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Goal

• Introduce a new concept of solution for robust convex programs
(RCP), in a probabilistic setting.

• Show that RCPs can be efficiently ‘solved’, within this framework.

• Analyze issues of complexity and reliability for the computed solution.

• Discuss some numerical examples.
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Introduction

• Many engineering problems can be cast as optimization problems sub-
ject to convex constraints that need to be satisfied for all possible
values of some unknown-but-bounded parameters.

• The usual solution approach is to transform the original semi-infinite
optimization problem into a standard convex optimization one, by
means of relaxation techniques.

• The feasible set of the relaxed problem is in general an inner approx-
imation of the original feasible set, and therefore an upper bound on
the actual optimal solution is obtained.
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Introduction

• In this talk, we present an alternative randomized approach: by ran-
domly sampling the uncertain parameters, we substitute the original
infinite constraint set with a finite set of N constraints, and solve the
resulting problem.

• Using statistical learning techniques, we provide an explicit bound on
the measure (probability or volume) of the original constraints that
are possibly violated by the randomized solution. This volume rapidly
decreases to zero as N is increased.
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Robust Convex Optimization

RCP: min
x∈Rn

cTx subject to x ∈ X ∩ Ω,

- X is a closed convex subset in Rn with non-empty interior

- Ω ⊂ Rn can be expressed as the (usually infinite) intersection of convex
sets

Ω
.
=

⋂
δ∈∆⊂R�

{x : f(x, δ) ≤ 0}

- f(x, δ) : X ×∆ → Rp is convex in x, and the inequality is to be intended
element-wise

- RCP is still convex
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Robust Convex Optimization

Examples:

• Robust Linear Programs

min
x∈Rn

cTx subject to

A(δ)x ≤ b(δ), ∀δ ∈ ∆,

where A(δ) ∈ Rm,n.

• Robust Semidefinite Programs

min
x∈Rn

cTx subject to

F0(δ) +
n∑

i=1

xiFi(δ) ≺ 0, ∀δ ∈ ∆, Fi = F T
i .
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Robust Convex Optimization

Solution Techniques:

• General RCPs are numerically hard to solve

• In some (rare) cases, RCPs are reducible to standard convex programs,
and hence solved exactly

• In some cases, RCPs admit efficiently computable convex relaxations
(i.e. an upper bound on the optimal objective is minimized)

• For general uncertainty structures entering non-linearly the data: no
efficient method (or potentially conservative methods).
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An Alternative

The probabilistic setting.

- Assume that a probability density (pdf) pδ(δ) is defined over the sup-
port ∆.

- Let x ∈ X be a candidate solution, and define

The probability of violation of x

V (x)
.
= Prob{δ ∈ ∆ : f(x, δ) > 0}.

For instance, if the uniform density is assumed on ∆, then V (x)
measures the volume of ‘bad’ parameters δ such that the constraint
f(x, δ) ≤ 0 is violated.

- Our goal is to devise an algorithm that returns with high probability a
candidate solution having a small associated probability of violation.
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The Probabilistic Setting

ε-level solutions.

Definition. Let ε ∈ [0,1]. We say that x ∈ X is an ε-level robustly feasible
solution for RCP, with respect to the pdf pδ(δ), if V (x) ≤ ε.

Randomized RCP.

N iid samples δ(1), . . . , δ(N) are drawn according to pδ(δ). Consider the
convex optimization problem

R̃CPN : minx∈Rn cTx subject to
x ∈ X
f(x, δ(i)) ≤ 0, i = 1, . . . , N

x̂N : a corresponding optimal solution.
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The Probabilistic Setting

• x̂N is the outcome of a random experiment (it depends on the extrac-
tion δ(1), . . . , δ(N)), i.e. it is a random variable

• By definition, a randomized algorithm returns a ‘solution’ not always,
but with high probability

• Next key theorem states that, for given ε > 0, and pre-specified suc-
cess probability, if a sufficient number of samples is used, then R̃CPN

returns an ε-level optimal solution.
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Main Result

Theorem.

Let level ε ∈ [0,1] and β ∈ [0,1] be given, and let

N ≥ 1 +
n

εβ
.

Then, with probability greater than 1 − β, the ran-

domized optimization problem R̃CPN returns an

optimal solution x̂N which is ε-level robustly feasi-

ble for RCP.
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Preliminaries and sketch of proof

Support constraints.

• Consider a convex problem P in ϑ ∈ Rd

P : min s(ϑ) subject to
ϑ ∈ Xi, i = 1, . . . , m,

where s(ϑ) is a linear objective, and Xi, i = 1, . . . , m are closed convex
sets.

