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A guiding example: The Max-Cut problem

1
max > . w;i(l —x;x;
5, w1 - )
st. xe{£l}"

e Max-Cut is NP-hard [Karp 1972]

e Max-Cut is polynomial for graphs with no K5 minor
[Barahona-Mahjoub 1986]

~» use the LP relaxation:

1
max 2”%]5 ww(l — ZEZ']')
st. Xyt X+ Ty 2 —1
Tij — Tik — Tjk = —1 (¢,5,k € [1,n])

e Max-Cut has a 0.878-approximation algorithm
|Goemans-Williamson 1995]

~» use the SDP relaxation:

1

max 5 ». w;i(l — x;;

2 2,28 i( j)
S.t. X:(ZIZZ])iO

diag(X) =1




How to define stronger SDP relaxations?

e Add valid linear inequalities explicitely to the basic SDP
relaxation; e.g., triangle inequalities.

~» 0.932-approximation algorithm for Max-Cut in cubic
graphs [Halperin Livnat Zwick 2002)]

e Use SDP relaxations containing ¢mplicitely strong valid
linear inequalities

1. Iterative ‘matrix-cut’ method |Lovész-Schrijver 1991]

2. Taking Lagrangian bi-dual |Poljak-Rendl-Wolkowicz 1995,
Anjos-Wolkowicz 2000]

3. Real-algebraic method [Shor 1987, Nesterov 1997, Lasserre,
Parrilo 2000]



Taking the dual of the Lagrangian dual (the
bidual) [Poljak Rendl Wolkowicz 1995] [Shor 1985] ...
[Lemaréchal Oustry 2000]

Example of max-cut:

maxz’ Qz subject to 22 =1(i=1,...,n)

Lagragian dual:

min max .z Qx + %uz(l ;)

. T T T
min max .z (Q — diagu)x +u'e
max = +o00o if () — diagu A 0
max = ule if Q — diagu <0

= minu’e subject to diagu —@Q > 0

Taking the dual:
= max((Q), X) subject to diagX =e, X =0

~» basic SDP relaxation



Idea: get stronger relaxations by adding
redundant constraints to the max-cut
formulation [Anjos Wolkowicz 2000]

max-cut:
max (Q, X)
X >0
rank(X) =1
2 1 (i L i
Xi=1@w#75=1,...,n)
X?—nX =0
Xij=XaXp i#£j#k=1,...,n)
Bidual:
max > QY0
ijEEn
st. Y >0
diagy” = e

Yiego = Yo (0 7 #k=1...n)

Fact: N, (MET),) is contained in the AW relaxation



A general lifting paradigm for finding conv(F’)
where F' C {£1}"

€ F~y:=(I2i)cy ~ Y i=yy satisfies:
iel T

i) diag(Y) =1
Y (1, J) depends only on ITAJ
Y =0

As Y is indexed by all subsets of V' = {1,...,n}, it is
exponentially big
~» restrict to submatrices of Y of polynomial sizes

e Lovasz-Schrijver: Restrict to the principal submatrix
indexed by @ and the singletons 1,...,n

e Lasserre: Restrict to the principal submatrix indexed by
all subsets of size < ¢

o Sherali-Adams: Restrict to the principal submatrices
indexed by all subsets of U for U C V with |U| =t

The methods also differ in the way of expressing member-
ship in conv(F')



The Lovasz-Schrijver construction

P := CUT(G) in the edge space R¥
K := MET(G) linear relaxation of P
(Generally: K C [—1,1]% convex, P := conv (K N{#1}%))

1

ze KN{E1}f ~ 7 = (z

) (1 21) satisfies:

() diag(Z2)=1
(ii) Z(eo + eij) e K (Z] < E)
(iii) Z = 0

N(K) :={z e R"| (1) = Zey for Z satistying (¢) — (i) }

1

VLK) = {2 e RE

) = Zeq for Z satisfying (i)—(i47)}

PC N, (K)C NK)CK

Iterated relaxations:

