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Pure Spectral Functions

Functions of the form: QoA
where /A maps a matrix to its spectrum:
NA) = {z: Opn(A -21) = 0}

Here o,,,, means smallest singular value.
The elements of A(A) are eigenvalues of A.

Important examples:
Spectral abscissa a = (max Re) o A
Spectral radius p = (max mod) o A



Pure Spectral Modeling

Pure spectral functions model asymptotic behavior

The spectral abscissa models asymptotic growth/decay
of the solutions of continuous time dynamical systems

E.g: Z (t) = A z(t), z(0) =z,

Solution:  z(t) = exp(t A) z,

Norm: ||z(t)||/ exp(yt) - O forall y > a(A)
Stable if a(A) <0

The spectral radius models asymptotic growth/decay of
the solutions of discrete time dynamical systems




Pseudo-Spectral Functions

Functions of the form: @o N¢
where A\: maps a matrix to its pseudo-spectrum:
Ne(A) ={z. 0, (A-2l) < €}
or equivalently (Trefethen)
Ne(A) ={z. 0.,-(B-zl) =0, foraB with ||B-A|| < €}
The points in A¢(A) are pseudo-eigeiivalues of A.
Important examples:
Pseudo-spectral abscissa o, = (max Re) o /¢
Pseudo-spectral radius p. = (max mod) o /¢




Pseudo-Spectral Modeling

» Pseudo-spectral functions model worst-case
asymptotic behavior in nearby matrices

* Equivalently, they model transient behavior
(can be quantified by the Kreiss matrix theorem)

The Pseudo-Spectral GUI (T. Wright)

o Example due to Demmel: An upper triangular
matrix with constant diagonal...






Distance to Instability &

e Let A be a stable matrix, so a(A) <0

e Its distance to instability 6(A) is the largest €
such that a; (A) <0

e Equivalently, is the largest € such that
a(A +E) < Ofor all E with |[E[|< €

e AKA “complex stability radius”

e AKA inverse of H,, norm of corresponding
transfer matrix



Well known Equivalent Properties

The pseudo-spectral abscissa o, (A) < 0
The spectral abscissa a(A) < 0and the distance to instability
5(A) < ¢ (thatis, H, norm > 1/ ¢)
The spectral abscissa a(A) < 0 and the Hamiltonian matrix
- AY el
—€ | A
has no imaginary eigenvalue
There exist positive reals 1 and A and a positive definite
Hermitian matrix P such that
AP+PA+ (A + )l e P
e P —A |
IS negative semidefinite (an LMI for fixed A)




Computing o, (A) or 5(A)

e Computing 0(A) (distance to instability, or H,, norm):

— bisection algorithm: at each step, improve bound by checking
if associated Hamiltonian matrix has any imaginary
eigenvalues (Byers, Hinrichsen-Motscha-Linnemann)

— quadratically convergent improvements (Boyd-Balakrishnan,
van Dooren et al, etc)

e Computing O (A) (pseudo-spectral abscissa)

— bisection algorithm: essentially the same

— quadratically convergent improvement: a bit different, requires
Hamiltonian eigenvalue computation for horizontal as well as
vertical “sweeps” in complex plane, and proof of convergence
is tricky

— Demmel matrix example....





















Eigenvalues of Hamiltonian Matrices

* Are symmetric wrt imaginary axis (as
well as real axis if matrix is real)

o If use algorithm that preserves
Hamiltonian structure, no tolerance
needed when testing eigenvalues for
real part equals 0

» We use Benner’s implentation of Van
Loan’s “square reduced” algorithm



Variational Properties

e Pure spectral functions, such as the spectral
abscissa and spectral radius, are
— not smooth
— not convex
— not Lipschitz

» Pseudo-spectral functions are
— not smooth
— not convex

— Lipschitz



Nonsmooth Analysis

Clarke (1973...), Mordukhovich (1976...), Ioffe (1981...)
... Rockafellar and Wets (1998)

