Some applications of moments and SDP-relaxations

J.B. Lasserre

LAAS-CNRS,

Semidefinite Programming and Applications,

MSRI, Berkeley, October 2002

- global optimization (with polynomials)
- systems of polynomial equations
- \bullet bounds on measures with moment conditions
- invariant measures

 $\mathbf{2}$

Consider the **global optimization** problem

$$\mathbb{P} \mapsto p^* := \min\{g_0(x) \mid g_i(x) \ge 0, \ i = 1, \dots m\},\$$

where $g_i(x) : \mathbf{R}^n \to \mathbf{R}$ are all real-valued polynomials. Let

$$\mathbb{K} := \{ x \in \mathbf{R}^n \, | \, g_i(x) \ge 0, \, i = 1, \dots m \},\$$

be the feasible set. Let

$$1, x_1, x_2, \ldots, x_n, x_1^2, x_1x_2, \ldots, x_n^r$$

be a basis (of dimension s(r)) of the vector space of realvalued polynomials of degree at most r, and in this basis write

$$p(x) = \sum_{\alpha \le r} p_{\alpha} x^{\alpha} = p_{\alpha} [x_1^{\alpha_1} \dots x_n^{\alpha_n}],$$

with $\alpha = \sum_{i=1}^{n} \alpha_i$, and $p \in \mathbf{R}^{s(r)}$ its vector of coefficients.

The univariate case

In this case one considers

$$\mathbb{P} \to p^* = \min_{x \in \mathbb{K}} g_0(x), \text{ with } \begin{cases} \mathbb{K} \equiv \mathbf{R} \\ \mathbb{K} \equiv \mathbf{R}_+ \\ \mathbb{K} \equiv [a, b] \end{cases}$$

With $\mathbb{K} \equiv \mathbf{R}$, Shor (1987) was the first to show that \mathbb{P} is a convex problem. Later Nesterov (1997) proposed an LMI formulation for the three cases.

The multivariate case is NP-hard in general.

Recent approaches (Lasserre, Nesterov, Parrilo,...) use results from

- (real) algebraic geometry (**positive polynomials**)
- functional analysis (moments),
- convex analysis (SDP)

Two dual points of view

 p^* global minimum $\Leftrightarrow g_0(x) - p^* \ge 0 \,\forall x \in \mathbb{K}$, i.e.,

 $g_0(x) - p^*$ is a nonnegative polynomial on \mathbb{K} .

 \Rightarrow Characterize these polynomials

 \rightarrow (real) algebraic geometry

But we also have

$$p^* = \min_{\mu} \{ \int g_0(x) \, \mu(dx) \, | \, \mu \in \mathcal{P}(\mathbb{K}) \},$$

where $\mathcal{P}(\mathbb{K})$ is the space of probability measures with support contained in \mathbb{K} . Indeed,

(0.1)
$$\int g_0(x)\,\mu(dx) \ge p^*, \,\forall \mu \in \mathcal{P}(\mathbb{K}),$$

and with $\mu := \delta_{x^*}$ at a global minimizer x^* ,

$$\int g_0(x)\,\delta_{x^*}(dx)\,=\,p^*$$

Observe that both properties are valid for global optima only. Moreover, (0.1) is a linear optimization problem.

 $\min_{\mu} \{ \langle g_0, \mu \rangle \mid \langle 1 |_{\mathbb{K}}, \mu \rangle = 1; \ \langle 1 |_{\mathbb{K}^c}, \mu \rangle = 0; \ \mu \ge 0 \}.$ $\Rightarrow \text{ characterize these measures } \mu \dots \text{ (functional analysis)}$

II. The point of view of moments

The dual linear program of (0.1) is

$$\max_{\gamma,\lambda} \{ \gamma \,|\, \lambda \mathbb{1}_{\mathbb{K}^c} + \gamma \mathbb{1}_{\mathbb{K}} \le g_0(x), \,\forall x \in \mathbf{R}^n \},$$

or, equivalently, $\max_{\gamma} \{ \gamma \mid g_0(x) - \gamma \ge 0 \text{ on } \mathbb{K} \}.$

