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� Pure spectral functions
� Pseudo-spectral functions
� Distance to instability and H∞ norm
� Variational properties
� Optimization over parameters
� A gradient sampling algorithm
� Applications, including static output feedback 

and low-order controllers
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Pure Spectral Functions

Functions of the form:         φ o Λ
where Λ maps a matrix to its spectrum:

Λ(A) = {z:  σmin(A - z I) = 0}
Here σmin means smallest singular value.
The elements of Λ(A) are eigenvalues of A.

Important examples:
Spectral abscissa α = (max Re) o Λ
Spectral radius     ρ = (max mod) o Λ



Pure Spectral Modeling

� Pure spectral functions model asymptotic behavior
� The spectral abscissa models asymptotic growth/decay 

of the solutions of continuous time dynamical systems
� E.g:             z´(t) = A z(t),  z(0) = z0

� Solution:     z(t) = exp(t A) z0

� Norm:     ||z(t)|| / exp(γ t) → 0 for all γ > α(A)
� Stable if   α(A) < 0
� The spectral radius models asymptotic growth/decay of 

the solutions of discrete time dynamical systems
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Pseudo-Spectral Functions

Functions of the form:         φ o Λε

where Λε maps a matrix to its pseudo-spectrum:
Λε(A) = {z: σmin (A - zI) ≤ ε}

or equivalently (Trefethen)
Λε(A) = {z: σmin(B - zI) =0, for a B with ||B-A|| ≤ ε}
The points in Λε(A) are pseudo-eigenvalues of A.
Important examples:

Pseudo-spectral abscissa αε = (max Re) o Λε

Pseudo-spectral radius    ρε = (max mod) o Λε
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Pseudo-Spectral Modeling
� Pseudo-spectral functions model worst-case

asymptotic behavior in nearby matrices
� Equivalently, they model transient behavior  

(can be quantified by the Kreiss matrix theorem)

 The Pseudo-Spectral GUI (T. Wright)
� Example due to Demmel: An upper triangular 

matrix with constant diagonal�





Distance to Instability δ
� Let A be a stable matrix, so α(A) < 0
� Its distance to instability δ(A) is the largest  ε

such that αε (Α) ≤ 0

� Equivalently, is the largest  ε such that
α(A + E) ≤ 0 for all E with ||E|| ≤ ε

� AKA �complex stability radius�
� AKA inverse of H∞ norm of corresponding 

transfer matrix



Well known Equivalent Properties

� The pseudo-spectral abscissa αε (Α) <  0
� The spectral abscissa α(A) < 0 and the distance to instability 

δ(A) < ε  (that is, H∞ norm > 1 / ε )
� The spectral abscissa α(A) < 0 and the Hamiltonian matrix

− A∗ ε Ι
−ε Ι       Α

has no imaginary eigenvalue
� There exist positive reals µ and λ and a positive definite 

Hermitian matrix P such that 
A P + P A∗ + (λ + µ) I ε P
ε P −λ I

is negative semidefinite (an LMI for fixed A)

∞



Computing αε (Α) or δ(Α)
� Computing δ(Α) (distance to instability, or H∞ norm):

� bisection algorithm: at each step, improve bound by  checking 
if associated Hamiltonian matrix has any imaginary 
eigenvalues (Byers, Hinrichsen-Motscha-Linnemann)

� quadratically convergent improvements (Boyd-Balakrishnan, 
van Dooren et al, etc)

� Computing αε (Α) (pseudo-spectral abscissa)
� bisection algorithm: essentially the same
� quadratically convergent improvement: a bit different, requires 

Hamiltonian eigenvalue computation for horizontal as well as 
vertical �sweeps� in complex plane, and proof of convergence 
is tricky

� Demmel matrix example�.