• Let Pk, k = 1, . . . , m be obtained from P, removing the k-th constraint

Pk : min s(ϑ) subject to
ϑ ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . , m.

Let ϑ∗ be optimal for P, and ϑ∗
k be optimal for Pk.

• We say that the k-th constraint Xk is a support constraint for P, if Pk

has an optimal solution ϑ∗
k such that s(ϑ∗

k) < s(ϑ∗).

Theorem.

The number of support constraints for problem P is at most d.
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θ*

s(θ)=s(θ
∗)

s(θ)<s(θ
∗ )

θ1
*

θ2
*

θ3
*



Intuitive Example
Minimum radius sphere containing given points

Case a)

# of vars.: d=3
# of constraints: m=9
# of active constraints: 3
# of support constraints: 2 



Case b)

# of vars.: d=3
# of constraints: m=9
# of active constraints: 3
# of support constraints: 3

Case c)

# of vars.: d=3
# of constraints: m=9
# of active constraints: 7
# of support constraints: 0 



Idea of proof of main result

• Use leave-one-out estimation technique using N + 1 samples
z(1), . . . , z(N+1) extracted according to pδ(δ)

• V (x̂N) is a r.v. belonging to [0,1]. Let

V̄N
.
= EpN

δ
[V (x̂N)],

ˆ̄V N
.
=

1

N + 1

N+1∑
k=1

{
1, if f(x̂k

N, z(k)) > 0
0, otherwise.

• Since there are at most n points x̂k
N such that the constraints are

violated, it follows that

ˆ̄V N ≤ n

N + 1

• We prove that V̄N = EpN+1
δ

[ ˆ̄V N ], and therefore

V̄N ≤ n

N + 1

• The result follows using a standard bound involving expected value
and tail probability
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A-priori and a-posteriori probabilities

A-priori assessments.

- Before running the optimization, it is guaranteed by main Theorem
that if N ≥ 1+n/εβ samples are drawn, the solution of the randomized
program will be ε-level robustly feasible, with probability greater than
1 − β.

- However, the a-priori levels ε, β are generally chosen not too small,
for technological reasons related to limitations on the number of con-
straints that one specific optimization software can deal with
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A-priori and a-posteriori probabilities

A-posteriori assessments.

- After a candidate solution x̂N is computed, one can assess the proba-
bility of feasibility using for instance Monte-Carlo techniques

- Generate a new batch of Ñ independent random samples of δ ∈ ∆,
and simply construct the empirical probability of constraint violation,
say V̂Ñ(x̂N).

Then, the classical Chernoff inequality guarantees that

|V̂Ñ(x̂N) − V (x̂N)| ≤ ε̃

holds with confidence greater than 1 − β̃, provided that

Ñ ≥ log 2/β̃

2ε̃2

test samples are drawn.
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Numerical Examples

Robust linear programs (1/3).

- For comparison purposes, consider a robust LP that admits an exact
solution

- In particular, assume that each row aT
i (δ) of A(δ) belongs to an ellip-

soid, i.e.

ai(δ) = âi + Eiδi, ‖δi‖ ≤ 1, i = 1, . . . , m,

δ = [δT
1 · · · δT

m]T ∈ Rmn.

- Notice that the constraint aT
i (δ)x ≤ bi holds for all δ ∈ ∆ if and only if

max
‖δi‖≤1

âT
i x + δT

i Eix ≤ bi,

which in turn holds, if and only if âT
i x + ‖Eix‖ ≤ bi.
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Numerical Examples

Robust linear programs (2/3).

- Therefore, this robust linear program has an exact reformulation as
the second order cone program (SOCP)

min
x∈Rn

cTx subject to

âT
i x + ‖Eix‖ ≤ bi, i = 1, . . . , m.

- To pursue the randomized approach, we assume that each vector
δi is uniformly distributed over the ball ‖δi‖ ≤ 1, and for fixed ε, β we
determine N according to our bound, and draw N samples δ(i), . . . , δ(N).

- The randomized counterpart of the problem is therefore the linear
program

min
x∈Rn

cTx subject to

A(δ(i))x ≤ b, i = 1, . . . , N.
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Numerical Examples

Robust linear programs (3/3).

- Consider the following numerical data

A(δ) =




−1 0
0 −1
1 0
0 1


 + 0.2




δT
1

δT
2

δT
3

δT
4


 , ‖δi‖ ≤ 1, i = 1, . . . ,4

and b =
[

0 0 1 1
]T

, c = − [
1 1

]
.