Writing

$$\int g_0(x)\,\mu(dx) \,=\, \sum_{\alpha} (g_0)_{\alpha} \int x^{\alpha}\,\mu(dx) \,=\, \sum_{\alpha} (g_0)_{\alpha} y_{\alpha},$$

with y_{α} being a moment of order α of μ , (0.1) reads

$$\begin{cases} \min_{y} \sum_{\alpha} (g_0)_{\alpha} y_{\alpha} \\ y_{\alpha} = \int x^{\alpha} \mu(dx) \ \forall \alpha \text{ for some probability } \mu \text{ on } \mathbb{K} \\ \text{Hence, translate the condition} \end{cases}$$

there is some probability μ on \mathbb{K} such that

$$y_{\alpha} = \int x^{\alpha} \mu(dx), \, \forall \alpha \leq r,$$

into a condition on the vector y. This the **K-moment problem**, which dates back to Hausdorff, Markov, Stieltjes, Hamburger, etc ...

6

- $\mathbb{K} = \mathbb{R}$ (truncated) Hamburger problem
- $\mathbb{K} = (\mathbf{R})^+$ (truncated) Stieltjes problem
- $\mathbb{K} = [a, b]$ (truncated) Hausdorff problem

In the one-dimensional case, there exist **Necessary and** sufficient conditions in terms of positive semidefinite constraints on related Hankel matrices H(y)...

Particular case of $\mathbb{K} = [0, 1]^n$

Hausdorff moment conditions

Ex:
$$n = 2$$
; Given a measure $\mu(d(x, z))$ on \mathbb{R}^2 , let

$$\int x^i (1-x)^m z^j (1-z)^p d\mu = \sum_{k=0}^m \sum_{l=0}^m \binom{m}{k} \binom{p}{l} x^{i+k} y^{j+l} d\mu.$$

Then, given a vector $y \in \mathbf{R}^{\infty}$, there exists a measure μ on $[0,1]^2$ with

$$\int x^i z^j d\mu = y_{i,j} \quad \forall i, j = 0, 1, \dots$$

if and only if

$$\sum_{k=0}^{m} \sum_{l=0}^{p} \binom{m}{k} \binom{p}{l} y_{i+k,j+l} \ge 0,$$

for all m, p = 1, 2, ... and all i, j = 0, 1, ...

(due to Hausdorff, Bernstein).

Hence, the Hausdorff moment conditions are linear constraints on the y_{α} 's.

... BUT ... notice the **large binomial coefficients** involved

II. The point of view of positive polynomials

=Hilbert's 17**th problem** on the representation of positive polynomials. In the one dimensional case,

$$p(x) \ge 0 \Leftrightarrow p(x) = \sum_{k=1}^{s} q_k(x)^2.$$

Not true anymore in \mathbb{R}^n

Representation of polynomials,

positive on $\mathbb{K} := \{x \in \mathbb{R}^n | g_k(x) \ge 0, k = 1, \dots m\}$ Theorem : [Schmüdgen, Putinar, Jacobi and Prestel]

Assume there is a polynomial $u(x) : \mathbf{R}^n \to \mathbf{R}$ such that $u(x) = q(x) + \sum_{k=1}^m g_k(x)v(x),$ for some polynomials q(x), v(x) both sums of squares,

for some polynomials q(x), v(x) both sums of squares, and such that $\{u(x) \ge 0\}$ is compact. Then:

Every polynomial, $p(x) : \mathbf{R}^n \to \mathbf{R}$, strictly positive on \mathbb{K} has the representation:

