Towards A Conic Bundle Package for Linear Programming over Symmetric Cones

Christoph Helmberg

University of Kaiserslautern soon: Chemnitz University of Technology

- Lagrangian Relaxation
- Proximal Bundle Method and Wish List
- Convex functions and Cutting Models
- Primal Approximation in Lagrangian Relaxation
- Cutting Models for Linear Programs over Cones
- Preliminary Computational Results

Lagrangian Relaxation of Linear Constraints Ax = b

$$\max_{x \in \operatorname{conv} \Omega} c^T x$$
s.t. $Ax = b$ \Leftrightarrow $\max_{x \in \operatorname{conv} \Omega} c^T x + \inf_y (b - Ax)^T y$

regularity assumption (Ω bounded, conv Ω closed)

$$\min_{y} f(y) = b^T y + \max_{x \in \Omega} (c - A^T y)^T x$$

For fixed y the inner max should be easy to solve

Often $\Omega = \Omega_1 \times \cdots \times \Omega_k$, then $f = f_1 + \cdots + f_k$

Max over linear functions \Rightarrow f convex

⇒ convex optimization [Hiriart-Urruty Lemaréchal 1993]

Proximal Bundle Method

Kiwiel 1990

32.521.50.5-0.50.5-0.5 cutting plane model with $g \in \partial f(\hat{y})$

improve cutting plane model in y^+

Wish List for a Bundle Method

- general convex functions specified by first order oracle (standard)
- for a sum of convex functions allow the use of separate cutting models
- for Lagrangian relaxation: generate approximate primal solutions
- provide basic building blocks for Lagrangian relaxation
 - linear programs over symmetric cones (bounded feasible sets but "unbounded/free" variables, exploit block structure)
 - network flow, ...
- use primal approximations for primal cutting plane algorithms

Convex Function

closed proper convex function $f: \mathbb{R}^n \to \mathbb{R}$

= supremum over its linear minorants \mathcal{M}

$$f(y) = \sup_{i \in \mathcal{M}} \gamma_i + g_i^T y$$

Cutting Model

Choose a subset $\widehat{\mathcal{M}} \subset \mathcal{M}$

$$\sup_{i\in\widehat{\mathcal{M}}} \gamma_i + g_i^T y \qquad \leq f(y)$$

Examples

Finite $\widehat{\mathcal{M}}$: $\xi_i \ge 0, \ \sum \xi_i = 1$ $\sum \xi_i (\gamma_i + g_i^T y)$ conic LP: $\gamma_i = c^T x_i$ $g_i = b - A x_i$ with $x_i \in \widehat{\Omega} \subset \operatorname{conv} \Omega$, convex, compact $\max_{x \in \widehat{\Omega}} c^T x + (b - A x)^T y$

Quadratic Subproblem

for finite $\widehat{\mathcal{M}}$

$$\min_{y} \max_{i \in \widehat{\mathcal{M}}} \gamma_i + g_i^T y + \frac{1}{2} \|y - \widehat{y}\|^2$$

equivalently

$$\begin{array}{ll} \max & \sum \xi_i(\gamma_i + g_i^T \hat{y}) - \frac{1}{2} \| \sum \xi_i g_i \|^2 \\ \text{s.t.} & \xi^T e = 1 \\ & \xi \ge 0. \end{array}$$

Need only two: $(\bar{\gamma}, \bar{g}) = \sum \xi_i^*(\gamma_i, g_i)$ and the new (γ, g) of the oracle

Theorem 1 If Argmin $f \neq \emptyset$ (and ++), [e.g., FK 2000] the proximal bundle method yields $\sum \xi_i g_i \to 0$ and $\sum \xi_i \gamma_i \to f_*$.

