1, P=P7"
Pz'jZO, i,jzl,...,n
Pij:()a (7’7])¢57
e optimization variable is P; problem data is graph
e can add other constraints

another interpretation: find fastest mixing symmetric Markov chain with
fixed sparsity pattern (i.e., allowed transitions)
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Two common suboptimal schemes

let d; be degree of vertex 7, i.e., number of edges connected to vertex ¢
(not counting self-loops)

e maximum degree chain: with d,,.x = max;cy d;

1 .
Pz'j: ) Z%]v (Z,j)Gg

dm ax

e Metropolis-Hastings chain

. 1 1 . S
Pij:mln{d_ia d_]}a i #J, (4,5) €€

diagonal entries determined by P;; =1 — 5> ., Pj
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A simple example

e maximum degree and Metropolis-Hastings 1/3

md = Amh = 2/3

e can we do better? yes! 2/7

)\*

opt

=3/7
is, in fact, optimal for FMC

e can we always find the best? how difficult is it?
how suboptimal is maximum degree or Metropolis-Hastings?
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Outline

e convex optimization & SDP formulation of FMC
e examples

e subgradient method

e Lagrange dual of FMC and interpretations

e optimality conditions

e extension to reversible Markov chains
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Convexity of mixing rate
A*(P) is convex function of P

e variational characterization of \*(P):

N(P) = max{A(P),—A(P)}
= max {Sup{’UTPU o] <1, ve 1t}

sup{—'UTPv || <1, v e 1L}}

e )\*(P) is spectral norm of P on 1-:

N(P) = ||(I - (1/m)117) P (I — (1/n)127)|| = | P — (1/n)117

o for X = X1, A\ (X) + X2(X) and —\,(X) are convex; here A\; = 1, so
max{A2(X), —A,(X)} is convex
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Convex optimization formulation of FMC

minimize  A\*(P) = ||P — (1/n)117|

subjectto Pl1=1, P=P7T
P;>0, i,j=1,...,n
P; =0, (i,7)¢E¢,

e convex optimization problem

e nondifferentiable objective function, linear constraints

e hence, can solve efficiently; have duality theory, . ..
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SDP formulation of FMC

minimize S

subject to —sI <P — (1/n)111 < sI
P1=1, P=P"
P;>0, di,j=1,...,n
Pij:O7 (17‘7)%5

a semidefinite program (SDP) in variables P, s

MSRI, 10/7/02

10



Extensions

can add other convex constraints on the transition probabilities

fastest local degree chain: require probability on edge to be function of
degrees of vertices:

P’Lj:¢(dl7dj)7 27&]7 (Za.])eg

e diagonal entries determined by P;; = 1 — Z#i P;;
e includes Metropolis-Hastings as special case

e for convex/SDP formulation, add linear equality constraints

P;; = Py whenever d; = di, < d; = d;
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Small example (a)

1/2 1/2 1/2

:Ldz)‘:nh: 1*d:)\§pt:>\2:_>\n:\/§/2
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Small example (b)

1/3
5/11
3/11 3/11
1/2 4/11
AL =X =2/3 Al*dzAgpt:A2=7/11
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Small example (c)

1/3 2/7

fnd: ;(nh:_)\n:2/3 fd:A* )\2:—)\7123/7

opt —
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Small example (d)

®
o
1/3 1/3
®
1/6
1/3 1/3 1/3 1/3
e
1/3 1/3

lefthand chain is Metropolis-Hastings and maximum degree; both are
optimal, with \* =Xy = -\, =1/3
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A larger example

random graph with 50 vertices and 226 edges (276 transition probabilities)

6 maximum degree -
4+ |
2, -
1 08 06 -04 -02 0 02 04 06 08 1
6 Metropolis-Hastings -
4+ |
2, -
1 -08 06 -04 -02 0 02 04 06 08 1
et local degree -
4, -
2, -
0 ‘ TR s nnime ‘ i
1 08 -06 -04 -02 0 02 04 06 08 1
6F optimal chain -
4+ |
2,

0 1 1 II 1 1

1 08 06 -04 -02 0 02 04 06 08 1

eigenvalue distributions
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Solution methods

e for small FMC problems, up to 1000 variables: standard SDP solvers
e local degree FMC: can exploit sparsity in P, other problem structure

e large problems: subgradient method

MSRI, 10/7/02
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Subdifferential of \*

G = GT is a subgradient of \* at P if for all P = PT,

A (P) > \*(P +ZGU i — D))

subdifferential O\* at P is set of subgradients

ON(P) = Co({wv! | Pv= v, ||v| =1}
U{—w'" | Pv ==X, |v|=1})

= {Y|Y=V-W, V:VTEO, W:WTEO,
TrV+TeW=1, PV =XV, PW=-XW}
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Computing a subgradient

we'll use free variables P;;, i < j, (¢,7) € € (i.e., edge probabilities)
to find a subgradient w.r.t. free variable P;;:

if Ao = A%,

e find unit eigenvector u associated with A

o Gij = —(u; —uy)’

otherwise (i.e., =\, = \*),

e find unit eigenvector u associated with A,

o Gij = (ui —uy)’

can use efficient method to compute Ay, A,,, and associated eigenvectors,
for large sparse matrix

