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e global optimization (with polynomials)
e systems of polynomial equations
e bounds on measures with moment conditions

e Invariant measures



Consider the global optimization problem

P+ p* := min{go(x)|gi(x) > 0,i=1,...m},

where g;(z) : R"—=R are all real-valued polynomials. Let
K:={reR"|g(r)>0,i=1,...m},
be the feasible set. Let

2 r
Ly, 20,.. .y, 2], 0122, ..., T,

be a basis (of dimension s(r)) of the vector space of real-
valued polynomials of degree at most r, and in this basis

write

p(z) = paz® = palri’.. 2],

a<r

with o =>"" |y, and p € R*(") its vector of coefficients.



The univariate case

In this case one considers

K= R
P—p" = mingy(x), with ¢ K = Ry
relk K = [a,]

With K = R, Shor (1987) was the first to show that P is
a convex problem. Later Nesterov (1997) proposed an LMI
formulation for the three cases.

The multivariate case is NP-hard in general.

Recent approaches (Lasserre, Nesterov, Parrilo,...) use
results from

- (real) algebraic geometry (positive polynomials)

- functional analysis (moments),

- convex analysis (SDP)



Two dual points of view

p* global minimum < gg(x) — p* > 0Ve € K ie.,

* is a nonnegative polynomial on K.

go(z) — p
= Characterize these polynomials ....
— (real) algebraic geometry

But we also have

p" = min{ [ golo) uldo) | € PE)),
where P(K) is the space of probability measures with sup-

port contained in K. Indeed,

00 [ alo)utdn) >y e PE),
and with g := 0,+ at a global minimizer z*,
/go(x) Oy (dx) = p*.
Observe that both properties are valid for global optima

only. Moreover, (0.1) is a linear optimization problem.

min{(go, 1) | (U, p) = 1; (Uge, ) = 0; pp = 0}.

= characterize these measures g ..... (functional analysis)
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II. The point of view of moments

The dual linear program of (0.1) is

ma;\X{’Y | Allge + 1k < go(x), Vo € R"},
v,

or, equivalently, max,{7y|go(z) —~v > 0 on K}.
Writing

/ go() p(d) = > (go)a / 2 p(dx) = (g0)aYo,

« «

with y, being a moment of order « of i, (0.1) reads
miny Za(g())cvyoz
Yo = [ 2% pu(dz) Yo for some probability p on K
Hence, translate the condition

there is some probability 1 on K such that

Yo = /xo‘u(dx), Va <,

into a condition on the vector y. This the K-moment
problem, which dates back to Hausdortf, Markov, Stielt-

jes, Hamburger, etc ...



e K =R (truncated) Hamburger problem

e K= (R)" (truncated) Stieltjes problem

e K = [a,b] (truncated) Hausdorff problem
In the one-dimensional case, there exist Necessary and
sufficient conditions in terms of positive semidefi-

nite constraints on related Hankel matrices H(y)...



Particular case of K = [0, 1]"

Hausdorff moment conditions

Ex: n = 2; Given a measure u(d(x, z)) on R?, let

i mj - (M (P i
1 1=z dp = E g Tyt dp.
/x( )" 2 (1=2)P dpu 2 2 (k)(l)x v/ du
Then, given a vector y € R, there exists a measure 1 on

[0, 1)* with
/xizjd,u = v;; Vi,7=0,1,...
if and only if

S5 (1) (5t = 0

k=0 [=0
forallm,p=1,2,... and all 2,7 =0,1, ...

(due to Hausdorff, Bernstein).
Hence, the Hausdorfl moment conditions are linear con-

straints on the v, ’s.

BUT ... notice the large binomial coefficients

involved ....



II. The point of view of positive polynomials
—Hilbert’s 17th problem on the representation of

positive polynomials. In the one dimensional case,

p(z) > 0 & plx) = Y alx)”
Not true anymore in R" .... .

Representation of polynomials,
positive on K:={r e R"|gi(z) >0, k=1,...m}
Theorem : [Schmiidgen, Putinar, Jacobi and

Prestel]

Assume there is a polynomial u(x) : R"—R such that

u(w) = q(z)+ ) gilx)o(),

for some polynomials q(x),v(x) both sums of squares,
and such that {u(x) > 0} is compact. Then:
Every polynomial, p(x) : R"—=R, strictly positive on

K has the representation:

09 ple) = 0 + Y e D gl

for some (finite) family of polynomials {q;(z)}, {trj(x)}.
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For instance, the representation (0.2) holds whenever { g;.(z) >
0} is compact for some k, when all the gi(x) are linear and
K is compact, etc... In practice, one may also add the re-
dundant constraint M — > a7 > 0 for M large enough.