NY(K) = N(N*"Y(K))
NL(K) = Ny (NTY(K))




Facts:

e One can optimize in polynomial time over N*(K),
N (K) for fixed ¢ assuming existence of an efficient
separation algorithm for K

e NYK) = P where d = dim(K) (= |E| here)

e For K = MET(G), P = CUT(Q)
G/{e1,...,e} hasno Ks-minor = NY(K) =P

o For K = FR(G), P = STAB(G)
Nn—a(G)—l(K) _ Ni‘(G)(K) —_p



The Lasserre construction

v € {£1}"~ y = (1 xi)icy ~ Y = yy’ satisfies:
ier T

Y »=0
diag(Y)=1
Y (1, J) depends only on ITAJ

Y i1s a moment matrix

Definition: Given an integer ¢ > 1 and a vector y =
(y1)i11<2t> its moment matriz My(y) of ordert is

Mi(y) == (y1as)1,71<t

Q:(G) = projection on RE of set {y | My(y) = 0, yp = 1}

CUT(G) € @Qn(G) C ... CQG) C ... € Qi(G)

Lemma: The eigenvectors of M,,(y) are the vectors
yd = ((=D)IMN ;o with eigenvalue y7y4. That is,

T A
y'y
' (y

My(y)= £ ==y ")

CUT(G) = @n(G)




Intermezzo: The Lasserre construction for
general +1 polytopes

P = conv-hull (K N{£1}")
K C [—1,1]" polytope or semi-algebraic set
K={xeR"|gi(x) >0...gn(x) >0}

may assume g(x) = Ig/ g1 ilell x;

9,y € RPV) o g xy == M,(y)g

Observation: z € K N{£1}" ~ y := (Il x;)1cy
iel T
satisfies: g * y = g(x) - y and, therefore,

Q:(K) := projection on R" of the set
{ylyo=1, My(y) = 0, My_y,(ge*y) = 0VL}

deg 2(9@)}

for t > v := max

PCQui(K)C...CQO.K)

P = QTH"U(K>
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P l Qn-H;(K)

Assume:
M, (y) = 0, Myu(ge * y) = 0 VL

Then:
VR
Y % AY

yly4

with Ay == %53

> (0 forall A

Show: A4 = 0 if A does not correspond to a point in K;
that is, if g y* < 0 for some ¢

Proof: The eigenvalue of M, (g, * ) for eigenvector y* is
equal to:

(g0 % y)Ty" = (ge  y)s Yy
= ? (? gf(J>yIAJ) 9}4

= %.%U)yf (? ylAJ?JfAJ)
=giy" Yyt =0

Hence:
— yly? =0
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Comparison of the Lasserre and
Lovasz-Schrijver constructions

K is a polytope

Qu+1(K) C N4 (Qu(K))

4
Qr+1(K) C Ni(K)

Example: G = (V, E) graph
K = fractional stable set polytope FR(G)

:{x€%K|xi+xj§1(ij€E)}

Then:
Q:(K) = projection on R of the set

{yly=1, Mi(y) =0, ;=0 (ij € E)}

Hence:

Q:(K) € N.(K) € TH(G) = Qy(G)
STAB(G) = Qu(K) C N¢™\(K)

strict inclusion for the line graph of Ko, 1
(Stephen-Tungel 1999)
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Comparison with the Sherali-Adams
lift-and-project method

K={ze[-1,1"| gi(x) > 0...gn(z) > 0}

(1) Multiply each inequality defining K by the products

M(l—xz;) T (14x;)forall A C U C [1,n]with |[U| =t
€A icU\A

(2) Linearize: yj := _H[ T, v =1 Vi
AS

(3) Si(K) := projection on the z-space R”

Si(K) C NYK)

Interpretation in terms of moment matrices:

(igA(l — ;) Z'Egl\A(l 4 xi)) go(z) =

( 3 (—1)mA'yf) - (?w(ﬂw) = ]gU(—l)'mA‘ (?ge(J)me)

)Ty?

