Semidefinite relaxations for 0/1 Polytopes

Monique LAURENT

CWI, Amsterdam

A guiding example: The Max-Cut problem

$$\max \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j)$$

s.t. $x \in \{\pm 1\}^n$

- Max-Cut is **NP-hard** [Karp 1972]
- Max-Cut is **polynomial** for graphs with no K_5 minor [Barahona-Mahjoub 1986]

 \rightsquigarrow use the LP relaxation:

$$\max \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_{ij})$$

s.t. $x_{ij} + x_{ik} + x_{jk} \ge -1$
 $x_{ij} - x_{ik} - x_{jk} \ge -1$ $(i, j, k \in [1, n])$

• Max-Cut has a 0.878-approximation algorithm [Goemans-Williamson 1995]

 \rightsquigarrow use the **SDP relaxation:**

$$\max \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_{ij})$$

s.t.
$$X = (x_{ij}) \succeq 0$$
$$\operatorname{diag}(X) = 1$$

How to define stronger SDP relaxations?

• Add valid linear inequalities *explicitely* to the basic SDP relaxation; e.g., triangle inequalities.

 ~ 0.932 -approximation algorithm for Max-Cut in cubic graphs [Halperin Livnat Zwick 2002]

 \bullet Use SDP relaxations containing implicitely strong valid linear inequalities

- 1. Iterative 'matrix-cut' method [Lovász-Schrijver 1991]
- 2. Taking Lagrangian bi-dual [Poljak-Rendl-Wolkowicz 1995, Anjos-Wolkowicz 2000]
- 3. Real-algebraic method [Shor 1987, Nesterov 1997, Lasserre, Parrilo 2000]

Taking the dual of the Lagrangian dual (the bidual) [Poljak Rendl Wolkowicz 1995] [Shor 1985] [Lemaréchal Oustry 2000]

Example of max-cut:

 $\max x^T Q x$ subject to $x_i^2 = 1 \ (i = 1, \dots, n)$

Lagragian dual:

$$\min_{u \in \Re^n} \max_{x \in \Re^n} x^T Q x + \sum_i u_i (1 - x_i^2)$$
$$\min_{u \in \Re^n} \max_{x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e$$
$$\begin{cases} \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \end{cases}$$
$$\begin{cases} \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u) x + u^T e \\ \max_{u \in \Re^n} x^T (Q - \operatorname{diag} u)$$

Taking the dual:

 $= \max \langle Q, X \rangle$ subject to diag $X = e, X \succeq 0$

 \rightarrow basic SDP relaxation

Idea: get stronger relaxations by adding redundant constraints to the max-cut formulation [Anjos Wolkowicz 2000]

max-cut:

$$\max \langle Q, X \rangle$$

s.t. $X_{ii} = 1 \ (i = 1, \dots, n)$
 $X \succeq 0$
$$\operatorname{rank}(X) = 1$$

 $X_{ij}^2 = 1 \ (i \neq j = 1, \dots, n)$
 $X^2 - nX = 0$
 $X_{ij} = X_{ik}X_{jk} \ (i \neq j \neq k = 1, \dots, n)$

Bidual:

$$\max \sum_{\substack{ij \in E_n \\ ij \in E_n}} Q_{ij} Y_{0,ij}$$

s.t. $Y \succeq 0$
$$\operatorname{diag} Y = e$$

 $Y_{ik,jk} = Y_{0,ij} \ (i \neq j \neq k = 1 \dots n)$

Fact: $N_+(MET_n)$ is contained in the AW relaxation

A general lifting paradigm for finding $\operatorname{conv}(F)$ where $F \subseteq \{\pm 1\}^n$

$$x \in F \rightsquigarrow y := (\prod_{i \in I} x_i)_{I \subseteq V} \rightsquigarrow Y := yy^T$$
 satisfies:

(i) $\operatorname{diag}(Y) = 1$ (ii) Y(I, J) depends only on $I\Delta J$ (iii) $Y \succeq 0$ (iv) + conditions depending on F