MSRI, 10/7/02
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Subgradient method

repeat:

e find a subgradient G w.r.t. free variables, at iterate P(k)

e update: Pz-(jkﬂ) = Pz-(jk) — oGy

e (approximately) project PSCH) back to feasible set

step lengths satisfy o, > 0, o, — 0, >, oy = o0

MSRI, 10/7/02
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A large example using subgradient method

random graph with 1000 vertices and 10000 edges; step length oy = 1/\/E
starting point: Metropolis-Hastings (with A* = 0.73)
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Dual of FMC problem

primal FMC.:

minimize  A\*(P) = ||P — (1/n)117]||

subjectto P1=1, P=P7T
P;>0, i,j=1,...,n
Py =0, (i,j)¢€

dual FMC (with variables Y, z):
maximize 171z
subject to  (2;+2;)/2<Y;;, (i,j) €&

Yi1=0, Y=Y7
Y[l =320 M) <1

(|| - |l+ is indeed the dual of the spectral norm)

MSRI, 10/7/02
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Weak duality

if P primal feasible, and Y, z dual feasible, then 172z < \*(P)

quick proof:

MSRI, 10/7/02

TrY (P —(1/n)11")

TrY (P —(1/n)11")

IA A

| VAR

Y]l [lP = (1/n)117]
|P — (1/n)117
A*(P)

TeYP =), .Yi;P
Zi,j(1/2)(zi + zj) Py
(1/2)(zT P1 + 17 P2)

172
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Strong duality

e primal and dual FMC problems are solvable, and have same optimal
value

e there are primal feasible P*, and dual feasible Y*, z* with
|P* — (1/n) 117 = 172"

MSRI, 10/7/02
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Optimality conditions

e primal feasibility

*x _ p*xT *xq * * ..
P*=pP, P1=1, P;>0, P;=0for(i,j)¢¢&

e dual feasibility

V=Y T YL=0, VL SL (24 2)/2S Y for () € €

e complementary slackness

(25 +2)/2 = Yi5) Py = 0
YY=V*-W* V*=V*">=0, Wr=W">0
PV* = XV*, P = -\
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Interpretation of dual FMC

fix variable Y in dual FMC, to obtain linear program (LP) with variable z

maximize 171z
subject to  (2;+2;)/2 <Y, (i,j) €&

Interpretation:

e z;: reward for visiting node ¢

e expected reward (uniform distribution is equilibrium):

thm EZX(t) — (1/77,)1TZ

e so problem is to choose rewards to maximize expected reward, subject
to limit Y;; on average reward between connected vertices
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dual of (maximum expected reward) LP:

minimize Tr PY = Z” P;;Yi;
subjectto Pl1=1, P=P7"
P; >0, ¢j=1,...,n
Pz’j:()7 (7’7])¢5

with variable P

Interpretation:

e Y,;: cost of transitioning over edge (¢, j)
e expected transition cost is limy_.oc EYx(141)x#) = (1/n) Tr PY

e problem is to choose P to minimize expected transition cost

define MTC(Y") as optimal value; MTC is concave function of Y
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Dual FMC in terms of minimum transition cost

can express dual FMC as

maximize MTC(Y)
subjectto Y1 =0, Y =YY"
Yl <1

e Max-min problem: choose matrix Y to maximize MTC, which is the
minimum expected transition cost over all Markov chains on graph

e interpretation of P*: P* minimizes expected transition cost for edge
costs Y*

MSRI, 10/7/02
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Extension: fastest mixing to nonuniform distribution

e we are given desired equilibrium distribution 7 = (7, ..., m,)
e we consider P with same sparsity pattern as graph, but not symmetric
e we do require reversible chain: P;;m; = Pjm;
e same as designing weights for the edges (including self-loops)
w;; = wj; = w5 = mPy;
e random walk on weighted graph: assign transition probability as

wij

Z(k,j)eé’ Wk

Pij:

MSRI, 10/7/02
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e with II = diag(r), the matrix II"1/2PII'/2 is symmetric, with same
eigenvalues as P

e eigenvector of II~1/2PII'/2 associated with maximum eigenvalue

(which is one) is
q — (\/7?17 SO \/ﬂ)

e asymptotic rate of convergence of distribution to m determined by
A (P) = HH—1/2P1—I1/2 B quH

which i1s convex in P
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e FMC as SDP:

MSRI, 10/7/02

minimize S

subject to —sI < II71/2PIIY/2 — ¢4q7 < sI
11'p =17
Pz'jﬂ'j: §iT04, i,j=1,...,n
Pi; >0, 1, 53=1,...,n
Pi; =0, (4,7) ¢ €.
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Summary

FMC problem (and many variations) are convex problems, in fact SDPs

e can solve modest problems exactly and easily
e can solve larger problems via subgradient method

e interesting duality theory
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