This is also the case when one has integrality constraints

2 _
;=

x; = x for all i. = very general result!

The case of a convex polytope
K:={xr e R"| Az < b}
for some matrix A € R™*".
Theorem : [Cassier (1984), Handelman]
Every polynomial, p(x) : R"—=R, strictly positive on
K has the representation:
plx) = Y calb—Ax){1(b— Az)3 ™% (b— Az))r

|or|<s

for some integer s and nonnegative coefficients {c,}.
Notice the exponential number of terms, in contrast to
the “linear” Schmiudgen-Putinar representation in terms of

squares.



SDP-relaxations

Moment matrix.

Let (1, {y}) € R*®"). With a € N*, and |a| =

yala QU ’\/9/331

For instance, in R? and with 7 = 2, and in the basis of

" d.

>

monomials, the moment matrix M, (y) reads

In general, if M,(y)(¢,1) = y, and M,(y)(1,j) = ys then

Y1,0
Yo.,1

Y2.0
Y11
Yo.2

Y1,0
Y2.0
Y11
Y30
Y21
Y1.2

Yo,1
Y11
Yo,2
Y2.1
Y1,2
Yo.3

Y2.0
Ys.0
Y21
Y4.0
Ys.1
Y2.2

Y11
Y21
Y12
Y31
Y22
Y13

Yo,2
Y1,2
Yo,3
Y2.2
Y13
Yo 4

M?“(y)(Za]) = Ya+8 = Yoq+p1,....an+5n
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Localizing matrix.
Given a polynomial 6 : R"—R of degree w, with co-
efficient vector § € R*®), let M, (Ay) be the localizing

matrix

(9y v ] Z eay{a (1,7)+a}-

For instance, with x +— 0(z) = 1 — 2% — x5, My(Oy) =

11— Y20 — Yo2, Y10 — Y30 — Y12, Yo1 — Y21 — Yo3 |
Y10 — Y30 — Y12, Y20 — Y40 — Y22, Y11 — Y21 — Y12
| Yo1 — Y21 — Yo3, Y11 — Y21 — Y12, Yo2 — Y22 — Yo4 |

If M,(y)(%,7) = yp then

M, (0y) (i, 5) Z%yﬁm

Mr(0y) (i, §) ~ / 27 0(2) pu(da

that is,
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If (1,y) is the vector of moments up to order 2r of some
probability measure p on the Borel sets of R", then for

every polynomial ¢(x) : R"—R of degree at most r,

(4, M, (y)q) = / a(w)? ulde),

so that M,.(y) = 0. Similarly,

(@.24,69)0) = [ 8@ n(do),
and thus M,.(fy) = 0 whenever p is supported on {0(x) >
0}.

The theory of moments identifies those vectors y with
M, (y) = 0 that are the moments of some measure f.

The K-moment problem identifies those vectors y with
M, (y) = 0 that are moment of a measure p with support
contained in K.

Dual theory in algebraic geometry of representation of

polynomials, positive on a semi-algebraic set K
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Introduce the family {Q; } of SDP-relaxations
o 3 o)t

Qi < M@<y>a >~ 0
L MZ—Uk(Q]fZJ) t 07 k= 17 e
and the family {(Q;)*} of their dual

max —X(1,1) — ng(O)Zk(l, 1)

X, 71, T =0

Q; <

m
s.t. )+ Z Z1:, CYYy = (go)a, Vau
k=1

\
where we write

— Z yaBa

zvkgky Zygck,kzl,...m

Interpretation :

From the dual, max Q*-‘ < p* and

p(z) — max Q; Zq] > 4 ng(fc) [Z le(37>2] ,

with degree(q;) <4 and degree(qkl) i — Vg

SDP-relaxation <+— Schmiudgen-Putinar rep-

x

resentation of p(z) — p*.
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Theorem 1. Assume that there exists a polynomial
u(z) : R"—=R of the form (0.2) with {u(x) > 0} com-
pact. Then:

(0.3) inf@Q; T p* = minP.

In addition, if p(x) — p* has the representation (0.2)
for polynomials {q;(z)} et {ti;(x)}, of degree at most
N, then

(0.4) p" = mnQ;, Vi>N,

and for every optimal solution x* of P, the vector

(0.5) y o= (ot ak () ()

s an optimal solution of Q;.
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Karush-Kuhn-Tucker Global optimality
conditions
Proposition 2. Assume that there exists a polynomaial
u(z) : R"—=R of the form (0.2) with {u(x) > 0} com-
pact, and let x* be an optimal solution of P. If p(x)—p*
has the representation (0.2), then

(0.6) gi(x") Ztkj(x*)2 =0, k=1,...m

(O.7> Vgo Z VQk Z tk]

Thus, we may interpret the representatlon (0.2) of p(x)—

p* as a global optimality condition a la Karush-Kuhn-
Tucker, with polynomials multipliers ) '" | #;(x)” in
lieu of the usual scalars A}, k=1,...m.