(0.2)
$$p(x) = \sum_{j=1}^{r_0} q_j(x)^2 + \sum_{k=1}^m g_k(x) \sum_{j=1}^{r_k} t_{kj}(x)^2,$$

for some (finite) family of polynomials $\{q_j(x)\}, \{t_{kj}(x)\}.$

10

For instance, the representation (0.2) holds whenever $\{g_k(x) \geq 0\}$ is compact for some k, when all the $g_k(x)$ are linear and \mathbb{K} is compact, etc... In practice, one may also add the redundant constraint $M - \sum_i x_i^2 \geq 0$ for M large enough. This is also the case when one has integrality constraints $x_i^2 = x$ for all i. \Rightarrow **very general result!**

The case of a convex polytope

 $\mathbb{K} := \{ x \in \mathbf{R}^n \, | \, Ax \leq b \}$

for some matrix $A \in \mathbf{R}^{m \times n}$.

Theorem : [Cassier (1984), Handelman]

Every polynomial, $p(x) : \mathbf{R}^n \to \mathbf{R}$, strictly positive on \mathbb{K} has the representation:

$$p(x) = \sum_{|\alpha| \le s} c_{\alpha} (b - Ax)_{1}^{\alpha_{1}} (b - Ax)_{2}^{\alpha - 2} \cdots (b - Ax)_{m}^{\alpha_{m}}$$

for some integer s and nonnegative coefficients $\{c_{\alpha}\}$. Notice the **exponential** number of terms, in contrast to the "linear" Schmüdgen-Putinar representation in terms of squares.

SDP-relaxations

Moment matrix.

Let
$$(1, \{y\}) \in \mathbf{R}^{s(2r)}$$
. With $\alpha \in \mathbb{N}^n$, and $|\alpha| = \sum_i \alpha_i$,
 $y_{\alpha_1,...,\alpha_n} \rightsquigarrow \int x_1^{\alpha_1} \cdots x_n^{\alpha_n} d\mu$.

For instance, in \mathbf{R}^2 and with r = 2, and in the basis of monomials, the **moment matrix** $M_r(y)$ reads

In general, if $M_r(y)(i, 1) = y_{\alpha}$ and $M_r(y)(1, j) = y_{\beta}$ then $M_r(y)(i, j) = y_{\alpha+\beta} = y_{\alpha_1+\beta_1,\dots,\alpha_n+\beta_n}$

Localizing matrix.

Given a polynomial θ : $\mathbf{R}^n \to \mathbf{R}$ of degree w, with coefficient vector $\theta \in \mathbf{R}^{s(w)}$, let $M_r(\theta y)$ be the **localizing** matrix

$$M_r(\theta y)(i,j) := \sum_{\alpha} \theta_{\alpha} y_{\{\alpha(i,j)+\alpha\}}.$$

For instance, with $x \mapsto \theta(x) = 1 - x_1^2 - x_2^2$, $M_2(\theta y) = \begin{bmatrix} 1 - y_{20} - y_{02}, & y_{10} - y_{30} - y_{12}, & y_{01} - y_{21} - y_{03} \\ y_{10} - y_{30} - y_{12}, & y_{20} - y_{40} - y_{22}, & y_{11} - y_{21} - y_{12} \\ y_{01} - y_{21} - y_{03}, & y_{11} - y_{21} - y_{12}, & y_{02} - y_{22} - y_{04} \end{bmatrix}$.

If
$$M_r(y)(i,j) = y_\beta$$
 then
 $M_r(\theta y)(i,j) = \sum_{\alpha} \theta_{\alpha} y_{\beta+\alpha}$

that is,

$$Mr(\theta y)(i,j) \rightsquigarrow \int x^{\beta} \, \theta(x) \, \mu(dx)$$

12

If (1, y) is the vector of moments up to order 2r of some probability measure μ on the Borel sets of \mathbf{R}^n , then for every polynomial $q(x) : \mathbf{R}^n \to \mathbf{R}$ of degree at most r,

$$\langle q, M_r(y)q \rangle = \int q(x)^2 \mu(dx),$$

so that $M_r(y) \succeq 0$. Similarly,

$$\langle q, M_r(heta y)q
angle \ = \ \int heta(x)q(x)^2\,\mu(dx),$$

and thus $M_r(\theta y) \succeq 0$ whenever μ is supported on $\{\theta(x) \ge 0\}$.