As Y is indexed by all subsets of $V = \{1, ..., n\}$, it is exponentially big

 \rightsquigarrow restrict to submatrices of Y of polynomial sizes

• Lovász-Schrijver: Restrict to the principal submatrix indexed by \emptyset and the singletons $1, \ldots, n$

• Lasserre: Restrict to the principal submatrix indexed by all subsets of size $\leq t$

• Sherali-Adams: Restrict to the principal submatrices indexed by all subsets of U for $U \subseteq V$ with |U| = t

The methods also differ in the way of expressing membership in $\operatorname{conv}(F)$

The Lovász-Schrijver construction

$$\begin{split} P &:= \operatorname{CUT}(G) \text{ in the edge space } \Re^E \\ K &:= \operatorname{MET}(G) \text{ linear relaxation of } P \\ (\text{Generally: } K \subseteq [-1,1]^d \text{ convex}, P &:= \operatorname{conv} (K \cap \{\pm 1\}^d)) \end{split}$$

$$z \in K \cap \{\pm 1\}^E \rightsquigarrow Z := {1 \choose z} (1 \ z^T) \text{ satisfies}$$

(i)
$$\operatorname{diag}(Z) = 1$$

(ii) $Z(e_0 \pm e_{ij}) \in \tilde{K} \ (ij \in E)$
(iii) $Z \succeq 0$

$$N(K) := \{ z \in \Re^E \mid \begin{pmatrix} 1 \\ z \end{pmatrix} = Ze_0 \text{ for } Z \text{ satisfying } (i) - (ii) \}$$
$$N_+(K) := \{ z \in \Re^E \mid \begin{pmatrix} 1 \\ z \end{pmatrix} = Ze_0 \text{ for } Z \text{ satisfying } (i) - (iii) \}$$

$$P \subseteq N_+(K) \subseteq N(K) \subseteq K$$

Iterated relaxations:

$$\begin{split} N^t(K) &:= N(N^{t-1}(K)) \\ N^t_+(K) &:= N_+(N^{t-1}_+(K)) \end{split}$$

Facts:

• One can optimize in polynomial time over $N^t(K)$, $N^t_+(K)$ for fixed t assuming existence of an efficient separation algorithm for K

•
$$N^d(K) = P$$
 where $d = dim(K)$ (= $|E|$ here)

• For
$$K = MET(G)$$
, $P = CUT(G)$
 $G/\{e_1, \ldots, e_t\}$ has no K_5 -minor $\Longrightarrow N^t(K) = P$

• For
$$K = FR(G)$$
, $P = STAB(G)$
 $N^{n-\alpha(G)-1}(K) = N^{\alpha(G)}_+(K) = P$

The Lasserre construction

$$x \in \{\pm 1\}^n \rightsquigarrow y := (\prod_{i \in I} x_i)_{I \subseteq V} \rightsquigarrow Y := yy^T \text{ satisfies:}$$
$$\begin{cases} Y \succeq 0\\ \operatorname{diag}(Y) = 1\\ Y(I, J) \text{ depends only on } I\Delta J \end{cases}$$

Y is a moment matrix

Definition: Given an integer $t \ge 1$ and a vector $y = (y_I)_{|I| \le 2t}$, its moment matrix $M_t(y)$ of order t is

$$M_t(y) := (y_{I\Delta J})_{|I|,|J| \leq t}$$

 $Q_t(G) := \text{projection on } \Re^E \text{ of set } \{ y \mid M_t(y) \succeq 0, \ y_{\emptyset} = 1 \}$

 $\operatorname{CUT}(G) \subseteq Q_n(G) \subseteq \ldots \subseteq Q_t(G) \subseteq \ldots \subseteq Q_1(G)$

