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Market and portfolios

Market

Discrete time market with n assets

Described by a sequence of return vectors: r1, r2, r3, . . . ∈ Rn

rti =
pti − p

(t−1)
i

p
(t−1)
i

, i = 1, . . . , n

where pt is the price vector in period t

MSRI SDP Workshop – p.3



Market and portfolios

Market

Discrete time market with n assets

Described by a sequence of return vectors: r1, r2, r3, . . . ∈ Rn

Portfolio φ ∈ Rn: fraction of wealth in assets, i.e. 1Tφ = 1

portfolio return rtφ in period t: rtφ =
∑n

i=1 φir
t
i = (rt)Tφ
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Market and portfolios

Market

Discrete time market with n assets

Described by a sequence of return vectors: r1, r2, r3, . . . ∈ Rn

Portfolio φ ∈ Rn: fraction of wealth in assets, i.e. 1Tφ = 1

portfolio return rtφ in period t: rtφ =
∑n

i=1 φir
t
i = (rt)Tφ

Portfolio selection problem:

Choose a model M from a model class M
Given a model M , choose a risk-return optimal φ∗
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

Versions:
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

model selection: Maximum likelihood estimation of µ and Σ

Versions:
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

Risk-return optimality criterion

return: E[rφ] = µTφ

risk: Var[rφ] = φTΣφ

Objective: Pareto optimal φ

Versions:
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

Risk-return optimality criterion

return: E[rφ] = µTφ

risk: Var[rφ] = φTΣφ

Objective: Pareto optimal φ

Versions:

Minimum variance portfolio selection:

minimize φTΣφ

subject to µTφ ≥ α,

1Tφ = 1.
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

Risk-return optimality criterion

return: E[rφ] = µTφ

risk: Var[rφ] = φTΣφ

Objective: Pareto optimal φ

Versions:

Maximum Sharpe ratio portfolio selection:

maximize
µTφ−rf
√

φTΣφ

subject to 1Tφ = 1,

where rf is the risk-free rate of return
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Markowitz portfolio selection

Formulated by Markowitz ... extended by Sharpe and others.

Model class M: Return sequence {rt : t ≥ 1} IID Normal N (µ,Σ)

Risk-return optimality criterion

return: E[rφ] = µTφ

risk: Var[rφ] = φTΣφ

Objective: Pareto optimal φ

Versions:

Value-at-risk (VaR) portfolio selection:

maximize µTφ

subject to P(rφ ≤ α) ≤ β,

1Tφ = 1.
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Comments on Markowitz formulation

Great theoretical success ... 1990 Nobel prize to Markowitz and Sharpe

But ... “in practice it is an error prone procedure that often results in
error-maximized and investment-irrelevant portfolios”
R. O. Michaud, Efficient Asset Management, HBS Press, 1998

Similar conclusions: Chopra & Ziemba (1993), Broadie (1993).

(µ,Σ) are estimated from noisy data ... the optimal portfolios amplify errors

Solutions:

bounds on the portfolio components: Chopra (1993), Frost & Savarino (1988)

James-Stein estimates for the mean: Chopra et al (1993)

Bayesian estimation: Chopra (1993), Frost et al (1986), Black-Litterman

Resampling (µ,Σ): Michaud (1989)

Stochastic programming: Ziemba & Mulvey (1998)

Problems:

No guarantees on portfolio performance

Sampling based methods become inefficient as number of assets grow
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Uncertain factor models

Market return r = µ+VT f + ε where

mean asset return: µ ∈ Rn

factor returns: f ∈ Rm

factor loading: V ∈ Rm×n

residual returns: ε ∈ Rn
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Uncertain factor models

Market return r = µ+VT f + ε where

mean asset return: µ ∈ Sm

factor returns: f ∼ N (0,F), F known and stable (can be relaxed)

residual returns: ε ∼ N (0,D),D ∈ Sd

factor loading: V ∈ Rm×n, V ∈ Sv

The uncertainty structure for the market parameters:

