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Lagrangian Relaxation of Linear Constraints Az = b

max clfx
st Ar—b o max ¢z 4+ inf (b— Az)Ty
T € conv O zEeconv 2 Yy

regularity assumption (€2 bounded, conv 2 closed)

min f(y) = bTy + max (¢ — ATy)Tx
Y e

For fixed y the inner max should be easy to solve

Often €2 =1 X -+ X 2, then f=fi+ -+ fr

Max over linear functions = f convex

= convex optimization [Hiriart-Urruty Lemaréchal 1993]



Proximal Bundle Method Kiwiel 1990

convex function cutting plane model with g € 9f(y)
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Wish List for a Bundle Method

e general convex functions specified by first order oracle (standard)

e for a sum of convex functions allow the use of separate cutting models
e for Lagrangian relaxation: generate approximate primal solutions

e provide basic building blocks for Lagrangian relaxation

o linear programs over symmetric cones
(bounded feasible sets but “unbounded/free” variables,
exploit block structure)

o network flow, ...

e usSe primal approximations for primal cutting plane algorithms



Convex Function

closed proper convex function f:R* - R
= supremum over its linear minorants M

fly) = sup vi+gly
1EM

Cutting Model
Choose a subset M M

sup i + g/ v < f(y)
1EM
Examples
Finite M: max S &i(vi + gfy)
& >0,> ¢=1 '
: vi = cl'x; : ~
conic LP: ¢ ¢ with z; € Q2 C conv 2, convex, compact
gi = b— Ax;

max a4 (b— Ax)ly
xel2



Quadratic Subproblem
for finite M

. 1 -
min - max vi+g'y + =lly —ill°

Yy ieM &
equivalently

max &y + 979) — 21D &l
s.t. €flfe=1
¢>0.

Need only two: (7,9) = > & (vi,9:) and the new (v, g) of the oracle

Theorem 1 If Argmin f =0 (and ++), [e.g., FK 2000]
the proximal bundle method yields > &gi — 0 and Y &ivi — f«.

Primal Approximation in Lagrangian Relaxation

— I
Yi — C Xy

g =b— Az, for z; € Q (or conv )

> 6igi = b—A(Q &zi) —0O
'S &) — fa

Accumulation points of Y ¢kzf (44) are optimal solutions (for conv )



AN

Quadratic Subproblem for convex compact 2

max clz+ (b— Az)Ty — % 16 — Az||?
st. zeQ

Need only two in the next §+:

e Old subproblem solution = &€ Q
e and a new x € 2 supplied by the oracle

Primal Approximation in Lagrangian Relaxation

Theorem = for an appropriate subsequence
b— AzF — 0

cI'zh — f.

Accumulation points of z*¥ (4+-4) are optimal solutions (for conv )



Sum of Convex Functions

sum of separate models

max Y &(vi+g79) +cTz 4 (b— Ax)TG LY &igi + b — Ax|?
s.t. €fle=1
>0, r € Q.

o > &i(yi+ g79) ideal for
o abstract oracles

o if the primal set is a polytope

e what can we do with Q7



Pointed Closed Convex Cone K

Assume: dd € int K so that

oV ={ve K: d'v=1} is compact (extreme points are generators)

e Mmax,cy clv can be computed efficiently for all c

Suppose the following program has a bounded feasible set,

max clx

s.t. Ax=b
r € {> &uvi: & > 0,v; €V}

Then for given y the oracle reads

mavx (c — ATy)To +bTy
veE

Examples: symmetric cones with d being the trace

° Ri;: d =¢, V is the simplex, oracle returns e; for largest component

e S: d =1, oracle yields Amax(C — ATy)

e SOC: d=(1,0,...,0)T, oracle by “normalizing” (c— ATy)>. .



Symmetric Cone K, bounded trace

max cl'z

s.t. Ax=b relax
dlz <6
r e K } $2

Try to keep generating structure of K in model Q

Q= {z=Y¢ei+&x: Y &+E<6,6>0}

1€L 1€l

with >0, 2 =1, ZC {1,...,n}

S+

n

Q= {X=PVPT4+aW : {I,,V)4+a <4V =0,a>0}

with W = 0, (I, W) =1, and PTP = I, with r small



Second Order Cone

o=(")esoc, & wozl

Make a small model with the same structure

11 0 . T
P_[O B]WlthBB_Ir,rsmall

then ¢ = ( 550 > € SOC,y1 = x = P¢ € SOC,

because zo = &o and ||z|| = || P[] = |||

Build Py = orth(Pyq,z;),
Substitute z = P¢ to keep quadratic subproblem small

Use dTa? = Trog = fo

max (c'P—gTAP)é+ b5 — 2 ||b— APE||?