Lemma: The eigenvectors of $M_n(y)$ are the vectors $y^A = ((-1)^{|A \cap I|})_{I \subseteq V}$ with eigenvalue $y^T y^A$. That is,

$$M_n(y) = \sum_{A \subseteq V} rac{y^T y^A}{2^n} \ y^A (y^A)^T$$

$$\mathrm{CUT}(G) = Q_n(G)$$

Intermezzo: The Lasserre construction for general ± 1 polytopes

$$P = \text{conv-hull } (K \cap \{\pm 1\}^n)$$
$$K \subseteq [-1, 1]^n \text{ polytope or semi-algebraic set}$$
$$K = \{x \in \Re^n \mid g_1(x) \ge 0 \dots g_m(x) \ge 0\}$$
$$\text{may assume } q(x) = \sum q_I \prod x_i$$

may assume
$$g(x) = \sum_{I \subseteq V} g_I \prod_{i \in I} x_i$$

$$g, y \in \Re^{\mathcal{P}(V)} \rightsquigarrow g * y := M_n(y)g$$

Observation: $x \in K \cap \{\pm 1\}^n \rightsquigarrow y := (\prod_{i \in I} x_i)_{I \subseteq V}$ satisfies: $g * y = g(x) \cdot y$ and, therefore,

$$M_n(y) \succeq 0$$

$$M_n(g_\ell * y) \succeq 0 \quad \forall \ell = 1, \dots, m$$

 $Q_t(K) := \text{projection on } \Re^n \text{ of the set}$ $\{y \mid y_{\emptyset} = 1, \ M_t(y) \succeq 0, \ M_{t-v_{\ell}}(g_{\ell} * y) \succeq 0 \ \forall \ell\}$ $\text{for } t \ge v := \max\left[\frac{deg(g_{\ell})}{2}\right]$ $P \subseteq Q_{n+v}(K) \subseteq \ldots \subseteq Q_v(K)$

$$P = Q_{n+v}(K)$$

$$P \stackrel{?}{=} Q_{n+v}(K)$$

Assume:
$$M_n(y) \succeq 0, \ M_n(g_\ell * y) \succeq 0 \ \forall \ell$$

Then:

$$y = \sum_{A} \lambda_A \ y^A$$

with $\lambda_A := rac{y^T y^A}{2^n} \ge 0$ for all A

Show: $\lambda_A = 0$ if A does not correspond to a point in K; that is, if $g_\ell^T y^A < 0$ for some ℓ

Proof: The eigenvalue of $M_n(g_\ell * y)$ for eigenvector y^A is equal to:

$$(g_{\ell} * y)^{T} y^{A} = \sum_{I} (g_{\ell} * y)_{I} y_{I}^{A}$$
$$= \sum_{I} \left(\sum_{J} g_{\ell}(J) y_{I\Delta J} \right) y_{I}^{A}$$
$$= \sum_{J} g_{\ell}(J) y_{J}^{A} \left(\sum_{I} y_{I\Delta J} y_{I\Delta J}^{A} \right)$$
$$= g_{\ell}^{T} y^{A} \cdot y^{T} y^{A} \ge 0$$

Hence:

$$\begin{cases} y^T y^A \ge 0\\ g_\ell^T y^A < 0 \end{cases} \Longrightarrow y^T y^A = 0$$

Comparison of the Lasserre and Lovász-Schrijver constructions

K is a polytope

Example: G = (V, E) graph K = fractional stable set polytope FR(G) $= \{x \in \Re^V_+ \mid x_i + x_j \leq 1 \ (ij \in E)\}$

Then:

 $Q_t(K) = \text{projection on } \Re^V \text{ of the set}$ $\{y \mid y_{\emptyset} = 1, \ M_t(y) \succeq 0, \ y_{ij} = 0 \ (ij \in E)\}$

Hence:

 $Q_2(K) \subseteq N_+(K) \subseteq \mathrm{TH}(G) = Q_1(G)$

$$\operatorname{STAB}(G) = Q_{\alpha}(K) \subseteq N_{+}^{\alpha-1}(K)$$

strict inclusion for the line graph of K_{2n+1} (Stephen-Tunçel 1999)