Primal Approximation in Lagrangian Relaxation

$$\begin{aligned} \gamma_i &= c^T x_i \\ g_i &= b - A x_i \end{aligned} \quad \text{for } x_i \in \Omega \text{ (or conv } \Omega) \\ \\ \sum \xi_i g_i &= b - A(\sum \xi_i x_i) \to 0 \\ c^T(\sum \xi_i x_i) &\to f_* \end{aligned}$$

Accumulation points of $\sum \xi_i^k x_i^k$ (++) are optimal solutions (for conv Ω)

Quadratic Subproblem for convex compact $\widehat{\Omega}$

$$\begin{array}{ll} \max & c^T x + (b - Ax)^T \widehat{y} - \frac{1}{2} \left\| b - Ax \right\|^2 \\ \text{s.t.} & x \in \widehat{\Omega} \end{array}$$

Need only two in the next $\widehat{\Omega}_+$:

- old subproblem solution $\bar{x}\in\widehat{\Omega}$
- and a new $x \in \Omega$ supplied by the oracle

Primal Approximation in Lagrangian Relaxation

Theorem \Rightarrow for an appropriate subsequence

$$b - A\bar{x}^k \to 0$$
$$c^T \bar{x}^k \to f_*$$

Accumulation points of \bar{x}^k (++) are optimal solutions (for conv Ω)

Sum of Convex Functions

sum of separate models

 $\max \sum_{i=1}^{n} \sum_{i=1}^{n} \xi_{i}(\gamma_{i} + g_{i}^{T}\hat{y}) + c^{T}x + (b - Ax)^{T}\hat{y} - \frac{1}{2} \|\sum_{i=1}^{n} \xi_{i}g_{i} + b - Ax\|^{2}$ s.t. $\xi^{T}e = 1$ $\xi \geq 0, \qquad x \in \widehat{\Omega}.$

- $\sum \xi_i(\gamma_i + g_i^T \hat{y})$ ideal for
 - \circ abstract oracles
 - if the primal set is a polytope
- what can we do with $\widehat{\Omega}?$

Pointed Closed Convex Cone *K*

Assume: $\exists d \in int K$ so that

- $\mathcal{V} = \{v \in K : d^T v = 1\}$ is compact (extreme points are generators)
- $\max_{v \in \mathcal{V}} c^T v$ can be computed efficiently for all c

Suppose the following program has a bounded feasible set,

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \in \{\sum \xi_i v_i : \xi_i \ge 0, v_i \in \mathcal{V}\} \end{array}$$

Then for given y the oracle reads

$$\max_{v \in \mathcal{V}} \quad (c - A^T y)^T v + b^T y$$

Examples: symmetric cones with d being the trace

- \mathbb{R}^n_+ : d = e, \mathcal{V} is the simplex, oracle returns e_i for largest component
- \mathcal{S}_n^+ : d = I, oracle yields $\lambda_{\max}(C \mathcal{A}^T y)$
- SOC: $d = (1, 0, \dots, 0)^T$, oracle by "normalizing" $(c A^T y)_{2\dots n}$

Symmetric Cone *K*, bounded trace

$$\begin{array}{ccc} \max & c^T x \\ \text{s.t.} & Ax = b & \text{relax} \\ & d^T x \leq \delta \\ & x \in K & \end{array} \right\} \quad \Omega$$

Try to keep generating structure of K in model $\widehat{\Omega}$

 \mathbb{R}^n_+ :

$$\widehat{\Omega} = \{ x = \sum_{i \in \mathcal{I}} \xi_i e_i + \overline{\xi} \overline{x} : \sum_{i \in \mathcal{I}} \xi_i + \overline{\xi} \le \delta, \xi \ge 0 \}$$

with $\bar{x}\geq$ 0, $e^T\bar{x}=$ 1, $\mathcal{I}\subset\{1,\ldots,n\}$

 \mathcal{S}_n^+ :

$$\widehat{\Omega} = \{ X = PVP^T + \alpha \overline{W} : \langle I_r, V \rangle + \alpha \leq \delta, V \succeq 0, \alpha \geq 0 \}$$

with $\overline{W} \succeq$ 0, $\left< I, \overline{W} \right> =$ 1, and $P^T P = I_r$ with r small