The theory of moments identifies those vectors y with $M_r(y) \succeq 0$ that are the moments of some measure μ .

The K-moment problem identifies those vectors y with $M_r(y) \succeq 0$ that are moment of a measure μ with support contained in K.

Dual theory in algebraic geometry of representation of polynomials, positive on a semi-algebraic set \mathbb{K}

14

and

Introduce the family $\{\mathbb{Q}_i\}$ of SDP-relaxations

$$\mathbb{Q}_{i} \begin{cases} \min_{y} \sum_{\alpha} (g_{0})_{\alpha} y_{\alpha} \\ M_{i}(y) & \succeq 0 \\ M_{i-v_{k}}(g_{k}y) & \succeq 0, \ k = 1, \dots m. \end{cases}$$

the family $\{(\mathbb{Q}_{i})^{*}\}$ of their dual

$$\mathbb{Q}_{i}^{*} \begin{cases} \max_{X, Z_{1}, \dots, Z_{m} \succeq 0} -X(1, 1) - \sum_{k=1}^{m} g_{k}(0) Z_{k}(1, 1) \\ \text{s.t.} \quad \langle X, B_{\alpha} \rangle + \sum_{k=1}^{m} \langle Z_{k}, C_{\alpha}^{k} \rangle = (g_{0})_{\alpha}, \forall \alpha. \end{cases}$$

where we write

$$egin{array}{rl} M_i(y) &=& \sum_lpha \; y_lpha B_lpha \ M_{i-v_k}(g_k y) \;=& \sum_lpha \; y_lpha C_lpha^k, \; k=1,\ldots m, \end{array}$$

Interpretation :

From the dual, $\max \mathbb{Q}_i^* \leq p^*$ and $p(x) - \max \mathbb{Q}_i^* = \sum_{j=1}^s q_j(x)^2 + \sum_{k=1}^m g_k(x) \left[\sum_{l=1}^{s_k} q_{kl}(x)^2 \right],$ with $\operatorname{degree}(q_i) \leq i$ and $\operatorname{degree}(q_{kl}) \leq i - v_k.$

SDP-relaxation \longleftrightarrow **Schmüdgen-Putinar** representation of $p(x) - p^*$. **Theorem 1.** Assume that there exists a polynomial $u(x) : \mathbb{R}^n \to \mathbb{R}$ of the form (0.2) with $\{u(x) \ge 0\}$ compact. Then:

(0.3) $\inf \mathbb{Q}_i \uparrow p^* = \min \mathbb{P}.$

In addition, if $p(x) - p^*$ has the representation (0.2) for polynomials $\{q_j(x)\}\$ et $\{t_{kj}(x)\}$, of degree at most N, then

(0.4)
$$p^* = \min \mathbb{Q}_i, \quad \forall i \ge N,$$

and for every optimal solution x^* of \mathbb{P} , the vector (0.5) $y^* := (x_1^*, \dots, x_n^*, \dots (x_1^*)^{2i}, \dots (x_n^*)^{2i})$ is an optimal solution of \mathbb{Q}_i .

Karush-Kuhn-Tucker Global optimality conditions

Proposition 2. Assume that there exists a polynomial $u(x) : \mathbb{R}^n \to \mathbb{R}$ of the form (0.2) with $\{u(x) \ge 0\}$ compact, and let x^* be an optimal solution of \mathbb{P} . If $p(x) - p^*$ has the representation (0.2), then

(0.6)
$$g_k(x^*) \left[\sum_{j=1}^{r_k} t_{kj}(x^*)^2 \right] = 0, \ k = 1, \dots m$$

(0.7)
$$\nabla g_0(x^*) = \sum_{k=1}^m \nabla g_k(x^*) \left[\sum_{j=1}^{r_k} t_{kj}(x^*)^2 \right]$$

Thus, we may interpret the representation (0.2) of $p(x) - p^*$ as a **global optimality condition** à la Karush-Kuhn-Tucker, with **polynomials multipliers** $\sum_{j=1}^{r_k} t_{kj}(x)^2$ in lieu of the usual scalars λ_k^* , $k = 1, \ldots m$.