Sm = {µ = µ0 + ν : |νi| ≤ γi, i = 1, . . . , n}
Sv = {V = V0 +W : ‖Wi‖g ≤ ρi, i = 1, . . . , n},Wi = i-th column of V

Sd = {D = diag(d) : di ≤ di ≤ di, i = 1, . . . , n}
why ? how to parametrize ? Answer: statistical results from linear regression
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Uncertain factor models

Market return r = µ+VT f + ε where

mean asset return: µ ∈ Sm

factor returns: f ∼ N (0,F), F known and stable (can be relaxed)

residual returns: ε ∼ N (0,D),D ∈ Sd

factor loading: V ∈ Rm×n, V ∈ Sv

The uncertainty structure for the market parameters:

Sm = {µ = µ0 + ν : |νi| ≤ γi, i = 1, . . . , n}
Sv = {V = V0 +W : ‖Wi‖g ≤ ρi, i = 1, . . . , n},Wi = i-th column of V

Sd = {D = diag(d) : di ≤ di ≤ di, i = 1, . . . , n}
why ? how to parametrize ? Answer: statistical results from linear regression

Robust recipe

Given return data {rt : t = 1, . . . , p}, parametrize the uncertainty structure,
i.e. choose (µ0,V0),G, γ, ρ, d, d

Given a particular choice of (Sd, Sm, Sv), choose a “risk-return” optimal φ∗
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Robust portfolio selection

For fixed (µ ∈ Sm,V ∈ Sv ,D ∈ Sd) the market return

r ∼ N (µ,VTFV +D)

and portfolio return

rφ ∼ N (µTφ,φT (VTFV +D)φ)
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Robust portfolio selection

For fixed (µ ∈ Sm,V ∈ Sv ,D ∈ Sd) the market return

r ∼ N (µ,VTFV +D)

and portfolio return

rφ ∼ N (µTφ,φT (VTFV +D)φ)

Robust minimum variance portfolio selection: minimax formulation

min max{V∈Sv,D∈Sd}
{

φT (VTFV +D)φ
}

subject to min{µ∈Sm}
{

µTφ
}

≥ α,

1Tφ = 1.
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Robust portfolio selection

For fixed (µ ∈ Sm,V ∈ Sv ,D ∈ Sd) the market return

r ∼ N (µ,VTFV +D)

and portfolio return

rφ ∼ N (µTφ,φT (VTFV +D)φ)

Robust maximum Sharpe ratio portfolio selection

max min{µ∈Sm,V∈Sv,D∈Sd}

{

µTφ−rf
√

φT (VTFV+D)φ

}

subject to 1Tφ = 1.

MSRI SDP Workshop – p.7



Robust portfolio selection

For fixed (µ ∈ Sm,V ∈ Sv ,D ∈ Sd) the market return

r ∼ N (µ,VTFV +D)

and portfolio return

rφ ∼ N (µTφ,φT (VTFV +D)φ)

Robust Value-at-risk portfolio selection

max min{µ∈Sm}
{

µTφ
}

subject to max{µ∈Sm,V∈Sv,D∈Sd}
{

P{rφ ≤ α}
}

≤ β,

1Tφ = 1.

MSRI SDP Workshop – p.7



Linear regression and uncertainty sets

Data: Collect data over p periods

asset returns: {rt : t = 1, . . . , p},
factor returns: {f t : t = 1, . . . , p}

Least squares estimate x̄i of true xi: xi =





µi

Vi



 = (ATA)−1ATyi

Set “centers” µ0 = µ̄ and V0 = V̄
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Linear regression and uncertainty sets

Data: Collect data over p periods

asset returns: {rt : t = 1, . . . , p},
factor returns: {f t : t = 1, . . . , p}

Collect terms corresponding to a particular asset i:

yi = Axi + εi, i = 1, . . . ,m.

where

yi =

















r1i

r2i
...

r
p
i

















A =

















1 f11 f12 . . . f1n

1 f21 f22 . . . f2n
...