Comparison with the Sherali-Adams lift-and-project method

 $K = \{ x \in [-1, 1]^n \mid g_1(x) \ge 0 \dots g_m(x) \ge 0 \}$

(1) Multiply each inequality defining K by the products $\prod_{i \in A} (1-x_i) \prod_{i \in U \setminus A} (1+x_i) \text{ for all } A \subseteq U \subseteq [1,n] \text{ with } |U| = t$

- (2) Linearize: $y_I := \prod_{i \in I} x_i, x_i^2 = 1 \quad \forall i$
- (3) $S_t(K) :=$ projection on the x-space \Re^n

$$S_t(K) \subseteq N^t(K)$$

Interpretation in terms of moment matrices:

$$\begin{pmatrix} \prod_{i \in A} (1 - x_i) \prod_{i \in U \setminus A} (1 + x_i) \end{pmatrix} \cdot g_{\ell}(x) = \\ \begin{pmatrix} \sum_{I \subseteq U} (-1)^{|I \cap A|} y_I \end{pmatrix} \cdot \left(\sum_J g_{\ell}(J) y_J \right) = \sum_{I \subseteq U} (-1)^{|I \cap A|} \left(\sum_J g_{\ell}(J) y_{I \Delta J} \right) \\ = \sum_{I \subseteq U} (-1)^{|I \cap A|} g_{\ell} * y_I = (g_{\ell} * y)^T y^A \\ \geq 0 \quad \text{for all } A \subseteq U \\ \text{This means: } M_U(g_{\ell} * y) \succeq 0 \text{ for all } |U| = t. \\ \text{Analogously: } M_U(y) \succeq 0 \text{ for all } |U| = t + 1 \end{cases}$$

Hence $S_t(K)$ = projection of the above SDP conditions

$$Q_{t+v}(K) \subseteq S_t(K)$$

Algebraic background Primal approach: Moment sequences

$$K = \{ x \in \mathfrak{R}^n \mid g_1(x) \ge 0, \dots, g_m(x) \ge 0 \}$$

$$p^* := \min g(x) ext{ s.t. } x \in K$$

 $= \min_{\substack{\mu ext{ probability} \ ext{measure on } K}} \int_K g(x) d\mu(x)$

Note:

 $\int_{K} g(x) d\mu(x) = \int_{K} (\sum_{\alpha} g_{\alpha} x^{\alpha}) d\mu(x) = \sum_{\alpha} g_{\alpha} \underbrace{\int_{K} x^{\alpha} d\mu(x)}_{y_{\alpha}} =: \sum_{\alpha} g_{\alpha} y_{\alpha}$

 $p^* = \min \sum_{\alpha} g_{\alpha} y_{\alpha}$ s.t. y is the sequence of moments of a probability measure on K

Lower bound:

$$p^* \ge p_t := \min_{\alpha} \sum_{\alpha} g_{\alpha} y_{\alpha}$$

s.t. $y_{\emptyset} = 1, \ M_t(y) \succeq 0, \ M_{t-v_{\ell}}(g_{\ell} * y) \succeq 0 \ \forall \ell$

Here: $M_t(y) = (y_{\alpha+\beta})$ is indexed by integer sequences $\alpha \in Z^n_+$ with $\sum_i \alpha_i \leq t$

Dual approach: Sums of squares of polynomials

$$p^* := \min g(x) \text{ s.t. } x \in K$$

= max λ s.t. $g(x) - \lambda$ nonnegative on K

Lower bound:

$$p^* \ge \sigma_t := \max \lambda$$

s.t. $g(x) - \lambda = p_0(x) + \sum_{\ell=1}^m p_\ell(x)g_\ell(x)$
where p_0, \ldots, p_m are sums of squares of
polynomials with $\deg(p_0) \le 2t$,
and $\deg(p_\ell) \le 2(t - v_\ell)$

Weak SDP duality: $\sigma_t \leq p_t \leq p^*$

Asymptotic convergence of σ_t to p^* as $t \to \infty$ [Lasserre 2000]

Theorem: [Putinar 1993] Every polynomial *positive* on K compact (+...) has a decomposition $p_0(x) + \Sigma_{\ell} p_{\ell}(x)g_{\ell}(x)$ where p_0, \ldots, p_m are sums of squares of polynomials.