= > (=1)"™grxyr = (g y

>0 forall ACU
This means: My(ge*y) = 0 for all |U| = t.
Analogously: My(y) = 0 for all |U| =t +1

Hence Si(K') = projection of the above SDP conditions

Qt—i—v(K> g St(K)
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Algebraic background
Primal approach: Moment sequences

Problem: Minimize a polynomial g(z) = > g, 7" - - - )

over a semi-algebraic set:
K={zeR" [gx)=20,...,9m(z) = 0}

x

p* :=ming(x)st. x € K
= min [ g(x)dp(z)

[ probability
measure on K

Note:
Jx 9(@)dp(x) = [o(X gax®)dpp(z) = 3 go fie 3 dp(x) =23 gy

Yo

*x

pr = min X gaYa
s.t. y is the sequence of moments of
a probability measure on K

Lower bound:

p* 2 Py = MinY gaYa
st.oyp =1, My(y) =0, My_y,(gexy) = 0L

Here: M(y) = (ya1p) is indexed by integer sequences
a € ZY with X o; <t
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Dual approach: Sums of squares of polynomials

x

p* :=ming(z)st. x € K

= max A s.t. g(x) — A nonnegative on K

Lower bound:

p* > 0= max A
m
s.t. 9(z) = A =po(z) + X pelx)ge(2)
where py, . .., p,, are sums of squares of

polynomials with deg(py) < 2t,
and deg(pe) < 2(t — vy)

Weak SDP duality: o, < p; < p*

Asymptotic convergence of o; to p* ast — o0
Lasserre 2000]

Theorem: |Putinar 1993| Every polynomial positive on
K compact (+...) has a decomposition py(z)+=¢ pe(x)ge()
where py, ..., py are sums of squares of polynomials.

Finite convergence in n steps in the 41 case,
i.e., when the constraints z7 = 1 are present in the
description of K
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Algebraic interpretation of the Sherali-Adams
construction [Lasserrre 02]

p* =min. g(x)over K ={x | g1(x) > 0...gn(x) >0}

(1) Consider the products g;(z)" - - g, (x)’» > 0 for all

(2) Linearize: y, := 27" --- 2% ~» LP in variable y

Set: p; := minimum of > aYa OVer this LP
By LP duality:

o = max A

s.t. T)— A= > Aggy () - g, (x)Pm
g(z) sezn S 5 e 5g1(z)" - gim()

for some A\g > 0

Lower bound: p* > p;

Asymptotic convergence of p; to p* as t — oo when
K is a polytope

Theorem: [Handelman 1988] Every polynomial positive
on a polytope K has a decomposition > )\ﬁgfl X gf{” for
5

some Ag > 0
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Several SDP relaxations for CUT(G)

e Apply the Lovéasz-Schrijver construction to K = MET(G)
~ N!(G) C NL(MET(G))

no explicit description ...

e Apply the Lasserre construction to K = MET(G)
~ Q(MET(G))

too many constraints ...

e Apply the Lasserre construction to K = [—1,1|" and
project on R

~ Qi(G)

the best choice!

Theorem: [La 01]| Q;2(G) C N'(G)
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A more concise formulation for Q;(G) =
projection on RE of {y | yp =1, M;(y) = 0}

I <t=t || <t#t
1| <t
=t A B

Mt(y) = ‘]‘ < ¢

£ ¢ BT C

e (' is a principal submatrix of A
e may assume B = 0 as we project on pairs (even sets)

~» restrict to moment matrices indexed by sets |I| = ¢t mod 2

t = 1: basic SDP relaxation: Y > 0, diag(Y)=1
t =2 : SDP relaxation: Y > 0, diag(Y')=1
Y1213 = Yjo3, Y1234 = Y1324 = Y1423
~> triangle inequalities are satisfied |[AWO1]