...
...

...
...

1 f
p
1 f

p
2 . . . f

p
n

















xi =























µi

V1i

V2i

...

Vmi























Least squares estimate x̄i of true xi: xi =





µi

Vi



 = (ATA)−1ATyi

Set “centers” µ0 = µ̄ and V0 = V̄
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Norm G, and bounds ρ,γ

For Q ∈ RJ×(m+1),
Z = (Q(xi − x̄i))T (Js2iQ(ATA)−1QT )−1(Q(xi − x̄i)) ∼ FJ
where

xi: true value of the parameters

s2i =
‖yi−Ax̄i‖

2

p−m−1
: sample error variance

FJ : F -distribution with J dof in num and (p−m− 1) dof in denom
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Norm G, and bounds ρ,γ

For Q ∈ RJ×(m+1),
Z = (Q(xi − x̄i))T (Js2iQ(ATA)−1QT )−1(Q(xi − x̄i)) ∼ FJ
Pick a confidence level ω ∈ (0, 1). Let cJ (ω) = F−1FJ

(ω) be the ω-critical value.
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Norm G, and bounds ρ,γ

For Q ∈ RJ×(m+1),
Z = (Q(xi − x̄i))T (Js2iQ(ATA)−1QT )−1(Q(xi − x̄i)) ∼ FJ
Pick a confidence level ω ∈ (0, 1). Let cJ (ω) = F−1FJ

(ω) be the ω-critical value.

Choose Q = eT1

Then Qx̄i = µ̄i and Qxi = µi and Z (above) implies

P

(

|µi − µ̄i| ≤
√

s2i (A
TA)−111 c1(ω)

)

= ω

Define γi =
√

s2i (A
TA)−111 c1(ω).

With probability p = ωn the mean vector µ lies in the set

Sm =
{

µ : µ = µ0 + ν, |νi| ≤ γi

}
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Norm G, and bounds ρ,γ

For Q ∈ RJ×(m+1),
Z = (Q(xi − x̄i))T (Js2iQ(ATA)−1QT )−1(Q(xi − x̄i)) ∼ FJ
Pick a confidence level ω ∈ (0, 1). Let cJ (ω) = F−1FJ

(ω) be the ω-critical value.

Choose Q =
[

e2 e3 . . . em+1

]T ∈ Rm×(m+1)

Then Qx̄i = V̄i, Qxi = Vi and Z (above) implies

P

(

(Vi −Vi)
T (Q(ATA)−1Q)−1(Vi −Vi) ≤ mcm(ω)s2i

)

= ω

SetG = (Q(ATA)−1Q)−1, and ρi =
√

mcm(ω)s2i .

With probability p = ωn, V lies in the set

Sv =
{

V0 +W : ‖Wi‖g ≤ ρi

}

,

whereWi is the i-th column ofW and ‖w‖g =
√
wTGw
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Norm G, and bounds ρ,γ

Conclusion: Sets Sm and Sv defined by data and desired confidence level ω.
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Norm G, and bounds ρ,γ

Conclusion: Sets Sm and Sv defined by data and desired confidence level ω.

What about Sd or equivalently d and d ?

defined by confidence regions around s2i
have to do some bootstrapping
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Robust minimum variance problem

Optimization problem

min ν + δ

s.t. maxV∈Sv
{

φTVTFVφ
}

≤ ν,

φTDφ ≤ δ,

minµ∈Sm
{

µTφ
}

≥ α,

1Tφ = 1.
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Robust minimum variance problem

Optimization problem

min ν + δ

s.t. maxV∈Sv
{

φTVTFVφ
}

≤ ν,

φTDφ ≤ δ,

minµ∈Sm
{

µTφ
}

≥ α,

1Tφ = 1.