Eigenvalues of Hamiltonian Matrices
� Are symmetric wrt imaginary axis (as 

well as real axis if matrix is real)
� If use algorithm that preserves 

Hamiltonian structure, no tolerance 
needed when testing eigenvalues for 
real part equals 0

� We use Benner�s implentation of Van 
Loan�s �square reduced� algorithm



Variational Properties
� Pure spectral functions, such as the spectral 

abscissa and spectral radius, are
� not smooth
� not convex
� not Lipschitz

� Pseudo-spectral functions are
� not smooth
� not convex

� Lipschitz



Nonsmooth Analysis
� Clarke (1973�), Mordukhovich (1976�), Ioffe (1981�) 

� Rockafellar and Wets (1998)
� Clarke regularity of a set S at a point x: implies (among 

other things) that S is locally closed at x and x isn�t an 
�inward corner�

� The epigraph of a real valued function f on Rn (epi f ): 
the subset of Rn+1 lying on or above the graph of the 
function

� Subdifferential regularity: f is subdifferentially regular at 
x if epi f is Clarke regular at (x, f(x))

� Key point: regularity permits calculus (chain rule)



Nonsmooth Analysis of Spectral Functions

� Burke and Overton, Math Programming, 2001

� General results for subdifferential of φ o Λ(a function 
on matrix space) in terms of subdifferential of φ(a 
function on Cn)

� Specific results for spectral abscissa α and spectral 
radius ρ 

� Key result: the spectral abscissa α is subdifferentially
regular at a matrix A iff all active eigenvalues of A 
(those whose real part equals α(A)) are 
nonderogatory (have geometric multiplicity equal to 1)

� But it may not be Lipschitz (big Jordan blocks OK)



Nonsmooth Analysis of Pseudo-Spectral 
Functions
� Burke, Lewis, Overton, SIMAX, to appear
� Key result: at a matrix A whose active 

eigenvalues are nonderogatory, the pseudo-
spectral abscissa αε is locally Lipschitz and 
subdifferentially regular for sufficiently small ε
(in fact,  it is locally the max of k smooth 
functions, where k is the number of active 
eigenvalues)



Optimization over Parameters

� Minimization of spectral abscissa over 
affine matrix family

� min α (A0+ Σ xk Ak) 
� example:

0 1 0 -1 0  0                     0  0  0
A0 =  0 0 1        A1 =  1  0  0            A2 =  0  0  0

0 0 0                 0  0  0                    1  0  0







Multiple Eigenvalues
� Typically, spectral abscissa minimizers are 

associated with eigenvalues with algebraic
multiplicity > 1

� But with geometric multiplicity = 1 (with 
associated Jordan blocks)

� Such matrices are very sensitive to perturbation 
so even if α << 0, distance to instability could 
be small (large H∞ norm)

� There could be many different �active� multiple 
eigenvalues, all having same real part     



Stabilization by Static Output Feedback
z�(t) = A0 z(t) + B0 u(t)
y(t) = C0 z(t) measures state
u(t) = X y(t) control

Choose X so that solutions of
z�(t) = (A0 + B0 X C0) z(t)

are stable, i.e.
α (A0 +  B0 X C0) < 0

or better: �optimally stable�.          



What Should We Optimize?
� Spectral abscissa α: 

� cheap to compute
� ideal asympotically
� bad for transient behavior and robustness

� Pseudo-spectral abscissa αε: 
� good if we know what  ε is tolerable
� can balance asymptotic and transient considerations

� Distance to instability δ  (equivalently, H∞ norm):
� good if want to tolerate biggest ε possible
� bad if care about asymptotic rate
� difficulty: feasible starting point often not available

� solution: can be obtained by first minimizing α



Can we Optimize these Functions?

� Globally, no.  Related problems are NP-
hard (Blondell-Tsitsiklas, Nemirovski)

� Locally, yes
� But not by standard methods for 

nonconvex, smooth optimization 
� Steepest descent, BFGS or nonlinear 

conjugate gradient will typically jam 
because of nonsmoothness





Methods for Nonsmooth, Nonconvex
Optimization
� Long history, but most methods are very 

complicated 
� Typically they generalize bundle methods for 

nonsmooth, convex optimization (e.g. Kiwiel)
� Ad hoc methods, e.g. Nelder-Mead, are ineffective 

on nonsmooth functions with more than a few 
parameters, and local optimality cannot be verified

� We use a novel Gradient Sampling algorithm, 
requiring (in practice) only that
� f is continuous
� f is continuously differentiable almost everywhere
� where defined, gradient of f is easily computed