Ss.t. o < 5_
§o = [[€]|



e catches nonpolyhedral structure

e TWO columns in P suffice to span optimal solution
(NO other aggregate required!) — 3 variables

e larger P might speed up convergence considerably

e need primal information (v;, P) and extra oracle routines
for computing AP, ¢I'P in every iteration

Disadvantage:

e NO possibility to generalize to block structure in one model!
Each block needs an extra & > €,
better use polyhedral approximation or separate models



Block Structure in SDP

Can be handled by the oracle:

C1 — Aty 0 0
C_ .ATy _ 0 Cr — Alby 0
! 0 0 Cr — Alpy

Compute Amax(C; — A%y), use eigenvector v; = (0,...,0,v,0,...,0).

Sort by eigenvalue and return a few of the largest ones.

e ONE semidefinite quadratic model sufficient,
NO need to increase its size

e Disadvantage: a block matrix with many small blocks will need
many evaluations

e Code: block structure as well as several semidefinite models



Can we extend bounded trace to unbounded trace?

we would like to solve the quadratic subproblem

max (c— ATg)z + 75— L ||b — Az|®

S.t. r = ZSZ’UZ
§>0

no theoretical difficulty because of primal boundedness
but practical difficulties: needs infeasible method

(feasible methods have implementational advantages)

Approach: Solve
max (c— AT Tz 4+ 75— L ||b — Az|”

s.t. dfz<$

5’3:2&’%’
§2>0

Whenever d''z > 0.95 . §, double § and resolve.



Remarks:

e Doubling § has to stop after finitely many iterations
because of primal boundedness.

e Can be thought of as a big M method with dynamically increasing M
so as to reduce numerical difficulties

e works reasonably well in practice (dual value jumps up)

e applicable to all proposed cutting models for symmetric cones



Code offers Four Models:
(in all cases primal aggregation is possible)

e convex combinations ef¢ =1

o general convex functions, LP over Boxes
o no primal information required

e conic combinations ef¢ < §

o e.g. for ]R?F or second order cone with blocks
o no primal information required

e A Single Second Order Cone Block

o e.dg. primal quadratic functions or free variables
o full primal information available

e The SDP-model

o single and block structure in one
o partial primal information available

No need to know a bound on the trace as long as the primal feasible
set is bounded!



Free Variables [Jos Sturm]
Splitting into two R4 variables would destroy primal boundedness

— use one “unbounded” second order cone to collect all free variables

Additional Features

e inequality constraints Ax <b [H., Kiwiel]
(can be combined with “unbounded” approach)

e Support for primal cutting plane approaches
(extend old subgradients from primal aggregates)

e Callable library with interfaces for C and C + +
(with STL-Classes only)



Preliminary Computational Results

name opt val ||subg|| # eval time term
toruspm-3-8-50 527.80866 527.80904 8.7-10°3 133 31 ok
bm1l 23.4434 23.4240 1.7-10°3 5964 1:49:26 aug
filter48 1.4161290 1.3451099 2.5.10°3 199 14:31 aug
minphase 5.98 5.67 2.0-107° 18064 2:56 aug
nb_L2 -1.6289720 -1.6289804 2.3.107° 92 1:24 aug
copol4 O 0.10114926 1.8-10°3 4925 11:43:57 kill
sched_50_50_scaled 7.8520384 7.8520214 1.2.107% 709 40:09 ok

Performs well on same classes as before:

e few and large semidefinite and second order cone blocks
e LP over box constraints (0-1 boxes so far; network flow)
e approximate solutions only

Is terribly slow on most of the smaller DIMACS challenge instances:

e cones that are direct products of many small cones
e numerically difficult
e subproblems too expensive for small problems

Strong dependence on many parameters:

e updating rules for weight and bound on trace
e how to split up sums

e how to fix bundle sizes and updating schemes
e starting point heuristics for general problems



The semidefinite feasible set for n =

3
1 = vy

The boundary is given by det| = 1 =z = 0.
y z 1




Main steps

1. Find candidate by solving quadratic model

2. Evaluate function, determine subgradient

3. Decide on
e null step
e descent step

4. Update model and iterate



The Semidefinite Quadratic Model

For fixed slack variable n and center y solve

max (C,X)+ (b—n— AX,§) — &b —n— AX||?