Worst return: minµ∈Sm
{

φTµ
}

= µT0 φ− γT |φ|
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Robust minimum variance problem

Optimization problem

min ν + δ

s.t. maxV∈Sv
{

φTVTFVφ
}

≤ ν,

φTDφ ≤ δ,

minµ∈Sm
{

µTφ
}

≥ α,

1Tφ = 1.

Worst return: minµ∈Sm
{

φTµ
}

= µT0 φ− γT |φ|

Worst variance: maxV∈Sv

{

φTVTFVφ
}

= max{W:‖Wi‖g≤ρi}
‖V0φ+Wφ‖2f

Optimal solution at boundary

max
{W:‖Wi‖g≤ρi}

‖V0φ+Wφ‖2f = max
{w:‖w‖g≤1}

‖V0φ+ rw‖2f , r = ρT |φ| .
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Worst case variance

S-procedure: ‖V0φ+ rw‖2f ≤ ν for all ‖w‖g ≤ 1 iff ∃ τ ≥ 0 with

M =





ν − τ −φTVT
0 FV0φ rFV0φ

rφTFV0 τG− r2F



 º 0
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Worst case variance

S-procedure: ‖V0φ+ rw‖2f ≤ ν for all ‖w‖g ≤ 1 iff ∃ τ ≥ 0 with

M =





ν − τ −φTVT
0 FV0φ rFV0φ

rφTFV0 τG− r2F



 º 0

LetH = G−
1
2FG−

1
2 = QΛQT . ThenM º 0 iff





1 0T

0 QTG
1
2



M





1 0T

0 G
1
2Q



 =





ν − τ −wTw −rwTΛ 1
2

−rΛ 1
2w τI− r2Λ



 º 0
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Worst case variance

S-procedure: ‖V0φ+ rw‖2f ≤ ν for all ‖w‖g ≤ 1 iff ∃ τ ≥ 0 with

M =





ν − τ −φTVT
0 FV0φ rFV0φ

rφTFV0 τG− r2F



 º 0

LetH = G−
1
2FG−

1
2 = QΛQT . ThenM º 0 iff





1 0T

0 QTG
1
2



M





1 0T

0 G
1
2Q



 =





ν − τ −wTw −rwTΛ 1
2

−rΛ 1
2w τI− r2Λ



 º 0

Equivalently, τ ≥ r2λmax(H), and Schur complement τI− r2Λ

β − τ −wTw − r2
(

∑

i:τ 6=r2λi

λiw
2
i

τ − r2λi

)

≥ 0.
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Robust minimum variance problem

Some more linear algebra implies min variance problem equivalent to

min τ + 1T t+ δ

s.t. w = QTV0φ

r =
∑n

i=1 ρi |φi|
1Tφ = 1

1T t ≤ ν − τ

w2
i ≤ ti(1− σλi), i = 1, . . . ,m

r2 ≤ στ

σ ≤ 1
λmax(H)

φTDφ ≤ δ
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Robust minimum variance problem

Some more linear algebra implies min variance problem equivalent to

min τ + 1T t+ δ

s.t. w = QTV0φ

r =
∑n

i=1 ρi |φi|
1Tφ = 1

1T t ≤ ν − τ

w2
i ≤ ti(1− σλi), i = 1, . . . ,m

r2 ≤ στ

σ ≤ 1
λmax(H)

φTDφ ≤ δ

This optimization problem is a Second-Order Cone Program (SOCP)

linear objective

linear + conic section constraints
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1T t ≤ ν − τ
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i ≤ ti(1− σλi), i = 1, . . . ,m
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This optimization problem is a Second-Order Cone Program (SOCP)

Robust maximum Sharpe ratio and robust VaR problems are also SOCPs
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Robust minimum variance problem

Some more linear algebra implies min variance problem equivalent to

min τ + 1T t+ δ

s.t. w = QTV0φ

r =
∑n

i=1 ρi |φi|
1Tφ = 1

1T t ≤ ν − τ

w2
i ≤ ti(1− σλi), i = 1, . . . ,m

r2 ≤ στ

σ ≤ 1
λmax(H)

φTDφ ≤ δ

This optimization problem is a Second-Order Cone Program (SOCP)

Robust maximum Sharpe ratio and robust VaR problems are also SOCPs

Worst case complexity of SOCPs comparable for quadratic programs
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Quick catchup
Classical strategies are sensitive to parameter perturbation

Robust strategies attempt to correct this via uncertainty sets

Uncertainty sets defined by the data and desired confidence level

Resulting optimization problem is an SOCP ... can be solved efficiently

Our modifications:

Replaced usual mean-variance portfolio selection by a robust version.