0 12 13 23

0 I yi2 Y13 o3
X = 12fyi2 1 Y23 y13

131 y13 w23 1 w12

23 \y23 vz Y12 1

> 0= e’ Xe = 4(14+y19+yi3+y23) > 0
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Properties of the SDP relaxation Q;(G)

Definition: The rank p(G) of graph G is the smallest
integer ¢t for which CUT(G) = Q¢(G).

p(K3) = p(Ky4) = 2, p(Ks5) = p(Ks) = 3, p(K7) =4

Proposition: p is minor monotone

p(G) < 1 <= G has no K3-minor
p(G) < 2 <= G has no K5-minor
p(G) < 3 = G has no K7-minor

Other minimal forbidden minors?

Proposition: p(G/e) <t = p(G) <t+1
Conjecture: p(K,) = ||
Note: Enough to show the theorem for n odd and the
conjecture for n even

Theorem: p(K,) > |

N3
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Sketch of proof of p(K,) > |3| (n =2k +1 odd)
Goal: show strict inclusion CUT(K,,) C Qr(K,)

Show:
S 72 0N - . 1—n
min = —— min =
Qr(Kn) ij Yii 2 CUT(Ky) ij Jij 2

For this: Construct M (y) = 0 with X y;; = —g
ij

. e 2r+1
ag ‘= ]-7 A2r42 = _a/27’n_27,_1

yr := aj) for all even sets [

Theorem: M (y) = 0

Proof:

(1) Z := principal submatrix of My(y) indexed by the k-
subsets of {1,...,n —1}; D := order of Z.

Show that Z is positive definite.

Hence Mj,(y) has at least D positive eigenvalues.

Tools: Z belongs to the Johnson scheme J(2k, k); com-
pute its eigenvalues using hypergeometric series.

(2) Show that My (y) has at least N — D zero eigenvalues.
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(1) Show that Z is positive definite
k
4= angg
(=0
where Ay are the 0/1 adjacency matrices of the Johnson

scheme J(2k, k), with (I, J) entry 1iff |[TAJ] = 2¢

The distinct eigenvalues of Z are, for u =0,...,k

2
k (u)k —u

E [k —u : k u
— o (—1 J
Eo( 7 (jg() B2i+2g ( ) ( 1] ))

Show:
(i) The inner sum is equal to a%%

. —k—=1/2)y (1/2)0 _ 1:3-..-(2k+1
(i) Ay = ( (i—k{u) ((k/—zz)! — 2k-k!-(2kg—2u—l—)1) >0

)

Tool: Gauss tdentity for hypergeometric series:
when b < 0 is integer and x =1
- (oz)z(b)za;’_Z - I'(c—a—0b)(c)
i=0 (c); i T(c—a)l(c—b)

['(n+1) =mnl, = (x), for integer n > 0

See: A = B, Petkovsek-Wilf-Zeilberger 1996; Complexity
of semi-algebraic proofs, Grigoriev-Hirsch-Pasechnik 2001
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A curiosity about the spectrum of M (y)

The distinct eigenvalues of My(y) are:

n=3n=5n="7 n=9 n=11
k=1k=2| k=3 k=4 k=5

0 0 0 0 0

3 5,3 7,5, 3|9, 7,5 3|11 9 7 5 3
2 4°2 16 4°2/8°6 42|10 86 4 2

263 11 , 263
128 10 128

: 13 263 SRTOY
The new eigenvalues < and 753 have multiplicity one
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A tentative iterative proof for Y = M;(y) = 0
Say n = 2k + 1 with £ odd

Yiu Yz Yis
v | Ysr Yaz Y
Ys1 Y3 Yis
Vi = 2B YaEY =0 in J(n, 1)
Y = 0<=
Y33 Yas Yar\ (Yar )"
YVi=|Ys3 Y5 — 2 Yo || Vo | =0
Viy = 220 B YAER) =0 (u < 2) in J(n,3)
Y>>0«
T
v () - e (%) (Y5)
_ n(n—2)(n—4)(n—>6 (5) .
Y = Gl s s g B - i J(0,5)

computations too hard ...
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Geometric properties of moment matrices

max 33 wi;(1 — yi5)
ij
st. yp=1, My(y) =0

When does this SDP relaxation solve Max-Cut exactly?