(QSP) s.t. X =PVPT4+aW
trVY+a=a
V>=0,a>0.

e P is an orthonormal matrix, a minimal choice is P = v

e W is a positive semidefinite matrix of trace 1
e.g. last optimal solution of QSP, W = X/n [need only AW, (C,W)]

e X satisfies X > 0 and (I, X)=mn

e The new optimal X' of (QSP) determines the next candidate y+

Theorem 2 [H. 2001]
If the eigenvalue problem has an optimal solution then the algorithm

generates a subsequence K C N so that all cluster points of Yk, ke K,
are primal optimal solutions.

similar to Feltenmark and Kiwiel 2000



Combining the spectral bundle method with cutting planes

Idea: separate with respect to X

Difficulties
e X is ‘never’ feasible for all given constraints
— the same inequalities may be separated again and again

— separation routines can ‘conceal’ certain violated inequalities

What kind of separation oracle do we need?

Is it still possible to guarantee convergence to the optimal solution?



Maximum violation oracle with respect to AX < b:

e returns inequalities from a finite inequality system

<AZ7X>Sb27 iE{l,...,m}

e for a given X the oracle either
o asserts X € P, or

o returns an inequality j € {1,...,m} with
b] — <AJ,7> < miin b; — <Az77> < 0.

[many separation routines satisfy this]



Cutting plane algorithm 1
[for max (C; X) s.t. X e {X >0:([,X) =a}N{X : AX < b}]

1. Solve quadratic model — X

If oracle(X) returns a new inequality, add it and go to 1
2. Evaluate function, determine subgradient

3. Decide on
e null step
e descent step

4. Update model and iterate



Theorem 3 [H. 2001]
If the eigenvalue problem (for all m constraints) has an optimal solution
then the algorithm converges to an optimal solution and generates a

subsequence K C N so that all cluster points of Yk, k € K, are primal
optimal solutions.

Idea:
1. Wait till the oracle adds no more inequalities to index set J (finite)

2. Apply Theorem 2 to problem specified by subsystem J

= there is subsequence K with X' — X7 feasible and optimal for J
= violation — 0 on inequalities J

Maximum violation oracle = all are satisfied for X}

Can we eliminate inactive inequalities during runtime?



Cutting plane algorithm 2
[for max (C; X) s.t. X e {X >0:([,X) =a}N{X : AX < b}]

1. Solve quadratic model — X

If oracle(X) returns a new inequality, add it and go to 1
2. Evaluate function, determine subgradient

3. Decide on
e null step
e descent step: delete inequalities inactive for X

4. Update model and iterate



Theorem 4 [H. 2001]
If the primal has a strictly feasible solution then the upper bound con-
verges to the optimal value and the algorithm generates a subsequence

K C N so that all cluster points onk, k € K, are primal optimal soluti-
ons.

The strictly feasible primal solution ensures boundedness of dual iterates

777 It would be nice to have: If the primal is feasible ...



What I do in practice
1. Solve quadratic model — X
2. Evaluate function, determine subgradient

3. Decide on
e null step

e descent step: if relative error < 0.05
delete inequalities significantly inactive for X
separate for X, add new inequalities.

4. Update model and iterate



Min Bisection:

Find partition (S, S\V) with ‘|S|—|S\V|‘ < on that minimizes
the sum of the weight of edges running between both sets.

(BS) min Z ;g
SCV, IS[=IS\V]|<on  ijes(S)

For an appropriate cost matrix C

max (Q,X)
. T o s.t. dlac%(X) =e .
v e {—1,1}" = <ee ,X> < |on]
(eT)? < |on)? Xz 0
[rank(X) = 1]




Structure of X
puttO1l shutO1
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Results for Min Bisection: KKT-Instances from Boeing o = 0.05

puttO1l heat02 traj33
n = 258, nz = 548 n = 5200, nz = 25056 n = 20006, nz = 261953
SDP-UB: -18.94562 SDP-UB: -9.940345 SDP-UB: -9496.117
S+C-UB: -21.40906 S+C-UB: -9.940555 S+C-UB: -9460.441
S+EC-UB: -27.99941 S+EC-UB: -144.1614 S+EC-UB: -9454.076
LB: -28 LB: -150 LB: -9593
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time in logarithmic scale!