Computing the Gradients

� Gradient of spectral abscissa α : when only 
one eigenvalue is active and it is simple, 
gradient of α in matrix space is:    uv*
where u is left eigenvector and v is right 
eigenvector, with u*v = 1

� Gradient of αε and δ : involves left and right 
singular vectors instead

� Chain rule gives gradient in parameter space



Gradient Sampling Algorithm:
Initialize η and x.                    
Repeat                
� Get G, a set of gradients of function f 

evaluated at x and at points near x
(sampling controlled by η)

� Let d = arg min { ||d||:  d ∈ conv G }
� Replace x by    x – t d, such that                   

f(x – t d) < f(x) (if d is not 0)

until d = 0.
Then reduce η and repeat.





A Simple Static Output Feedback Example

� Wang (Trans. Automatic Control )
� Provided by F. Leibfritz (�Problem 39�)
� Plots showing spectra and pseudo-spectra of the 

locally optimal solutions we found, minimizing
� spectral abscissa α
� pseudo-spectral abscissa αε

– H∞ norm (maximizing distance to instability δ)
 (use spectral abscissa minimizer to initialize)















The Boeing 767 Test Problem

� Provided by F. Leibfritz (�Problem 37�), 
also on SLICOT web page

� Aeroelastic model of Boeing 767 at 
flutter condition

� Spectral abscissa minimization:        
min α (A0 +  B0 X C0) 

� A0 is 55 by 55, X is 2 by 2
� Apparently no X making                       

α (A0 +  B0 X C0) < 0 was known















Low-Order Controller Design

� Stabilize the matrix
 A0 +  B0 X1 C0            B0 X2

 X3 C0                                          X4

� Dimension of X4 is order of controller
� Static output feedback is special case order = 0
� Still affine





Convergence Theory for Gradient 
Sampling Method
� Suppose

� f is locally Lipschitz and coercive
� f is continuously differentiable on an open dense subset of 

its domain
� number of gradients sampled near each iterate is greater 

than problem dimension

� Then, with probability one and for fixed sampling 
diameter η, algorithm generates a sequence of points 
with a cluster point x that is η-Clarke stationary

� If f has a unique Clarke stationary point x, then the 
set of all cluster points generated by the algorithm 
converges to x as η is reduced to zero



Subdivision Surface Design

� Thomas Yu, RPI
� Critical L2 Sobolev smoothness of a 

refinable Hermite interpolant is given by 
spectral radius of a matrix dependent 
on the refinement mask

� Maximizing the smoothness amounts to 
minimizing the spectral radius







Beamforming Optimization
� Boche and Schubert
� Still at the email stage



� Approximating Subdifferentials by Random Sampling of 
Gradients 
� Math. Oper. Res. 27 (2002), pp. 567-584

� Optimal Stability and Eigenvalue Multiplicity
� Foundations of Comp. Math. 1 (2001), pp. 205-225

� Optimizing Matrix Stability
� Proc. Amer. Math. Soc. 129 (2001), pp. 1635-1642

Papers by J.V. Burke, A.S. Lewis and M.L. Overton 
(continued)



� Variational Analysis of Non-Lipschitz Spectral Functions
� Math. Programming  90 (2001), pp. 317-352

� Variational Analysis of the Abscissa Mapping for 
Polynomials
� SIAM J. Control Optim. 39 (2001), 1651-1676

� http://www.cs.nyu.edu/faculty/overton/

Papers by J.V. Burke and M.L. Overton



Papers by J.V. Burke, A.S. Lewis and M.L. Overton

� A Robust Gradient Sampling Algorithm for Nonsmooth, 
Nonconvex Optimization
� In preparation, will be submitted to  SIAM J. Optim.

� Robust Stability and a Criss-Cross Algorithm for 
Pseudospectra
� To be submitted soon to IMA J. Numer. Anal.

� Optimization over Pseudospectra
� To appear in SIAM J. Matrix Anal. Appl.

� Two Numerical Methods for Optimizing Matrix Stability
� Lin. Alg. Appl. 351-352 (2002), pp.117-145


