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goal

• connection between classification and LP, convex QP has a long
history (Vapnik, Mangasarian, Bennett, etc)

• recent progresses in convex optimization: conic and semidefinite

programming; geometric programming; robust optimization

• we’ll outline some connections between (robust) convex
optimization and classification problems

joint work with: M. Jordan, P. Bartlett, N. Cristianini, G. Lanckriet,

C. Bhattacharrya
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outline

¤ convex optimization

• SVMs and robust linear programming

• minimax probability machine

• learning the kernel matrix
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convex optimization

standard form:

min
x

f0(x) : fi(x) ≤ 0, i = 1, . . . ,m

• arises in many applications

• convexity not always recognized in practice

• can solve large classes of convex problems in polynomial-time
(Nesterov, Nemirovski, 1990)
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conic optimization

special class of convex problems:

min
x

cTx : Ax = b, x ∈ K

where K is a cone, direct product of the following ”building blocks”:

K = Rn
+ linear programming

K = {(y, t) ∈ Rn+1 : t ≥ ‖y‖2} second-order cone programming,

quadratic programming

K = {x ∈ Rn×n : x = xT º 0} semidefinite programming

fact: can solve conic problems in polynomial-time

(Nesterov, Nemirovski, 1990)
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conic duality

dual of conic problem

min
x

cTx : Ax = b, x ∈ K

is

max
y

bT y : c−AT y ∈ K∗

where

K∗ = {z : 〈z, x〉 ≥ 0 ∀ x ∈ K}
is the cone dual to K

for the cones mentioned before, and direct products of them, K = K∗
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robust optimization

conic problem in dual form: maxy bT y : c−AT y ∈ K

→ what if A is unknown-but-bounded, say A ∈ A, where A is given?

robust counterpart: maxy bT y : ∀A ∈ A, c−AT y ∈ K

• still convex, but tractability depends on A

• systematic ways to approximate (get lower bounds)

• for special classes of A, approximation is exact
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example: robust LP

linear program: minx cTx : aTi x ≤ b, i = 1, . . . ,m

assume ai’s are unknown-but-bounded in ellipsoids

Ei :=
{

a : (a− âi)
TΓ−1i (a− âi) ≤ 1

}

where âi: center, Γi Â 0: ”shape matrix”

robust LP: minx cTx : ∀ ai ∈ Ei, aTi x ≤ b, i = 1, . . . ,m
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robust LP: SOCP representation

robust LP equivalent to

min
x

cTx : âTi x+ ‖Γ1/2i x‖2 ≤ b, i = 1, . . . ,m

→ a second-order cone program!

interpretation: smoothes boundary of feasible set
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LP with Gaussian coefficients

assume a ∼ N (â,Γ), then for given x,

Prob{aTx ≤ b} ≥ 1− ε

is equivalent to:

âTx+ κ‖Γ1/2x‖2 ≤ b

where κ = Φ−1(1− ε) and Φ is the c.d.f. of N (0, 1)

hence,

• can solve LP with Gaussian coefficients using second-order

cone programming

• resulting SOCP is similar to one obtained with ellipsoidal
uncertainty
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LP with random coefficients

assume a ∼ (â,Γ), i.e. distribution of a has mean â and covariance
matrix Γ, but is otherwise unknown

Chebychev inequality:

Prob{aTx ≤ b} ≥ 1− ε

is equivalent to:

âTx+ κ‖Γ1/2x‖2 ≤ b

where

κ =

√

1− ε

ε

leads to SOCP similar to ones obtained previously
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outline

• convex optimization

¤ SVMs and robust linear programming

• minimax probability machine

• kernel optimization
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SVMs: setup

given data points xi with labels yi = ±1, i = 1, . . . , N
two-class linear classification with support vector:

min ‖a‖2 : yi(a
Txi − b) ≥ 1, i = 1, . . . , N

• problem is feasible iff there exists a separating hyperplane between
the two classes