Second Order Cone

$$x = \begin{pmatrix} x_0 \\ \underline{x} \end{pmatrix} \in \mathsf{SOC}_n \qquad \Leftrightarrow \qquad x_0 \ge \|\underline{x}\|$$

Make a small model with the same structure

$$P = \begin{bmatrix} 1 & 0 \\ 0 & \underline{P} \end{bmatrix} \text{ with } \underline{P}^T \underline{P} = I_r \text{ , } r \text{ small}$$

then $\xi = \begin{pmatrix} \xi_0 \\ \underline{\xi} \end{pmatrix} \in \text{SOC}_{r+1} \Rightarrow x = P\xi \in \text{SOC}_n$

because $x_0 = \xi_0$ and $||\underline{x}|| = ||\underline{P}\underline{\xi}|| = ||\underline{\xi}||$

Build $\underline{P}_{+} = \operatorname{orth}(\underline{P}_{old}, \underline{x}_{i}^{*})$,

Substitute $x = P\xi$ to keep quadratic subproblem small Use $d^T x = x_0 = \xi_0$

$$\max (c^T P - \hat{y}^T A P) \xi + b^T \hat{y} - \frac{1}{2} ||b - A P \xi||^2$$

s.t.
$$\xi_0 \le \delta$$
$$\xi_0 \ge ||\bar{\xi}||$$

- catches nonpolyhedral structure
- TWO columns in <u>P</u> suffice to span optimal solution (NO other aggregate required!) \rightarrow 3 variables
- larger \underline{P} might speed up convergence considerably
- need primal information (v_i, P) and extra oracle routines for computing $A\bar{P}$, $c^T\bar{P}$ in every iteration

Disadvantage:

• NO possibility to generalize to block structure in one model! Each block needs an extra $\xi_0 \ge \overline{\xi}$, better use polyhedral approximation or separate models

Block Structure in SDP

Can be handled by the oracle:

$$C - \mathcal{A}^{T} y = \begin{bmatrix} C_{1} - \mathcal{A}^{T}_{1} y & 0 & 0 \\ 0 & C_{2} - \mathcal{A}^{T}_{2} y & 0 \\ & \ddots & \\ 0 & 0 & C_{k} - \mathcal{A}^{T}_{k} y \end{bmatrix}$$

Compute $\lambda_{\max}(C_i - \mathcal{A}_i^T y)$, use eigenvector $v_i = (0, \dots, 0, v, 0, \dots, 0)$.

Sort by eigenvalue and return a few of the largest ones.

- ONE semidefinite quadratic model sufficient, NO need to increase its size
- Disadvantage: a block matrix with many small blocks will need many evaluations
- Code: block structure as well as several semidefinite models

Can we extend bounded trace to unbounded trace?

we would like to solve the quadratic subproblem

$$\max (c - A^T \hat{y}) x + b^T \hat{y} - \frac{1}{2} ||b - Ax||^2$$

s.t.
$$x = \sum_{\substack{i \geq 0}} \xi_i v_i$$

 $\xi \geq 0$

no theoretical difficulty because of primal boundedness but practical difficulties: needs infeasible method (feasible methods have implementational advantages)

Approach: Solve

$$\max (c - A^T \hat{y})^T x + b^T \hat{y} - \frac{1}{2} ||b - Ax||^2$$

s.t.
$$d^T x \le \delta$$
$$x = \sum_{i} \xi_i v_i$$
$$\xi \ge 0$$

Whenever $d^T x \ge 0.95 \cdot \delta$, double δ and resolve.

Remarks:

- Doubling δ has to stop after finitely many iterations because of primal boundedness.
- Can be thought of as a big M method with dynamically increasing M so as to reduce numerical difficulties
- works reasonably well in practice (dual value jumps up)
- applicable to all proposed cutting models for symmetric cones

Code offers Four Models:

(in all cases primal aggregation is possible)

- convex combinations $e^T \xi = 1$
 - \circ general convex functions, LP over Boxes
 - no primal information required
- conic combinations $e^T\xi\leq\delta$
 - \circ e.g. for \mathbb{R}^n_+ or second order cone with blocks \circ no primal information required
- A Single Second Order Cone Block
 - e.g. primal quadratic functions or free variablesfull primal information available
- The SDP-model
 - \circ single and block structure in one
 - partial primal information available

No need to know a bound on the trace as long as the primal feasible set is bounded!