If Mi(y) > 0, when is M;(y)
a convex combination of cut matrices?
Yes if rank M;(y) =1
Yes if rank My(y) <t

Theorem: [La 01] If M;(y) = 0 and M;(y) has rank < ¢
then M;(y) is a convex combination of 2!~! cut matrices.

t =1 trivial
t = 2 [Anjos-Wolkowicz 2001]

Recall:

Conjecture: p(K,) < %w

Equivalently: If M ( W(y) >~ 0, then M;(y) is a convex

n
2

combination of cuts
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Sketch of proof
Y = My(y) = 0, rank My(y) <t, 1 <t<n-—1
— Y is convex combination of 2t=1 cut matrices

Proposition: If £ = n — 1 then y; = %1 for some even

set I # ()
Corollary: The theorem holds for t =n — 1

ok kKoK ok ok Kok
Prove the theorem by induction on n > ¢ + 1.

We can assume that n > ¢ + 2. Then y;, = £1 for some
even set Iy #£ () (with |Iy| < t+1). Say, n € I.

The induction assumption implies that

Yo= ¥ MM, (y?

0 AEA AM(y™)

Goal: Show that each A € A can be extended to A" := A
or AU {n} in such a way that

YV = Y MM (y?r
M)

Tool: Use the structure of the set of even sets I for which
yr = +1
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Inequality | Min. over | Min. over | Min. over | Min. over | Min. over | Min. over
CUT(K7) | Q3(K7) | Qa(K7) Fr Qi(K7) | Ni(K7)
triangle -1 -1 -1 -1 -1.5 -1
1)
pentagonal -2 -2 -2.5 -2.5 -2.5 -2
)
hexagonal -4 -4 -4.5 -4.5 -4.5 -49/12
(3) ~ —4.0833
(4) -3 -3.5 -3.5 -3.5 -3.5 ?
(5) -6 -6.051882 -6.5 -6.5 -6.5 ?
(6) -7 -7 -7.5 -7.5 -7.5 ?
bicycle -4 -4 -5 -5.0045 -5.8090 -4
(7)
(8) -6 -6 -6.5817 -6.6522 -7.9661 7
9) -9 -9 -9.6433 -9.7036 | -11.0166 ?
parachute -4 -4 -4.7439 -4.8099 -5.9220 -4
(10)
grishukhin -5 -5 -5.6152 -5.7075 -6.9518 ?
(11)

Comparing the strength of the various SDP

relaxations for the facet defining inequalities of
CUT(K7)

Q2(K7) C F; C MET(K7) N Q1(K7)

Ni(K7) C Fr
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Inequality | ¥ijcij | p3 P2 PF p1
triangle (1) 3 1 1 1 |5~ 0.888
pentagonal (2) | 10 1 0.96 | 0.96 0.96
hexagonal (3) | 20 1 0.979 | 0.979 0.979
(4) 21 |0.979 ] 0.979 | 0.979 | 0.979
(5) 34 0.998 | 0.987 | 0.987 0.987
(6) 33 1 0.987 | 0.987 0.987
bicycle (7) 16 1 ]0.952]0.952 | 0917
(8) 30 1 0.984 | 0.982 0.948
(9) 47 1 0.988 | 0.987 0.965

Comparing the integrality ratios

Given ¢ € RF» and t > 0

for the facets of K-

o Zij Cij — min(CTy | (TS CUT(Kn)>

Pt =

27

p1 > 0.878 forc>0

245 Cij — min(cTy ‘ Y < Qt(Kn>)