Risk-aversion dictates ω: high ω ≡ conservative portfolios
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Robust investment strategy
Collect data: asset returns r and factor returns f .

Compute the least squares estimates µ0, V0 and F

Choose a confidence level ω and define Sm, Sv , and Sd

Solve the SOCP corresponding to the robust problem of interest
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Properties and extensions

Analog of Markowitz portfolio selection for uncertain markets: Gilboa & Schmeidler
(1989), Hansen & Sargent (2001)
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Properties and extensions

Analog of Markowitz portfolio selection for uncertain markets: Gilboa & Schmeidler
(1989), Hansen & Sargent (2001)

The 1-fund theorem extends: CAPM-type results possible (Wang (2002))

Probabilistic guarantee on performance

φ∗(ω): solution of the robust max Sharpe ratio problem at confidence ω

s∗(ω): value of the robust max Sharpe ratio problem at confidence ω

Result: realized Sharpe ratio of φ∗(ω) ≥ s∗(ω) with probability ω
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Analog of Markowitz portfolio selection for uncertain markets: Gilboa & Schmeidler
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The 1-fund theorem extends: CAPM-type results possible (Wang (2002))

Probabilistic guarantee on performance

Uncertain F: F | data ∼W−1
(p−1)

((p− 1)Fp), Fp = sample covariance matrix.
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Properties and extensions

Analog of Markowitz portfolio selection for uncertain markets: Gilboa & Schmeidler
(1989), Hansen & Sargent (2001)

The 1-fund theorem extends: CAPM-type results possible (Wang (2002))

Probabilistic guarantee on performance

Uncertain F: F | data ∼W−1
(p−1)

((p− 1)Fp), Fp = sample covariance matrix.

Implies the following uncertainty structures

F ∈ Sf−1 =
{

F−1 = F−10 +∆ :
∥

∥N
1
2∆N

1
2
∥

∥ ≤ ε
}

F ∈ Sf =
{

F = F0 +∆ :
∥

∥F
− 1

2
0 ∆F

− 1
2

0

∥

∥ ≤ ε
}

The min-max problems still remain SOCPs.
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(1989), Hansen & Sargent (2001)

The 1-fund theorem extends: CAPM-type results possible (Wang (2002))

Probabilistic guarantee on performance

Uncertain F: F | data ∼W−1
(p−1)
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Analog of Markowitz portfolio selection for uncertain markets: Gilboa & Schmeidler
(1989), Hansen & Sargent (2001)

The 1-fund theorem extends: CAPM-type results possible (Wang (2002))

Probabilistic guarantee on performance

Uncertain F: F | data ∼W−1
(p−1)

((p− 1)Fp), Fp = sample covariance matrix.

Implies the following uncertainty structures

F ∈ Sf−1 =
{

F−1 = F−10 +∆ :
∥

∥N
1
2∆N

1
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∥

∥ ≤ ε
}

F ∈ Sf =
{

F = F0 +∆ :
∥

∥F
− 1

2
0 ∆F

− 1
2

0

∥

∥ ≤ ε
}

The min-max problems still remain SOCPs.