Clarke regularity of a set Sat a point x: implies (among
other things) that Siis locally closed at x and x isn't an
“inward corner”

The epigraph of a real valued function f on R" (epi f ):
the subset of R"1 lying on or above the graph of the
function

Subdifferential regularity: f is subdifferentially regular at
x if epi f is Clarke regular at (x, f(x))

Key point: regularity permits calculus (chain rule)




Nonsmooth Analysis of Spectral Functions

e Burke and Overton, Math Programming, 2001

» General results for subdifferential of @ o /\(a function

on matrix space) in terms of subdifferential of @(a
function on C")

o Specific results for spectral abscissa a and spectral
radius P

o Key result: the spectral abscissa O is subdifferentially
regular at a matrix A iff all active eigenvalues of A

(those whose real part equals O (A)) are
nonderogatory (have geometric multiplicity equal to 1)

e But it may not be Lipschitz (big Jordan blocks OK)




Nonsmooth Analysis of Pseudo-Spectral
Functions
o Burke, Lewis, Overton, SIMAX, to appear
e Key result: at a matrix A whose active
eigenvalues are nonderogatory, the pseudo-
spectral abscissa 0. is locally Lipschitz and

subdifferentially regular for sufficiently small €
(in fact, itis locally the max of k smooth
functions, where k is the number of active
eigenvalues)



Optimization over Parameters

» Minimization of spectral abscissa over
affine matrix family

e min o (Ay2+ 2 x, A)

e example:
010 -10 0 000
A,= 001 A, =100 A,=000
000 000 100



Mesh Plot for Spectral Abscissa of Affine Family




Contour Plot for Spectral Abscissa of Affine Family
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Multiple Eigenvalues

e Typically, spectral abscissa minimizers are
associated with eigenvalues with algebraic
multiplicity > 1

e But with geometric multiplicity = 1 (with
associated Jordan blocks)

» Such matrices are very sensitive to perturbation

so even if a << 0, distance to instability could
be small (large H,, norm)

* There could be many different “active” multiple
eigenvalues, all having same real part



Stabilization by Static Output Feedback

Z'(t) = Ap z(t) + Bo u(t)
y(t) = C, z(t) measures state
u(t) = X y(t) control

Choose X so that solutions of
Z'(t) = (Ag + By X Cp) (1)

are stable, i.e.
a(Ayg + BoXCpy) <O

or better: “optimally stable”.



What Should We Optimize?

e Spectral abscissa o:
— cheap to compute
— ideal asympotically
— bad for transient behavior and robustness

e Pseudo-spectral abscissa a.:

— good if we know what € is tolerable

— can balance asymptotic and transient considerations
e Distance to instability 6 (equivalently, H,, norm):

— good if want to tolerate biggest € possible

— bad if care about asymptotic rate
— difficulty: feasible starting point often not available

— solution: can be obtained by first minimizing O




Can we Optimize these Functions?

* Globally, no. Related problems are NP-
hard (Blondell-Tsitsiklas, Nemirovski)

e Locally, yes

— But not by standard methods for
nonconvex, smooth optimization

— Steepest descent, BFGS or nonlinear
conjugate gradient will typically jam
because of honsmoothness



Steepest Descent Jams

08h .




Methods for Nonsmooth, Nonconvex

Optimization
* Long history, but most methods are very
complicated

o Typically they generalize bundle methods for
nonsmooth, convex optimization (e.g. Kiwiel)

e Ad hoc methods, e.g. Nelder-Mead, are ineffective
on nonsmooth functions with more than a few
parameters, and local optimality cannot be verified

 We use a novel Gradient Sampling algorithm,
requiring (in practice) only that
— f is continuous
— fis continuously differentiable almost everywhere
— where defined, gradient of f is easily computed



Computing the Gradients

e Gradient of spectral abscissa a : when only
one eigenvalue is active and it is simple,
gradient of a in matrix space is: uv*
where u is left eigenvector and v is right
eigenvector, with u*v =1

e Gradient of a.and o : involves left and right
singular vectors instead

» Chain rule gives gradient in parameter space



Gradient Sampling Algorithm:
Initialize n and x.
Repeat

* Get G, a set of gradients of function f

evaluated at x and at points near x
(sampling controlled by n)

e letd=argmin{ ||d|: d O conv G }
e Replace x by x —td, such that

f(X—td) <f(X) (fdisnoto)
until d = 0.