Finite convergence in n steps in the ± 1 case,

i.e., when the constraints $x_i^2 = 1$ are present in the description of K

Algebraic interpretation of the Sherali-Adams construction [Lasserrre 02]

$$p^* := \min. g(x) \text{ over } K = \{x \mid g_1(x) \ge 0 \dots g_m(x) \ge 0\}$$

(1) Consider the products $g_1(x)^{\beta_1} \cdots g_m(x)^{\beta_m} \ge 0$ for all $\beta_1, \ldots, \beta_m \in Z_+$ with $\sum_i \beta_i \le t$ (2) Linearize: $y_\alpha := x_1^{\alpha_1} \cdots x_n^{\alpha_n} \quad \rightsquigarrow$ LP in variable ySet: $\rho_t :=$ minimum of $\sum_{\alpha} g_{\alpha} y_{\alpha}$ over this LP By LP duality:

$$\rho_t = \max \lambda$$

s.t. $g(x) - \lambda = \sum_{\beta \in Z^m_+, \ \sum_j \beta_j \le t} \lambda_\beta g_1(x)^{\beta_1} \cdots g_m(x)^{\beta_m}$
for some $\lambda_\beta \ge 0$

Lower bound: $p^* \ge \rho_t$

Asymptotic convergence of ρ_t to p^* as $t \to \infty$ when K is a *polytope*

Theorem: [Handelman 1988] Every polynomial *positive* on a polytope K has a decomposition $\sum_{\beta} \lambda_{\beta} g_1^{\beta_1} \cdots g_m^{\beta_m}$ for some $\lambda_{\beta} \geq 0$

Several SDP relaxations for CUT(G)

• Apply the Lovász-Schrijver construction to K = MET(G) $\rightsquigarrow N_+^t(G) \subseteq N_+^t(MET(G))$

 $no \ explicit \ description \ \dots$

• Apply the Lasserre construction to K = MET(G) $\rightsquigarrow Q_t(MET(G))$

too many constraints

• Apply the Lasserre construction to $K = [-1, 1]^n$ and project on \Re^E

 $\rightsquigarrow Q_t(G)$

the best choice!

Theorem: [La 01] $Q_{t+2}(G) \subseteq N^t_+(G)$

A more concise formulation for $Q_t(G) =$ projection on \Re^E of $\{y \mid y_{\emptyset} = 1, M_t(y) \succeq 0\}$

$$\begin{split} |I| \leq t, \equiv t & |I| \leq t, \not\equiv t \\ \equiv t & \\ M_t(y) = & \\ |I| \leq t & \\ \not\equiv t & \\ B^T & C & \\ \end{pmatrix} \end{split}$$

• C is a principal submatrix of A

• may assume B = 0 as we project on pairs (even sets)

 \rightsquigarrow restrict to moment matrices indexed by sets $|I| \equiv t \mod 2$

$$M_1(y) = egin{array}{ccc} 1 \dots n & & \ 1 & & \ n & & \end{pmatrix} \quad M_2(y) = egin{array}{ccc} M_2(y) = & & \ & & \end{pmatrix} \end{pmatrix}$$

t = 1: basic SDP relaxation: $Y \succeq 0$, diag(Y)=1t = 2: SDP relaxation: $Y \succeq 0$, diag(Y)=1 $Y_{12,13} = Y_{\emptyset,23}, Y_{12,34} = Y_{13,24} = Y_{14,23}$

 \rightsquigarrow triangle inequalities are satisfied [AW01]

$$X = \begin{pmatrix} \emptyset & 12 & 13 & 23 \\ 12 & 1 & y_{12} & y_{13} & y_{23} \\ 13 & y_{13} & y_{23} & 1 & y_{12} \\ y_{23} & y_{13} & y_{12} & 1 \end{pmatrix} \succeq 0 \Longrightarrow e^{T} X e = 4(1 + y_{12} + y_{13} + y_{23}) \ge 0$$

Properties of the SDP relaxation $Q_t(G)$

Definition: The rank $\rho(G)$ of graph G is the smallest integer t for which $CUT(G) = Q_t(G)$.