Dynamics

The sets Sm, Sv and Sd can be efficiently updated ... Kalman filtering

Extends to a multi-period model ... robust dynamic programming
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Evaluation of robust portfolios

Focused on the Robust Maximum Sharpe Ratio problem
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did not want user-defined variables that had to be tuned

can compare with results in the literature
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Evaluation of robust portfolios

Focused on the Robust Maximum Sharpe Ratio problem

Two kinds of experiments:

Simulation experiments

Sample-path behavior on real market data

Simulation experiments: (n = 500,m = 40)

Randomly generated F, V andD = diag(di)

Randomly generated returns r and f using the linear model

Solved for (µ0,V0),G, and (ρ,γ).

Results
Cost of robustness as a function of the confidence level ω
Gains from robustness as a function of the noise variance
Comparison of running time

Sample path experiments: cumulative returns
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Performance as a function of ω

D = 0.1diag(VT
0 FV0), i.e. the factor model explains 90% of the variance.

loss = Sharpe ratio of robust portfolio
Sharpe ratio of classical portfolio

& gain = Worst case Sharpe ratio of robust portfolio
Worst case Sharpe ratio of classical portfolio
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Performance as a function of noise variance

ω = 0.95 andD = σ2 diag(VT
0 FV0)
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Comparison of running times

m = d0.1ne, ω = 0.95 andD = σ2 diag(VT
0 FV0)

SeDuMi V1.03 within Matlab6.1 R12 on a Dell Precision workstation running
RedHat 7.1 ... Running times averaged over 100 random instances
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Comparison of running times

m = d0.1ne, ω = 0.95 andD = σ2 diag(VT
0 FV0)

SeDuMi V1.03 within Matlab6.1 R12 on a Dell Precision workstation running
RedHat 7.1 ... Running times averaged over 100 random instances
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Running times are almost identical ... approximately quadratic

MSRI SDP Workshop – p.18



Performance on real market data

Market period: December 31st, 1993 - March 26, 2002

Assets: SP500 index

Factors: DJA, SPX, NDX, RUT, TYX + top few eigenvectors of ΣR
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Performance on real market data

Market period: December 31st, 1993 - March 26, 2002

Assets: SP500 index

Factors: DJA, SPX, NDX, RUT, TYX + top few eigenvectors of ΣR

Experimental procedure:

Data divided into investment periods of length p days

For each period, estimated the asset covariance ΣR and kept “top”
eigenvectors

Estimated V0, µ0,G, ρ and γ over a history h = 4p

Set di = s2i and rf = average T-bill rate

Robust (resp. classical) portfolio φtr (resp. φtm) selected by robust (resp.
classical) Sharpe ratio problem

Portfolio φtr and φtm held constant for period t) and then rebalanced
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Comparison of overall performance

Cumulative daily returns for Robust and Markowitz strategies
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Results averaged over 5 different start times

Need a different p and h for bull/bear periods
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Comparison of overall performance
Two policies: Policy 1: (p = 30, h = 2), Policy 2: (p = 30, h = 4)
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Cumulative daily returns for α = 5
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Comparison over down period

Cumulative daily returns after the SP500 peak: (p = 30, h = 4)
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Markowitz strategy follows the market

The myopic nature is apparent .. returns lurch up/down
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Comparison over down period

Cumulative daily returns after the SP500 peak: Mixed strategy α = 5
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Comparison over down period

Cumulative daily returns after the SP500 peak: Mixed strategy α = 100
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Summary

Replaced point estimates (µ0,V0) by set estimates (Sm, Sv)

This translates to confidence in the performance of the portfolios.
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Summary

Replaced point estimates (µ0,V0) by set estimates (Sm, Sv)

This translates to confidence in the performance of the portfolios.

The robust analog of classical portfolio selection problems are SOCPs

efficient, off-the-shelf solution algorithms available

complexity almost the same as quadratic programming

complexity does not increase when SOC/linear side constraints added

Simulation experiments suggest

robustness does not entail a heavy toll on the mean behavior

robustness especially important when the observations are noisy

Experiments on real market data suggest that returns are sensitive to

Rebalance frequency

Rebalance points

Quality of factors and number eigenvectors

Transaction costs: Cost of robust strategy is slightly larger than Classical strategy
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