• if so, amounts to select one separating hyperplane among the

many possible
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SVMs: robust optimization interpretation

interpretation: SVMs are a way to handle noise in data points

• assume each data point is unknown-but-bounded in a sphere of
radius ρ and center xi

• find the largest ρ such that separation is still possible between the
two classes of perturbed points
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variations

can use other data noise models:

• hypercube uncertainty (gives rise to LP)

• ellipsoidal uncertainty (→ QP)

• probabilistic uncertainty, Gaussian or Chebychev (→ QP)
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separation with hypercube uncertainty

assume each data point is unknown-but-bounded in an hypercube Ci:

xi ∈ Ci := {x̂i + ρPu : ‖u‖∞ ≤ 1}

where centers x̂i and ”shape matrix” P are given

robust separation:

leads to linear program

min ‖Pa‖1 : yi(a
T x̂i − b) ≥ 1, i = 1, . . . , N
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separation with ellipsoidal uncertainty

assume each data point is unknown-but-bounded in an ellipsoid Ei:

xi ∈ Ei := {x̂i + ρPu : ‖u‖2 ≤ 1}

where center x̂i and ”shape matrix” P are given

robust separation leads to QP

min ‖Pa‖2 : yi(a
T x̂i − b) ≥ 1, i = 1, . . . , N
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outline

• convex optimization

• SVMs and robust linear programming

¤ minimax probability machine

• kernel optimization
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minimax probability machine

goal:

• make assumptions about the data generating process

• do not assume Gaussian distributions

• use second-moment analysis of the two classes

let x̂±,Γ± be the mean and covariance matrix of class y = ±1

MPM: maximize ε such that there exists (a, b) such that

inf
x∼(x̂+,Γ+)

Prob{aTx ≤ b} ≥ 1− ε

inf
x∼(x̂−,Γ−)

Prob{aTx ≥ b} ≥ 1− ε
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MPMs: optimization problem

→ two-sided, multivariable Chebychev inequality:

inf
x∼(x̂,Γ)

Prob{aTx ≤ b} = (b− aT x̂)2+
(b− aT x̂)2+ + aTΓa

MPM problem leads to second-order cone program:

min
a
‖Γ1/2+ a‖2 + ‖Γ1/2− a‖2 : aT (x̂+ − x̂−) = 1

complexity is the same as standard SVMs
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link with Fisher discriminant analysis

Fisher’s discriminant analysis (FDA) solves

min
a
‖Γ1/2+ a‖22 + ‖Γ1/2− a‖22 : aT (x̂+ − x̂−) = 1

• reduces to a (linearly constrained) least-squares problem (hence,
widely used)

• no clear way to compute the ”bias” term b

• no clear probabilistic interpretation of FDA

• MPM approach has same complexity
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dual problem

express problem as unconstrained min-max problem:

min
a

max
‖u‖2≤1, ‖v‖2≤1

uTΓ
1/2
+ a− vTΓ

1/2
− a+ λ(1− aT (x+ − x−))

exchange min and max, and set κ := 1/λ:

min
κ,u,v

ρ : x+ + Γ
1/2
+ u = x− + Γ

1/2
− v, ‖u‖2 ≤ κ, ‖v‖2 ≤ κ
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robust optimization interpretation

assume data with label + generated arbitrarily in ellipsoid

x+ ∈ E+(ρ) :=
{

x̂+ + Γ
1/2
+ u : ‖u‖2 ≤ ρ

}

and similarly for data with label −

MPM finds largest ρ for which robust separation is possible

PSfrag replacements
aTx− b = 0

x̂+

x̂−
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geometric interpretation

define the two ellipsoids

E±(ρ) :=
{

x̂± + Γ
1/2
± u : ‖u‖2 ≤ κ

}

and find largest κ for which ellipsoids intersect
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problem amounts to minimize the maximum of the Mahalanobis

distances to the two classes

κ∗ = min
z
max

(

‖Γ−1/2+ (z− x̂+)‖2, ‖Γ−1/2− (z− x̂−)‖2
)