Free Variables

[Jos Sturm]

Splitting into two \mathbb{R}_+ variables would destroy primal boundedness

 \rightarrow use one ''unbounded'' second order cone to collect all free variables

Additional Features

• inequality constraints $Ax \leq b$ (can be combined with "unbounded" approach) [H., Kiwiel]

- Support for primal cutting plane approaches (extend old subgradients from primal aggregates)
- Callable library with interfaces for C and C + + (with STL-Classes only)

Preliminary Computational Results

name	opt	val	subg	# eval	time	term
toruspm-3-8-50	527.80866	527.80904	$8.7 \cdot 10^{-3}$	133	31	ok
bm1	23.4434	23.4240	$1.7 \cdot 10^{-3}$	5964	1:49:26	aug
filter48	1.4161290	1.3451099	$2.5 \cdot 10^{-3}$	199	14:31	aug
minphase	5.98	5.67	$2.0 \cdot 10^{-5}$	18064	2:56	aug
nb_L2	-1.6289720	-1.6289804	2.3·10 ⁻⁵	92	1:24	aug
copo14	0	0.10114926	$1.8 \cdot 10^{-3}$	4925	11:43:57	kill
sched_50_50_scaled	7.8520384	7.8520214	$1.2 \cdot 10^{-4}$	709	40:09	ok

Performs well on same classes as before:

- few and large semidefinite and second order cone blocks
- LP over box constraints (0-1 boxes so far; network flow)
- approximate solutions only

Is terribly slow on most of the smaller DIMACS challenge instances:

- cones that are direct products of many small cones
- numerically difficult
- subproblems too expensive for small problems

Strong dependence on many parameters:

- updating rules for weight and bound on trace
- how to split up sums
- how to fix bundle sizes and updating schemes
- starting point heuristics for general problems

Main steps

- 1. Find candidate by solving quadratic model
- 2. Evaluate function, determine subgradient
- 3. Decide on
 - null step
 - descent step
- 4. Update model and iterate

The Semidefinite Quadratic Model

For fixed slack variable η and center \hat{y} solve

	max	$\langle C, X \rangle + \langle b - \eta - \mathcal{A}X, \hat{y} \rangle - \frac{1}{2u} \ b - \eta - \mathcal{A}X\ ^2$
(QSP)	s.t.	$X = PVP^{T} + \alpha \overline{W}$ tr V + $\alpha = a$ V > 0, $\alpha > 0$.

- P is an orthonormal matrix, a minimal choice is P = v
- \overline{W} is a positive semidefinite matrix of trace 1 e.g. last optimal solution of QSP, $\overline{W} = \overline{X}/n$ [need only $\mathcal{A}\overline{W}$, $\langle C, \overline{W} \rangle$]

• X satisfies
$$X \succeq 0$$
 and $\langle I, X \rangle = n$

• The new optimal \overline{X}^+ of (QSP) determines the next candidate y^+

Theorem 2 [*H.* 2001]

If the eigenvalue problem has an optimal solution then the algorithm generates a subsequence $K \subseteq \mathbb{N}$ so that all cluster points of \overline{X}^k , $k \in K$, are primal optimal solutions.

similar to Feltenmark and Kiwiel 2000

Combining the spectral bundle method with cutting planes

Idea: separate with respect to \overline{X}

Difficulties

- \overline{X} is 'never' feasible for all given constraints
- \longrightarrow the same inequalities may be separated again and again
- \rightarrow separation routines can 'conceal' certain violated inequalities

What kind of separation oracle do we need?