Moreover, if (x^*, λ^*) is KKT optimal point of \mathbb{P} , and the gradients $\{\nabla g_k(x^*)\}$ are linearly independent, then

$$\sum_{j=1}^{r_k} t_{kj}(x)^2 = \lambda_k^*, \ \forall k = 1, \dots m.$$

LP-Relaxations

Basic idea: [Shor, Sherali and Adams](1) add redundant constraints of the form

 $g_1(x)^{\alpha_1}g_2(x)^{\alpha_2}\cdots g_m(x)^{\alpha_m} \geq 0,$

with $|\alpha| \leq \delta$, fixed.

(2) **linearize** all the terms

$$y \mapsto y_{\beta} := x_1^{\beta_1} x_2^{\beta_2} \cdots x_n^{\beta_n},$$

to replace the nonlinear constraint

$$g_1(x)^{\alpha_1}\cdots g_m(x)^{\alpha_m} \geq 0,$$

by the linear constraint

$$\sum_{eta} c_{eta} y_{eta} \, \geq \, b$$

The LP-Relaxation of order δ is the LP pogram

$$\mathbb{P}_{\delta} o \min_{y_{\beta}} \{ c_{\beta}' y_{\beta} \mid A_{\delta} y \geq b_{\delta} \},$$

with dual

$$\mathbb{P}^*_{\delta} \to \max_{\lambda \ge 0} \{ b'_{\delta} \lambda \mid A'_{\delta} \lambda = c_{\delta} \}$$

Interpretation

Let $\rho_{\delta} := \min \mathbb{P}_{\delta} = \max \mathbb{P}_{\delta}^*$. Then : $\rho_{\delta} \leq p^*$ and : $g_0(x) - \rho_{\delta} = \sum_{|\alpha| \leq \delta} \lambda_{\alpha} g_1(x)^{\alpha_1} g_2(x)^{\alpha_2} \cdots g_m(x)^{\alpha_m}, \ x \in \mathbf{R}^n$

The dual aims at representing $g_0(x) - p^*$ as in **Cassier**, **Handelman**'s representation, which in principle is valid only when the g_k are linear and define a polytope K.

Corollary : Let \mathbb{K} be a convex polytope, i.e., the g_k 's are linear : Then

$$\rho_{\delta} \uparrow p^* \quad as \ |\delta| \to \infty,$$

that is, the LP-relaxations converge.

Remarks: (i) ill-conditioned when δ large.

Example : $\mathbb{K} = [0, 1]^n$. From the constraints $x \ge 0$ and $(1 - x_i) \ge 0$, the linear constraints coming from the linearization of $\prod_{i \in I} x_i^{\alpha_i} \prod_{j \in J} (1 - x_j)^{\alpha_j}$ contains **large binomial coefficients**.

They are in fact the **Hausdorff moment conditions** on y to be the vector of moments of a probability measure on $[0, 1]^n$.

Let I(x) be the set of active constraints at a feasible point x, i.e., $i \in I(x) \Rightarrow g_i(x) = 0$.

(ii) No relaxation can be exact if a global minimum is in the interior of \mathbb{K} or if there is a nonoptimal feasible point x with $I(x) = I(x^*)$. SDP-relaxations \mathbb{Q}_i LMI constraints $p(x) - \min \mathbb{Q}_i = \sum^2 + \sum^m_{k=1} g_k(x) \Sigma^2$ Schmüdgen-Putinar $0 - 1 \rightarrow \min \mathbb{Q}_{n+v} = p^*$ \mathbb{K} compact. $\min \mathbb{Q}_i \uparrow p^*$ n = 1; a single relaxation SDP-packages : limited

LP-relaxations \mathbb{P}_i

Linear constraints

$$p(x) - \min \mathbb{P}_i = \sum_{\alpha} g_1^{\alpha_1} \cdots g_m^{\alpha_m}$$

Cassier, Handelman (polytope)

 $0 - 1 \rightarrow \min \mathbb{P}_n = p^*$

 \mathbb{K} **polytope**. min $\mathbb{P}_i \uparrow p^*$

 $n = 1; \min \mathbb{P}_i \uparrow p^*$

LP-packages : unlimited

ill-conditionning; binomial coeff.