.

optimal upper bound on misclassification error: 1− α∗ = 1/(1 + κ2∗)
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robustness to estimation errors

in practice, the first and second moment of the classes have to be

estimated . . .

how does this affect the MPM classifier?

we will seek an MPM classifier that is robust to estimation errors
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robust MPM

assume that the first- and second- moment of each class are only

known with bounds

robust MPM: maximize ε such that there exists (a, b) such that

inf
x∼(x̂+,Γ+)

Prob{aTx ≤ b} ≥ 1− ε

inf
x∼(x̂−,Γ−)

Prob{aTx ≥ b} ≥ 1− ε

for every (x̂±,Γ±) in X±

here, X± describe our uncertainty about the moments

26



a specific uncertainty model

we assume that X± have the form

X =
{

(x̂,Γ) : (x̂− x̂0)
TΓ−1(x̂− x̂0) ≤ ν2, ‖Γ− Γ0‖ ≤ ρ

}

,

where x̂0,Σ0 and ν, ρ are given

• model inspired by maximum-likelihood approaches to moment
estimation (under Gaussian assumptions)

• refined models possibles (cf. Iyengar & Goldfarb, 2001)
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robust MPM

main result:

• the optimal robust minimax probability classifier with uncertainty
setsX± can be obtained by solving the original MPM problem,

with Γ± = Γ
0
± + ρ±In, and x̂± = x̂0±

• if κ−1∗ is the optimal value of that problem, the corresponding

upper bound on the worst-case misclassification error is

1− αrob∗ =
1

1 +max(0, (κ∗ − ν))2
.

bottom line: errors in covariance matrices are handled by

regularization, while errors in the mean affect the misclassification

probability
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robustness: geometric interpretation
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experimental results

α and test-set accuracy (TSA) compared to BPB (best performance in

Breiman, 1996) and to the performance of an SVM with linear kernel

(SVML) and an SVM with Gaussian kernel (SVMG):

Dataset Linear kernel Gaussian kernel BPB SVML SVMG

α TSA α TSA

Twonorm 80.2 % 96.0 % 83.6 % 97.2 % 96.3 % 95.6 % 97.4 %

Breast cancer 84.4 % 97.2 % 92.7 % 97.3 % 96.8 % 92.6 % 98.5 %

Ionosphere 63.3 % 85.4 % 89.9 % 93.0 % 93.7 % 87.8 % 91.5 %

Pima diabetes 31.2 % 73.8 % 33.0 % 74.6 % 76.1 % 70.1 % 75.3 %

Sonar 62.4 % 75.1 % 87.1 % 89.8 % - 75.9 % 86.7 %
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variations

• minimize weighted sum of misclassification probabilities

• quadratic separation: find a quadratic set such that

inf
x∼(x̂+,Γ+)

Prob{x ∈ Q} ≥ 1− ε

inf
x∼(x̂−,Γ−)

Prob{x 6∈ Q} ≥ 1− ε

→ leads to a semidefinite programming problem (see

Vandenberghe, 2002)

• nonlinear classification via kernels
(using plug-in estimates of mean and covariance matrix)
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outline

• convex optimization

• SVMs and robust linear programming

• minimax probability machine

¤ learning the kernel matrix
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transduction

the data contains both

• labeled points (training set)

• unlabeled points (test set)

transduction: given labeled training set and unlabeled test set,

predict the labels on the test set
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kernel methods

main goal: separate using a nonlinear classifier

aTφ(x) = b

where φ is a nonlinear operator

define the kernel matrix

Kij = φ(xi)
Tφ(xj)