 $\rho(K_3) = \rho(K_4) = 2, \ \rho(K_5) = \rho(K_6) = 3, \ \rho(K_7) = 4$

Proposition: ρ is minor monotone

 $\rho(G) \leq 1 \iff G$ has no K_3 -minor $\rho(G) \leq 2 \iff G$ has no K_5 -minor $\rho(G) \leq 3 \implies G$ has no K_7 -minor

Other minimal forbidden minors?

Proposition: $\rho(G/e) \leq t \Longrightarrow \rho(G) \leq t+1$

Conjecture: $\rho(K_n) = \left\lceil \frac{n}{2} \right\rceil$

Theorem: $\rho(K_n) \ge \left\lceil \frac{n}{2} \right\rceil$

Note: Enough to show the theorem for n odd and the conjecture for n even

Sketch of proof of $\rho(K_n) \ge \left\lceil \frac{n}{2} \right\rceil$ (n = 2k + 1 odd)Goal: show strict inclusion $\text{CUT}(K_n) \subset Q_k(K_n)$

Show:

$$\min_{Q_k(K_n)} \sum_{ij} y_{ij} \stackrel{?}{=} -\frac{n}{2} < \min_{\text{CUT}(K_n)} \sum_{ij} y_{ij} = \frac{1-n}{2}$$

For this: Construct $M_k(y) \succeq 0$ with $\sum_{ij} y_{ij} = -\frac{n}{2}$

$$a_0 := 1, \; a_{2r+2} := -a_{2r}rac{2r+1}{n-2r-1}$$
 $y_I := a_{|I|} ext{ for all even sets } I$

Theorem: $M_k(y) \succeq 0$

Proof:

(1) Z := principal submatrix of $M_k(y)$ indexed by the ksubsets of $\{1, \ldots, n-1\}$; D := order of Z. Show that Z is positive definite. Hence $M_k(y)$ has at least D positive eigenvalues.

Tools: Z belongs to the Johnson scheme J(2k, k); compute its eigenvalues using hypergeometric series.

(2) Show that $M_k(y)$ has at least N - D zero eigenvalues.

(1) Show that Z is positive definite

$$Z = \sum_{\ell=0}^{k} a_{2\ell} A_{\ell}$$

where A_{ℓ} are the 0/1 adjacency matrices of the Johnson scheme J(2k, k), with (I, J) entry 1 iff $|I\Delta J| = 2\ell$

The **distinct eigenvalues** of Z are, for u = 0, ..., k,

$$egin{aligned} \lambda_u &:= \sum\limits_{\ell=0}^k a_{2\ell} \left(\sum\limits_{j=0}^\ell (-1)^j {u \choose j} {k-u \choose \ell-j}^2
ight) \ &= \sum\limits_{i=0}^k {k-u \choose i}^2 \left(\sum\limits_{j=0}^k a_{2i+2j} (-1)^j {u \choose j}
ight) \end{aligned}$$

Show:

(i) The inner sum is equal to
$$a_{2i} \frac{(-k-1/2)_u}{(i-k)_u}$$

(ii) $\lambda_u = \frac{(-k-1/2)_u}{(i-k)_u} \frac{(1/2)_u}{(k-u)!} = \frac{1\cdot 3\cdot \ldots \cdot (2k+1)}{2^k \cdot k! \cdot (2k-2u+1)} > 0$

Tool: Gauss identity for hypergeometric series: when $b \leq 0$ is integer and x = 1 $\sum_{i\geq 0} \frac{(a)_i(b)_i x^i}{(c)_i i!} = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)}$ $\Gamma(n+1) = n!, \quad \frac{\Gamma(x+n)}{\Gamma(x)} = (x)_n \text{ for integer } n \geq 0$

See: A = B, Petkovsek-Wilf-Zeilberger 1996; Complexity of semi-algebraic proofs, Grigoriev-Hirsch-Pasechnik 2001