Bounds on measures with moment conditions [Lasserre (2002)], Annals Appl. Prob.

Let $\Gamma \subset \mathbb{N}^n$ and let $\{\gamma_{\alpha}\}_{\alpha \in \Gamma}$ be a given finite sequence of scalars. **Problem:** Given a semi-algebraic set

$$\mathbb{K} := \{ x \in \mathbf{R}^n \mid g_i(x) \ge 0, \quad i = 1, \dots, m \}$$

we want to find, or approximate

$$\rho^* := \sup_{\mu \in \mathcal{P}(\mathbf{R}^n)} \{ \mu(\mathbb{K}) \mid \int x^{\alpha} d\mu = \gamma_{\alpha} \quad \alpha \in \Gamma \}$$

Applications in Probability, Finance, Queuing, ...

Work motivated by nice results from **Bertsimas and Popescu** (1999)-(2002) for the case \mathbb{K} convex, and firstand second order moment conditions (see also further extensions).

Write $\mu = \varphi + \psi$ with $\varphi(K^c) = 0$ and let $\{y_{\alpha}, z_{\alpha}\}$ be the respective moments of φ, ψ , so that

$$\int x^{\alpha} d\mu = y_{\alpha} + z_{\alpha} \quad \alpha \in \mathbb{N}^{n}.$$
$$\rho^{*} = \begin{cases} \sup y_{0} \\ \text{s.t. } y_{\alpha} + z_{\alpha} = \gamma_{\alpha} \quad \alpha \in \Gamma \end{cases}$$

SDP-relaxation

$$\mathbb{Q}_r \begin{cases} \sup y_0 \\ \text{s.t.} & M_r(y), M_r(z) \succeq 0 \\ & M_{r-v_i}(g_i y) \succeq 0 \quad i = 1, \dots, m \\ & y_\alpha + z_\alpha \qquad = \gamma_\alpha \quad \alpha \in \Gamma \end{cases}$$

Theorem: (a) As $r \rightarrow \infty$

$$\sup \mathbb{Q}_r \downarrow \delta \ge \rho^*.$$

(b) If in addition, \mathbb{Q}_r is solvable and an optimal solution y^*, z^* satisfies

 $\operatorname{rank} M_r(y^*) = \operatorname{rank} M_{r-d}(y^*); \quad \operatorname{rank} M_r(z^*) = \operatorname{rank} M_{r-1}(z^*),$ then

$$\max \mathbb{Q}_r = \rho^* = \max_{\mu \in \mathcal{P}(\mathbf{R}^n)} \{ \mu(\mathbb{K}) \mid \int x^{\alpha} d\mu = \gamma_{\alpha}, \quad \alpha \in \Gamma.$$

22

Invariant prob. measures of Markov chains Let (X, \mathcal{B}, Q) be a time-homogeneous Markov chain $\Phi_{\bullet} =$ (Φ_0, Φ_1, \ldots) with state space X, and t.p.f. Q. -Q(x, .) is a prob. measure on \mathcal{B} for all $x \in X$. $-x \mapsto Q(x, B)$ is measurable for all $B \in \mathcal{B}$. Prob $(\Phi_t \in B | \Phi_{t-1} = x) = Q(x, B) \quad B \in \mathcal{B}, x \in X$. $\mu \in \mathcal{P}(X)$ is an invariant prob. measure for the MC Φ_{\bullet} if $\mu(B) = \int_X P(x, B) \mu(dx) \quad \forall B \in \mathcal{B}$. If μ is unique and $f \in L_1(\mu)$ then :