Moreover, if (x*, \*) is KK'T optimal point of P, and the
gradients {Vgi(x*)} are linearly independent, then

k
Y ti(x) = AL VE=1,...m
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LP-Relaxations
Basic idea: [Shor, Sherali and Adams]

(1) add redundant constraints of the form

g1(z)" ga()™? -+ - gm ()" = 0,
with | < 9, fixed.
(2) linearize all the terms

PRUSVRN Y T

n

to replace the nonlinear constraint

gi(@)™ - g(z)™ > 0,

by the linear constraint

Zcﬁyﬁ Z b

s
The LP-Relaxation of order ¢ is the LP pogram

Ps — min{ czyp | Asy > bs},
yp
with dual
P — max{ b5\ | A\ = cs}

A>0
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Interpretation

Let ps = minPs = max[P§. Then : p; < p* and :

go(x) — ps = Z Mg (2)go(2)?2 - -+ g (2)™™, € R"

o<

The dual aims at representing go(x) — p* as in Cassier,
Handelman’s representation, which in principle is valid
only when the ¢;. are linear and define a polytope K.
Corollary : Let K be a convex polytope, i.e., the g;.’s

are linear : Then
ps T p° as|d] —oo,

that is, the LP-relaxations converge.
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Remarks: (i) ill-conditioned when ¢ large.

Example : K = [0,1]". From the constraints x > 0
and (1 — x;) > 0, the linear constraints coming from the
linearization of [ [;c; 27" [1,e,(1—2;)% contains large bi-
nomial coefficients.

They are in fact the Hausdorff moment conditions
on y to be the vector of moments of a probability measure
on [0, 1]".

Let I(x) be the set of active constraints at a feasible point
x,ie, i€ I(x)= g(xr)=0.

(ii) No relaxation can be exact if a global minimum is in

the interior of K or if there is a nonoptimal feasible point

x with I(x) = I(x").
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Conclusion

SDP-relaxations Q;

LMI constraints

plr) —minQ; =
S ()

Schmiudgen-Putinar
0 —1->minQ,, =p°
K compact. min Q; 1 p*
n = 1; a single relaxation

SDP-packages : limited

LP-relaxations P,
Linear constraints

p(r) —minlP; =
Zoz g(fl ce g%m

Cassier, Handelman (polytope’
0 —1—minP, =p*
K polytope. min P; 1 p*
n =1, minlP; 1 p*
LP-packages : unlimited

ill-conditionning; binomial coeft.
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Bounds on measures with moment conditions

[Lasserre (2002)], Annals Appl. Prob.
Let I' € N™ and let {7, }aer be a given finite sequence of

scalars. Problem: Given a semi-algebraic set
K:={xeR"|gi(zx) >0, ¢=1,...,m}
we want to find, or approximate

pt = sup {uwK I/x dp = v a €T}
peP(R™)

Applications in Probability, Finance, Queuing, ...

Work motivated by nice results from Bertsimas and
Popescu (1999)-(2002) for the case K convex, and first-
and second order moment conditions (see also further ex-
tensions).

Write 1 = @ + 9 with o(K¢) = 0 and let {y,, 2.} be the

respective moments of ¢, 1, so that

/xo‘d,u = Yo+ 20 €N,

. SUp Yo
p St. Yo+ 20 =V a€l
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SDP-relaxation

SUp Yo
s.t. M.(y), M,(z) =0

Mr—vi(giy> ~0 1= 17--->m
Yo + Za =7, aecl

Q,

____/\

Theorem: (a) As r—o0

sup@Q, Lo > p".
(b) If in addition, Q. is solvable and an optimal solution
y*, 2* satisfies

rankM,.(y*) = rankM,_4(y");

)

rankMr(z*) = rankMr—l(Z*>7

then

maxQ, = p* = max {,u K) | /azo‘d,u:%, acl.
peP(RM)



23

Invariant prob. measures of Markov chains

Let (X, B, Q) be a time-homogeneous Markov chain &, =
(®g, D1, ...) with state space X, and t.p.f. Q.
- Q(x,.) is a prob. measure on B for all x € X.

- — Q(z, B) is measurable for all B € B.
Prob(®; € B|®;1=2) = Q(z,B) BeB, zeX.
p € P(X) is an invariant prob. measure for the MC &, if
W(B) = /X P(z.B)uldz) VB E€B.