A curiosity about the spectrum of $M_k(y)$

n = 3	n = 5	n = 7 $k = 3$	n = 9	n = 11	
k = 1	k = 2	k = 3	n = 9 $k = 4$	k = 5	
0	0	0	0	0	
$\frac{3}{2}$	$\frac{5}{4} \cdot \frac{3}{2}$	$\frac{7}{6} \cdot \frac{5}{4} \cdot \frac{3}{2}$	$\frac{9}{8} \cdot \frac{7}{6} \cdot \frac{5}{4} \cdot \frac{3}{2}$	$\frac{11}{10} \cdot \frac{9}{8} \cdot \frac{7}{6} \cdot \frac{5}{4} \cdot \frac{3}{2}$	
	$\frac{13}{8}$	$\frac{7}{6} \cdot \frac{13}{8}$	$\frac{9}{8} \cdot \frac{7}{6} \cdot \frac{13}{8}$	$\frac{11}{10} \cdot \frac{9}{8} \cdot \frac{7}{6} \cdot \frac{13}{8}$	
			$\frac{263}{128}$	$\frac{11}{10} \cdot \frac{263}{128}$	

The distinct eigenvalues of $M_k(y)$ are:

The *new* eigenvalues $\frac{13}{8}$ and $\frac{263}{128}$ have multiplicity **one**

A tentative iterative proof for $Y = M_k(y) \succeq 0$ Say n = 2k + 1 with k odd

$$Y = \begin{pmatrix} Y_{11} & Y_{13} & Y_{15} & \dots \\ Y_{31} & Y_{33} & Y_{35} & \dots \\ Y_{51} & Y_{53} & Y_{55} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$Y_{11} = \frac{n}{n-1}E_1^{(1)}, \quad Y_{i1}E_0^{(1)} = 0 \text{ in } J(n,1)$$

$$Y \succeq 0 \Longleftrightarrow$$
$$Y' := \begin{pmatrix} Y_{33} & Y_{35} & \dots \\ Y_{53} & Y_{55} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} - \frac{n-1}{n} \begin{pmatrix} Y_{31} \\ Y_{51} \\ \vdots \end{pmatrix} \begin{pmatrix} Y_{31} \\ Y_{51} \\ \vdots \end{pmatrix}^T \succeq 0$$

$$Y'_{33} = \frac{n(n-2)(n-4)}{(n-1)(n-3)(n-5)} E_3^{(3)}, \quad Y'_{i3} E_u^{(3)} = 0 \ (u \le 2) \ \text{in} \ J(n,3)$$

$$Y' \succeq 0 \iff$$

$$Y'' := \begin{pmatrix} Y'_{55} & \dots \\ \vdots & \ddots \end{pmatrix} - \frac{(n-1)(n-3)(n-5)}{n(n-2)(n-4)} \begin{pmatrix} Y'_{53} \\ \vdots \end{pmatrix} \begin{pmatrix} Y'_{53} \\ \vdots \end{pmatrix}^T \succeq 0$$

$$Y''_{55} = \frac{n(n-2)(n-4)(n-6)(n-8)}{(n-1)(n-3)(n-5)(n-7)(n-9)} E_5^{(5)} \dots \text{ in } J(n,5)$$

 $computations \ too \ hard \ \dots$

Geometric properties of moment matrices

$$\begin{array}{ll} \max & \frac{1}{2} \sum\limits_{ij} w_{ij} (1 - y_{ij}) \\ \text{s.t.} & y_{\emptyset} = 1, \ M_t(y) \succeq 0 \end{array}$$

When does this SDP relaxation solve Max-Cut exactly?