If μ is unique and $f \in L_1(\mu)$ then :

$$\lim_{T \to \infty} E_x \frac{1}{T} \sum_{t=0}^{T-1} f(\Phi_t) = \int_X f \, d\mu \quad \mu-\text{a.e.},$$

and for μ -a.a. $x \in X$,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(\Phi_t) = \int_X f \, d\mu \quad P_x - \text{a.s}$$

Simulation gives only an estimate of $\int_X f d\mu$. Remark: $X \equiv \mathbf{R}^n$. If $Qf \in \mathbf{R}[x]$ when $f \in \mathbf{R}[x]$ then $y_\alpha = \int x^\alpha d\mu = \int (Qx^\alpha) d\mu = \langle A_\alpha, y \rangle$ **SDP-relaxations:** Let $f = \sum_{\alpha} f_{\alpha} x^{\alpha} \in \mathbf{R}[x]$.

so that

$$\sup_{r} \min \mathbb{Q}_{r} = \underline{\rho} \le \int_{X} f \, d\mu \le \overline{\rho} = \inf_{r} \max \mathbb{Q}_{r}$$

If μ is the unique inv. prob. measure then one gets upper and lower bounds on $\int f d\mu$. If not, then :

$$\sup_{r} \min \mathbb{Q}_{r} = \underline{\rho} \leq \inf_{\mu Q = \mu} \int_{X} f \, d\mu$$

and

$$\sup_{\mu Q = \mu} \int_X f \, d\mu \, \le \, \overline{\rho} \, = \, \inf_r \max \mathbb{Q}_r$$

LP-relaxations: Stockbridge, Helmes

$$LP_r \begin{cases} \max_y (\text{or } \min_y) \sum_{\alpha} f_{\alpha} y_{\alpha} \\ \text{s.t. Hausdorff moment conditions} \\ y_{\alpha} - \langle A_{\alpha}, y \rangle = 0, \quad \forall |\alpha| \leq r \end{cases}$$

SDP-relaxations better than LP-relaxations

I. Barnsley Iterated function systems:

$$x_{t+1} = f_{\xi_t}(x_{t-1}), \quad t = 1, \dots,$$

- $X \equiv \mathbf{R}^n$, ξ_{\bullet} is a Markov chain on a finite set $S = \{1, \ldots, m\}$ with **t.p.f.** $P(\xi_t = j | \xi_{t-1} = i) = p_{ij}$ and unique invariant prob. distribution $\gamma = (\gamma_1, \ldots, \gamma_m)$.

- $f_{\xi}: \mathbf{R}^n \rightarrow \mathbf{R}$ is a polynomial

Evaluate or approximate

$$\rho^* := \lim_{T \to \infty} E_{\nu} \left[\frac{1}{T} \sum_{t=0}^{T-1} h(x_t) \right],$$

when $h := 1_{\mathbb{K}}$ or $h \in \mathbf{R}[x_1, \ldots, x_n]$, and $\nu \in \mathcal{P}(\mathbf{R}^n)$ is the initial prob. distribution of $x_0 \in \mathbf{R}^n$.

 $\{X_t\}$ is a time-homogeneous, \mathbb{R}^n -valued Markov chain. Usually ρ^* is **estimated** via **Simulation**. The result depends on the initial distribution if there are several invariant prob. distributions. Let μ be an invariant prob. distribution and assume that all its moments $\{y_{\alpha}\}$ are finite.

$$y_{\alpha} = \int_{\mathbf{R}^n} x^{\alpha} d\mu = \int_{\mathbf{R}^n} \sum_{j \in S} \gamma_j f_j(x)^{\alpha} d\mu = \langle A_{\alpha}, y \rangle$$

Example: Logistic map:

$$X \equiv [0,1] \text{ and } x_{t+1} = 4x_t(1-x_t).$$
$$y_n = \int_0^1 x^n \, d\mu = [4x(1-x)]^n \, d\mu = \sum_{j=0}^{2n} \beta_{jn} y_j$$

Invariant prob. measures:

- Uncountably many inv. prob. measures with support, all cycles of order 1, 2, etc ...