- The exact robust solution is

x∗ = [0.7795 0.7795]T

- For the randomized counterpart, we selected probabilistic levels ε =
β = 0.01, which requires N = 20,001 randomized constraints.

- The resulting linear program was readily solved on a PC using Matlab
LP, yielding the solution

x̂N = [0.7796 0.7798]T
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Numerical Examples

Robust least-squares (1/5).

- We considered an example of robust polynomial interpolation borrowed
from El Ghaoui & Lebret, SIMAX 18(4), 1997.

- For given integer n ≥ 1, we seek a polynomial of degree n − 1, p(t) =
x1 + x2t + · · · + xntn−1 that interpolates m given points (ai, yi), i =
1, . . . , m, that is

p(ai) = yi, i = 1, . . . , m.

- If the data values (ai, yi) were known exactly, we obtain a linear equa-
tion in the unknown x, with Vandermonde structure

 1 a1 · · · an−1
1... ... ...

1 am · · · an−1
m





 x1

...
xn


 =


 y1

...
ym




which can be solved via standard least-squares.
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Numerical Examples

Robust least-squares (2/5).

- Now assume that the interpolation points are not known exactly. For
instance, assume interval uncertainty on the abscissae

ai(δ) = ai + δi, i = 1, . . . , m,

where δi ∈ [−ρ, ρ], i.e.

∆ = {δ = [δ1, . . . , δm]T : ‖δ‖∞ ≤ ρ}.

- We seek an interpolant that minimizes the worst-case interpolation
error, i.e.

x∗ = argmin
x∈Rn

max
δ∈∆

‖A(δ)x − y‖2,

where

A(δ) =


 1 a1(δ) · · · an−1

1 (δ)
... ... ...
1 am(δ) · · · an−1

m (δ)


 .
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Numerical Examples

Robust least-squares (3/5).

- The min-max problem can be cast as RCP

min
x∈Rn,γ

γ subject to

‖A(δ)x − y‖2 ≤ γ, ∀δ ∈ ∆.

- It is not known how to solve this exactly in polynomial time, but
it is possible to efficiently minimize an upper bound on the optimal
worst-case residual via semidefinite programming, as it is shown in (El
Ghaoui & Lebret).

- Consider the numerical data

(a1, y1) = (1,1), (a2, y2) = (2,−0.5), (a3, y3) = (4,2),

with uncertainty level ρ = 0.2.
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Numerical Examples

Robust least-squares (4/5).

- The semidefinite relaxation approach yields a sub-optimal solution with
worst-case (guaranteed) residual error equal to 1.1573.

- To apply our randomized approach, we assumed uniform distribution
for the uncertain parameters, and selected probabilistic levels ε = β =
0.1, which requires N = 401 random samples of δ.

- The randomized counterpart of the problem can be expressed as the
following semidefinite program

min
x∈Rn,γ

γ subject to[
γ (A(δ(i))x − y)T

(A(δ(i))x − y) I

]
� 0, i = 1, . . . , N.

This was easily solved on a PC using standard SDP software, and
yielded the solution x̂N = [3.7539 − 3.5736 0.7821]T , with corre-
sponding residual equal to 0.6993.
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Numerical Examples

Robust least-squares (4/4).

- The obtained performance level (residual) makes a ∼ 40% improve-
ment upon the one resulting from the deterministic semidefinite re-
laxation approach

- Of course, this improvement comes at some cost: the computed resid-
ual is not guaranteed against all possible uncertainties, but only for
most of them.

- Running an a-posteriori Monte-Carlo test with Ñ = 1 × 106, we ob-
tained an estimated violation probability V̂Ñ(x̂N) = 0.0042.

- By the Chernoff bound, we are 99.99% confident that the actual
violation probability is close to the estimated one, up to ε̃ = 0.002.

- In conclusion, the randomized program yielded a solution which pro-
vides a 40% performance improvement in residual error, at the expense
of a maximum 0.6% risk of constraint violation.
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Conclusions

- A new(?) probabilistic concept in robust convex programming: the
ε-level solution

- The approach is based on the assumption that the variable δ that
parameterizes the constraint family is a random variable with assigned
distribution

- A randomized version R̃CP N of the robust problem returns an ε-level
solution with high probability, provided that a sufficient number N of
samples is drawn

- We provide an ‘efficient’ bound for N , which scales linearly with the
problem dimension n, and it is inversely proportional to the product
of the probability levels εβ

- In contrast to the NP-hardness results for deterministic robust convex
programs, once a small risk of failure is accepted, any robust convex
program can be solved efficiently in the ε-level sense by a randomized
algorithm, no matter the way in which the uncertainty enters the data.
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