Then reduce n and repeat.




Gradient Bundle Turns the Comer
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A Simple Static Output Feedback Example

» Wang (7rans. Automatic Control)
* Provided by F. Leibfritz ("Problem 39")

» Plots showing spectra and pseudo-spectra of the
locally optimal solutions we found, minimizing

— spectral abscissa a

— pseudo-spectral abscissa o,

— H,, norm (maximizing distance to instability o)
(use spectral abscissa minimizer to initialize)
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The Boeing 767 Test Problem

e Provided by F. Leibfritz ("Problem 37"),
also on SLICOT web page

e Aeroelastic model of Boeing 767 at
flutter condition

o Spectral abscissa minimization:
mina (Ay + Bo X Cp)

e Ayis 55 by 55, Xis2 by 2

o Apparently no X making
a (Ap + By X Cy) < 0 was known
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Low-Order Controller Design

e Stabilize the matrix
Ao + By X, C BOX
X5 Co

o Dimen5|on of X, is order of controller
o Static output feedback is special case order = 0
o Still affine




50 Best Function Values found in 400 runs of Order-5 Feedback for Boeing 767 Problem
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Convergence Theory for Gradient
Sampling Method

e Suppose
— fis locally Lipschitz and coercive

— fis continuously differentiable on an open dense subset of
its domain

— number of gradients sampled near each iterate is greater
than problem dimension
e Then, with probability one and for fixed sampling
diameter ), algorithm generates a sequence of points
with a cluster point x that is n-Clarke stationary

o If f has a unique Clarke stationary point x, then the
set of all cluster points generated by the algorithm
converges to x as n is reduced to zero




Subdivision Surface Design

 Thomas Yu, RPI

o Critical L2 Sobolev smoothness of a
refinable Hermite interpolant is given by
spectral radius of a matrix dependent
on the refinement mask

e Maximizing the smoothness amounts to
minimizing the spectral radius



Eigenvalues of Optimal Solution of Diamond. One at right has algebraic mult 7 and geometne mult 2
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Eigenvalues of Optimal Solution to HermTenPtP4 (First ¢’ Solution Ever!)
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Beamforming Optimization

* Boche and Schubert
o Still at the email stage



Papers by 1.V. Burke, A.S. Lewis and M.L. Overton
(continued)

e Approximating Subdifferentials by Random Sampling of
Gradients

— Math. Oper. Res. 27 (2002), pp. 567-584
e Optimal Stability and Eigenvalue Multiplicity

— Foundations of Comp. Math. 1 (2001), pp. 205-225
e Optimizing Matrix Stability

— Proc. Amer. Math. Soc. 129 (2001), pp. 1635-1642




Papers by J.V. Burke and M.L. Overton

o Variational Analysis of Non-Lipschitz Spectral Functions
— Math. Programming 90 (2001), pp. 317-352

o Variational Analysis of the Abscissa Mapping for
Polynomials

— SIAM J. Control Optim. 39 (2001), 1651-1676

e http://www.cs.nyu.edu/faculty/overton/




Papers by J.V. Burke, A.S. Lewis and M.L. Overton

e A Robust Gradient Sampling Algorithm for Nonsmooth,
Nonconvex Optimization

— In preparation, will be submitted to SIAM J. Optim.

e Robust Stability and a Criss-Cross Algorithm for
Pseudospectra

— To be submitted soon to IMA J. Numer. Anal.

e Optimization over Pseudospectra
— To appear in SIAM J. Matrix Anal. Appl.

e Two Numerical Methods for Optimizing Matrix Stability
— Lin. Alg. Appl. 351-352 (2002), pp.117-145