- 1 inv. prob. measure, absolutely continuous w.r.t. λ , with density $x \mapsto [\pi \sqrt{x(1-x)}]^{-1}$

26

II. Diffusions

Exit times. Consider a continuous Markov process on $\Phi = \{\Phi_t, t \geq 0\}$ on \mathbb{R}^n , with infinitesimal generator \mathcal{A} (with domain \mathcal{D}).

Let $E_0 \subset \mathbf{R}^n$ be a bounded open set and E_0^c its complement. Let τ be the **first time** the process Φ **hits** E_0^c .

Problem: Evaluate or approximate the distribution of τ , e.g., its moments $E[\tau], E[\tau^n], \ldots$

Let μ_0, μ_1 be the occupation measure and the exit time distribution,

 $\mu_0(B) = E \int_0^\tau \mathbb{1}_B(\Phi_s) \, ds; \quad \mu_1(B) = \operatorname{Prob}(X_\tau \in B) \quad B \in \mathcal{B}.$ It follows that

**
$$f(x_0) + \int_{E_0} \mathcal{A}f(x)\mu_0(dx) - \int_{E_0^c} f(x)\mu_1(dx) = 0.$$

In general, we have $\mathcal{A} = \partial/\partial x_i, \partial^2/\partial x_i\partial x_j, \dots$ so that

$$\mathcal{A}f \in \mathbf{R}[x]$$
 if $f \in \mathbf{R}[x]$.

Then (**) generates **linear constraints** on the **moments** of μ_0, μ_1 ! **Example:** Cox-Ingersoll-Ross interest rate model (Stockbridge and Helmes).

$$dY_t = (aY_t + \beta)dt + \sigma\sqrt{Y_t}\,dW_t,$$

with $Y(0) \in (r, 1), \alpha \in \mathbf{R}, \beta, \sigma \ge 0$ and 0 < r < 1. $\mathcal{A}f(x) = \frac{\sigma^2}{2} x f''(x) + (\alpha x + \beta) f'(x),$

with f twice continuously differentiable.

Let τ be the first exit time of $\{Y_t\}$ from (r, 1), so that $E_0 = (r, 1)$ and $E_0^c = \{r\} \cup \{1\}$. So μ_0 has support on (r, 1) and $\mu_1 = (\mu_1(\{r\}), \mu_1(\{1\})) = (p, q)$ with p + q = 1. Let $\{y_\alpha\}$ and $\{z_\alpha\}$ be the moments of μ_0 and μ_1 .

$$z^{\alpha} = pr^{\alpha} + q \qquad \alpha \in \mathbb{N}.$$

When $f = x^{\alpha}$, the equation

$$f(x_0) + \int_{E_0} \mathcal{A}f(x)\mu_0(dx) - \int_{E_0^c} f(x)\,\mu_1(dx) \,=\, 0.$$

define linear constraints

$$\langle U_{\alpha}, y \rangle + pr^{\alpha} + q = 0, \quad \alpha \in \mathbb{N},$$

on the moments y and the scalars p, q

As $E[\tau] = \mu_0(X)$, the SDP-relaxation reads:

$$\mathbb{Q}_{m} \begin{cases} \max (\text{or, min}) y_{0} \\ M_{r}(y) & \succeq 0 \\ \langle U_{\alpha}, y \rangle - pr^{\alpha} - q = 0 \\ p, q \ge 0, p + q = 1 \end{cases} \quad \forall |\alpha| \le m$$

Again

$$\sup_{m} \min \mathbb{Q}_m \leq E[\tau] \leq \inf_{m} \max \mathbb{Q}_m,$$

and very good results are reported by Stockbridge and Helmes for the LP-relaxations (which are less efficient than SDP-relaxations)

Extension to higher moments $E[\tau^n]$ easy by using an extended generator for the joint process $\{(X_t, t), t \ge 0\}$.