(involves both labeled and unlabeled data)

fact: for transduction, all we need to know to predicts the labels is

the kernel matrix (and not φ(·) itself!)
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kernel methods: idea of proof

at the optimum, a is in the range of the labeled data:

a =
∑

i

λixi

=⇒ solution of classification problem depends only on the values of

kernel matrix Kij for labeled points xi, xj

in a transductive setting, the prediction of labels also involves Kij

only, since for an unlabeled data point xj ,

aTφ(xj) =
∑

i

λiφ(xi)
Tφ(xj)

involves only Kij ’s

fact: all previous algorithms can be ”kernelized”
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partition training/test

in a transductive setting, we can partition the kernel matrix as follows:

K =





Ktr,tr Ktr,t

KT
tr,t Kt,t





where subscripts tr and t stand for ”training” and ”test”, respectively
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kernel optimization

what is a ”good” kernel?

• margin: kernel ”behaves well” on the training data,

→ condition on the matrix Ktr,tr

• test error: kernel yields low predicted error

→ condition on the full matrix K

• also, to prevent overfitting, the blocks in K should be ”entangled”

→ will restrict the search space with affine constraint
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kernel optimization and semidefinite programming

main idea: kernel can be described via the Gram matrix of data points,

hence is a positive semidefinite matrix

→ semidefinite programming plays a role in kernel optimization
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margin of SVM classifier

kernel-based SVM problem for labeled data points:

min
a,b

‖a‖2 subject to yi(aTφ(xi) + b) ≥ 1, i = 1, . . . , N

(classifier depends only on training set block of kernel matrix Ktr)

margin of optimal classifier is γ = 1/‖a∗‖2

geometrically:

γ−1 = distance between the convex hulls of the two classes

(can work with ”soft” margin when data is not linearly separable)
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generalization error

how well the SVM classifier will work on the test set?

from learning theory (Bartlett, Rademacher), generalization error is

bounded above by √
TrK

γ(Ktr)

where γ(Ktr) is the margin of the SVM classifier with training set

block kernel matrix Ktr

hence, the constraints

TrK = c, γ(Ktr)
−1 ≤ w

ensure an upper bound on the generalization error
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margin constraint

using a dual expression for the SVM problem, margin constraint

γ(Ktr) ≥ γ

writes as LMI (linear matrix inequality) in K




G(Ktr) e+ ν + λ · y
(e+ ν + λ · y)T γ−1



 º 0

where

• G(Ktr) is linear in Ktr

• e = vector of ones

• λ, ν are new variables
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avoiding overfitting

the trace constraint TrK = c is not enough to ”entangle” the matrix

K

we impose an affine constraint on K of the form

K =
∑

i

µiKi

where Ki’s correspond to given different, known kernels and µi’s will

be our new variables
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optimizing kernels: example problem

goal: find a kernel matrix that

• is positive semidefinite and has a given trace

K º 0, TrK = c

• belongs to an affine space (here Ki’s are known)

K =
∑

i

µiKi

• satisfies a lower bound γ on the margin on the training set, γ(Ktr)

the problem reduces to a semidefinite programming feasibility problem
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experimental results

K1 K2 K3 K∗

Breast cancer d = 2 σ = 0.5

margin 0.010 0.136 - 0.300

TSE 19.7 28.8 11.4

Sonar d = 2 σ = 0.1

margin 0.035 0.198 0.006 0.352

TSE 15.5 19.4 21.9 13.8

Heart d = 2 σ = 0.5

margin - 0.159 - 0.285

TSE 49.2 36.6

44



wrap-up

• convex optimization has much to offer and gain from interaction
with classification

• described variations on linear classification

• many robust optimization interpretations

• all these methods can be kernelized

• kernel optimization has high potential
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see also

• Learning the kernel matrix with semidefinite programming
Lanckiert, Cristianini, Bartlett, El Ghaoui, Jordan (ICML 2002)

• Minimax Probability Machine
(Lanckiert, Bhattacharrya, El Ghaoui, Jordan) (NIPS 2001)

• Robust Novelty Detection with Single-Class MPM
Lanckriet, El Ghaoui, Jordan, (NIPS 2002)
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