If $M_t(y) \succeq 0$, when is $M_1(y)$ a convex combination of cut matrices? **Yes** if rank $M_1(y) = 1$

Yes if rank $M_1(y) \leq t$

Theorem: [La 01] If $M_t(y) \succeq 0$ and $M_1(y)$ has rank $\leq t$ then $M_t(y)$ is a convex combination of 2^{t-1} cut matrices.

t = 1 trivial t = 2 [Anjos-Wolkowicz 2001]

Recall:

Conjecture: $\rho(K_n) \leq \left\lceil \frac{n}{2} \right\rceil$

Equivalently: If $M_{\lceil \frac{n}{2} \rceil}(y) \succeq 0$, then $M_1(y)$ is a convex combination of cuts

Sketch of proof

 $Y = M_t(y) \succeq 0$, rank $M_1(y) \le t$, $1 \le t \le n-1$ $\implies Y$ is convex combination of 2^{t-1} cut matrices

Proposition: If t = n - 1 then $y_I = \pm 1$ for some even set $I \neq \emptyset$

Corollary: The theorem holds for t = n - 1

Prove the theorem by induction on $n \ge t + 1$. We can assume that $n \ge t + 2$. Then $y_{I_0} = \pm 1$ for some even set $I_0 \ne \emptyset$ (with $|I_0| \le t + 1$). Say, $n \in I_0$.

The induction assumption implies that

$$Y_0 = \sum_{A \in \mathcal{A}} \lambda_A M_t(y^A)$$

Goal: Show that each $A \in \mathcal{A}$ can be extended to A' := A or $A \cup \{n\}$ in such a way that

$$Y = \sum_{A \in \mathcal{A}} \lambda_A M_t(y^{A'})$$

Tool: Use the structure of the set of even sets I for which $y_I = \pm 1$

Inequality	Min. over	Min. over	Min. over	Min. over	Min. over	Min. over
	$\operatorname{CUT}(K_7)$	$Q_3(K_7)$	$Q_2(K_7)$	F_7	$Q_1(K_7)$	$N_+(K_7)$
triangle	-1	-1	-1	-1	-1.5	-1
(1)						
pentagonal	-2	-2	-2.5	-2.5	-2.5	-2
(2)						
hexagonal	-4	-4	-4.5	-4.5	-4.5	-49/12
(3)						~ -4.0833
(4)	-3	-3.5	-3.5	-3.5	-3.5	?
(5)	-6	-6.051882	-6.5	-6.5	-6.5	?
(6)	-7	-7	-7.5	-7.5	-7.5	?
bicycle	-4	-4	-5	-5.0045	-5.8090	-4
(7)						
(8)	-6	-6	-6.5817	-6.6522	-7.9661	?
(9)	-9	-9	-9.6433	-9.7036	-11.0166	?
parachute	-4	-4	-4.7439	-4.8099	-5.9220	-4
(10)						
grishukhin	-5	-5	-5.6152	-5.7075	-6.9518	?
(11)						

Comparing the strength of the various SDP relaxations for the facet defining inequalities of $CUT(K_7)$

 $Q_2(K_7) \subseteq F_7 \subseteq MET(K_7) \cap Q_1(K_7)$

 $N_+(K_7) \subseteq F_7$

Inequality	$\sum_{ij} c_{ij}$	$ ho_3$	$ ho_2$	$ ho_F$	ρ_1
triangle (1)	3	1	1	1	$rac{8}{9}\sim 0.888$
pentagonal (2)	10	1	0.96	0.96	0.96
hexagonal (3)	20	1	0.979	0.979	0.979
(4)	21	0.979	0.979	0.979	0.979
(5)	34	0.998	0.987	0.987	0.987
(6)	33	1	0.987	0.987	0.987
bicycle (7)	16	1	0.952	0.952	0.917
(8)	30	1	0.984	0.982	0.948
(9)	47	1	0.988	0.987	0.965

Comparing the integrality ratios for the facets of K_7

Given $c \in \Re^{E_n}$ and $t \ge 0$

$$\rho_t := \frac{\sum_{ij} c_{ij} - \min(c^T y \mid y \in \text{CUT}(K_n))}{\sum_{ij} c_{ij} - \min(c^T y \mid y \in Q_t(K_n))}$$

$$\rho_1 \ge 0.878 \quad \text{for } c \ge 0$$