Is it still possible to guarantee convergence to the optimal solution?

Maximum violation oracle with respect to $AX \leq b$:

• returns inequalities from a finite inequality system

$$\langle A_i, X \rangle \leq b_i, \quad i \in \{1, \dots, m\}$$

• for a given \overline{X} the oracle either

 \circ asserts $\overline{X} \in \mathcal{P}$, or

 \circ returns an inequality $j \in \{1, \dots, m\}$ with $b_j - \langle A_j, \overline{X} \rangle \leq \min_i b_i - \langle A_i, \overline{X} \rangle < 0.$

[many separation routines satisfy this]

Cutting plane algorithm 1

[for max $\langle C, X \rangle$ s.t. $X \in \{X \succeq 0 : \langle I, X \rangle = a\} \cap \{X : \mathcal{A}X \leq b\}$]

1. Solve quadratic model $\longrightarrow \overline{X}$

If $oracle(\overline{X})$ returns a <u>new</u> inequality, add it and go to 1

- 2. Evaluate function, determine subgradient
- 3. Decide on
 - null step
 - descent step
- 4. Update model and iterate

Theorem 3 [H. 2001]

If the eigenvalue problem (for all m constraints) has an optimal solution then the algorithm converges to an optimal solution and generates a subsequence $K \subseteq \mathbb{N}$ so that all cluster points of \overline{X}^k , $k \in K$, are primal optimal solutions.

Idea:

1. Wait till the oracle adds no more inequalities to index set J (finite)

2. Apply Theorem 2 to problem specified by subsystem J

 \Rightarrow there is subsequence K with $\overline{X}^k \to X_J^*$ feasible and optimal for J

 \Rightarrow violation \rightarrow 0 on inequalities J

Maximum violation oracle \Rightarrow all are satisfied for X_J^*

Can we eliminate inactive inequalities during runtime?

Cutting plane algorithm 2

[for max $\langle C, X \rangle$ s.t. $X \in \{X \succeq 0 : \langle I, X \rangle = a\} \cap \{X : \mathcal{A}X \leq b\}$]

1. Solve quadratic model $\longrightarrow \overline{X}$

If $oracle(\overline{X})$ returns a <u>new</u> inequality, add it and go to 1

- 2. Evaluate function, determine subgradient
- 3. Decide on
 - null step
 - descent step: delete inequalities inactive for \overline{X}
- 4. Update model and iterate

Theorem 4 [H. 2001]

If the primal has a strictly feasible solution then the upper bound converges to the optimal value and the algorithm generates a subsequence $K \subseteq \mathbb{N}$ so that all cluster points of \overline{X}^k , $k \in K$, are primal optimal solutions.

The strictly feasible primal solution ensures boundedness of dual iterates

??? It would be nice to have: If the primal is feasible ...

What I do in practice

- 1. Solve quadratic model $\longrightarrow \overline{X}$
- 2. Evaluate function, determine subgradient
- 3. Decide on
 - null step
 - descent step: if relative error ≤ 0.05 delete inequalities significantly inactive for \overline{X} separate for \overline{X} , add new inequalities.
- 4. Update model and iterate

Min Bisection:

Find partition $(S, S \setminus V)$ with $||S| - |S \setminus V|| \le \sigma n$ that minimizes the sum of the weight of edges running between both sets.

(BS)
$$\min_{S \subseteq V, ||S| - |S \setminus V|| \le \sigma n} \sum_{ij \in \delta(S)} a_{ij}$$

For an appropriate cost matrix C

$$\max_{\substack{x \in \{-1,1\}^n \\ (e^T x)^2 \leq \lfloor \sigma n \rfloor^2}} x^T C x \leq \max_{\substack{x \in C, X \\ \text{s.t. } \text{diag}(X) = e \\ \langle ee^T, X \rangle \leq \lfloor \sigma n \rfloor^2 \\ X \succeq 0 \\ [\text{rank}(X) = 1]}$$

Structure of *X*

putt01

shut01

time in logarithmic scale!