If 41 is unique and f € Ly(p) then :

T—1
, |
lim Eg,;f;f(q)t) = /de,u p—a.e.,

and for p-a.a. v € X,

| 1 T-1 )
lim —Z:;f(cbt) — /deﬂ P,—a.s

T—)ooTt

Simulation gives only an estimate of [ fdpu.

Remark: X = R". If Qf € R|x] when f € R|x] then
Yo = /xo‘ dp = /(Qxa) dp = (Ao, y)
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SDP-relaxations: Let f =) f.x" € R[z].

Q. st. M, (y)
Yo — (Aa,y)

min Q, < /fd,u < maxQ, Vr
X

max, (or min,) > fa¥a
~

0
0, Via|<r

so that
supminQ, = p < /fd,u < p = inf maxQ,
F v -

If 1 is the unique inv. prob. measure then one gets upper
and lower bounds on [ fdu. If not, then :
supminQ, = p < mf /fdu

- 1Q=p
and

sup / fdp < p = inf max@Q,
nQ=p J X "

LP-relaxations: Stockbridge, Helmes

max, (or min,) > faYa
LP, < s.t. Hausdorft moment conditions
ya_<Aa7y> — O) \VI’Oé’ ST

SDP-relaxations better than LP-relaxations
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I. Barnsley Iterated function systems:

Tir1 = felwimr), t=1,...,

- X = R", & is a Markov chain on a finite set .S =
{1,...,m} with t.p.f. P(& = j|&-1 = ¢) = p;; and
unique invariant prob. distribution v = (y1, ..., V).

- f¢ : R"—=R is a polynomial

Evaluate or approximate
~1
p* = lim F,

1 T
T—00 f h<$t)] ’
t=0

when b := llg or h € Rlzy,...,2,], and v € P(R") is the
initial prob. distribution of zo € R".

{X;} is a time-homogeneous, R"-valued Markov chain.
Usually p* is estimated via Simulation. The result de-
pends on the inital distribution if there are several invariant

prob. distributions.
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Let 1 be an invariant prob. distribution and assume that

all its moments {y,} are finite.
Yo = / xad'u — / Zyjfj<x>& d,LL — <Aomy>
R? " jes
Example: Logistic map:

X =1[0,1] and w41 = 4 (1 — ).
2n

1
mo= [ @l = el =) = Y By
0 .
71=0
Invariant prob. measures:

- Uncountably many inv. prob. measures with support,
all cycles of order 1, 2, etc ...

- 1 inv. prob. measure, absolutely continuous w.r.t. A,

with density x — [W\/x(l — )]}
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II. Diffusions

Exit times. Consider a continuous Markov process on
¢ = {P;,t > 0} on R”, with infinitesimal generator A
(with domain D).

Let Fy C R" be a bounded open set and Ef its comple-
ment. Let 7 be the first time the process ¢ hits Ef.

Problem: Evaluate or approximate the distri-
bution of 7, e.g., its moments E|7], E[T"],...

Let 1o, ;11 be the occupation measure and the exit time

distribution,

po(B) = E/ Up(Ps)ds; i (B) = Prob(X, € B) Be€B.
0

It follows that

“ flan)+ [ Af@ymidr) = [ fa)m(de) = 0.

Fy ¢
In general, we have A = 0/0x;,0*/0x;0x;, ... so that

Af € Rlz]if f € R[z].
Then (**) generates linear constraints on the mo-

ments of 1, fi;!
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Example: Cox-Ingersoll-Ross interest rate model (Stock-

bridge and Helmes).
dY; = (aY; + B)dt + o\/Y; dW,,
with Y(0) € (r,1),a € R, 8,0 > 0and 0 < r < 1.
Af(w) = Zaf (2) + (az + B)f (@)
with f twice continuously differentiable.
Let 7 be the first exit time of {Y;} from (r, 1),
Ey = (r,1) and E§ = {r} U {1}. So pp has support on

(r,1) and py = (pa({r}), m({1})) = (p, @) withp+¢q = 1.
Let {y.} and {z,} be the moments of py and ;.

so that

2% = pr+gq a € N.
When f = x%, the equation

fao) + | Af@polde) — [ () mlde) = 0.

Ey ES
define linear constraints

(Upsy) +pr*+q =0, a€eN,

on the moments y and the scalars p, ¢
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As E|1] = po(X), the SDP-relaxation reads:

max (or, min) yo
M, (y) >0
DN Waw) —pro =g =0 Vo] <m
p,g20,pt+q =1
Again

supmin Q,, < Flr| < i}:,lzf max Q,,,

and very g(?;d results are reported by Stockbridge and
Helmes for the LP-relaxations (which are less efficient than
SDP-relaxations)

Extension to higher moments E|7"] easy by using an ex-

tended generator for the joint process {(Xy,t),t > 0}.



