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Minimizing 1-dim Quadratic Polynomials

• Let q(x) = c+ 2bx+ ax2, x ∈ �. Then

q(x) = (1, x)

[
c b

b a

] (
1

x

)
≥ 0, ∀ x ∈ � ⇐⇒

[
c b

b a

]
� 0.

• Moreover, we have

q(x) ≥ 0, ∀ x2 ≤ 1 ⇐⇒ ∃s ≥ 0, s.t. q(x) ≥ s(1 − x
2
), ∀x ∈ �.

• In matrix form, we have

q(x) ≥ 0, ∀ x2 ≤ 1 ⇐⇒
[
c− s b

b a+ s

]
� 0, for some s ≥ 0.
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Minimizing 1-dim Quadratic Polynomials

minimize c+ 2bx+ ax2

subject to x2 ≤ 1.

�

maximize r
subject to q(x) − r = c− r + 2bx+ ax2 ≥ 0, ∀x2 ≤ 1.

�

maximize r

subject to

[
c− (r + s) b

b a+ s

]
� 0, s ≥ 0.

⇑
An SDP, solvable by interior point methods
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LMI Description

Let D = [−1, 1], we obtain the LMI characterization of the nonnegative quadratic

function cone

K1,1(D) =

{[
c b

b a

]∣∣∣∣ c+ 2bx+ ax
2 ≥ 0, ∀ x ∈ D

}

=

{[
c b

b a

]∣∣∣∣
[
c b

b a

]
� s

[
1 0

0 −1

]
, s ≥ 0

}
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Trust Region Subproblem

Consider the following well known trust region subproblem:

minimize c+ 2bTx + xTAx

subject to ‖x‖ ≤ 1.
(1)

• Occurs frequently in trust region type methods for nonlinear programming

• Polynomial time solvable (A not necessarily PSD.)

• Can be reformulated as an SDP (semi-definite program)
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S-Procedure (Yakubovich, 1977)

• Let q(x) = c+ 2bTx + xTAx, x ∈ �n then

q(x) ≥ 0, ∀ ‖x‖ ≤ 1 ⇐⇒
[
c− s bT

b A + sIn

]
� 0, for some s ≥ 0.

• Effective tool in robust optimization

• As a result, the trust region subproblem (1) can be reformulated as the following SDP:

maximize r

subject to

[
c− (r + s) bT

b A + sIn

]
� 0, s ≥ 0.

(2)

10 October 2002 6



McMaster University Zhi-Quan (Tom) Luo

An Application of S-Procedure

Consider a robust linear inequality constraint:

(a + ∆a)Tx ≤ b+ ∆b, ∀ ‖(∆a,∆b)‖ ≤ ε.

Using S-procedure, we obtain the equivalent LMI characterization:

[
aTx − b− s 1

2 [x 1]
T

1
2 [x 1] s

ε2
I

]
� 0, s ≥ 0.

�

aTx − b− ε
√

‖x‖2 + 1 ≥ 0.

⇑
A Convex Second Order Cone Constraint
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Extensions of S-Procedure I
Theorem 1. [Luo-Sturm-Zhang]

Let q(X) = C + BTX + XTB + XTAX, where X ∈ �n×m, C ∈ Sm, B ∈ �n×m

and A ∈ Sn, then

q(X) � 0, for all ‖X‖F =
√

Tr (XTX) ≤ 1

�[
C − sIm BT

B A + sIn

]
� 0, for some s ≥ 0.

(3)

• When A = 0, this is robust LMI considered by El-Ghaoui (SIMAX).

• (3) gives a LMI characterization of the convex cone ...

Km,n(D) =

{[
C BT

B A

]∣∣∣∣ C + BTX + XTB + XTAX � 0, ∀ ‖X‖F ≤ 1

}

=

{[
C BT

B A

]∣∣∣∣
[

C − sIm BT

B A + sIn

]
� 0, s ≥ 0

}
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Trust Region Subproblem – Matrix Form

Consider the generalized trust region subproblem in �n×m

minimize λmin(C + BTX + XTB + XTAX)

subject to ‖X‖F ≤ 1,
(4)

where λmin(·) denotes the smallest eigenvalue of a matrix. Then, by Theorem 1, we can

transform (4) as the following semi-definite program:

maximize r

subject to

[
C − (r + s)Im BT

B A + sIn

]
� 0, s ≥ 0.

(5)
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Extensions of S-Procedure II

Theorem 2. [Luo-Sturm-Zhang] The following statements are equivalent:

C + XTB + BTX + XTAX � 0, ∀ X s.t. I − XTDX � 0

�[
C BT

B A

]
− s

[
I 0
0 −D

]
� 0, for some s ≥ 0.

and if D � 0, then the above are further equivalent to

C + XTB + BTX + XTAX � 0, ∀ X s.t. Tr (XTDX) ≤ 1
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An Observation

• Notice that ‖X‖F ≤ 1 implies I − XTX � 0.

• In general, for D � 0,

{X | I − XTDX � 0} = D1 ⊃ D2 = {X | Tr (XTDX) ≤ 1}.

• However, when D � 0, there holds

C + XTB + BTX + XTAX � 0, ∀ X ∈ D1

�[
C BT

B A

]
− s

[
I 0
0 −D

]
� 0, for some s ≥ 0.

�

C + XTB + BTX + XTAX � 0, ∀ X ∈ D2.

10 October 2002 11



McMaster University Zhi-Quan (Tom) Luo

Extensions of S-Procedure III

Theorem 3. [Luo-Sturm-Zhang]




H � 0
C + XTB + BTX + XTAX � 0,
H − (F + GX)(C + XTB + BTX + XTAX)+(F + GX)T � 0,

for all I − XTDX � 0.

�
 H F G

FT C BT

GT B A


 − s


 0 0 0

0 I 0
0 0 −D


 � 0, s ≥ 0.

where M+ stands for the pseudo inverse of M � 0.
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Extensions of S-Procedure IV

Theorem 4. [Luo-Sturm-Zhang]

Characterizing a robust QMI over Stiefel manifold:

[
H F + GX

(F + GX)T C + XTB + BTX + XTAX

]
� 0, for all XTX = I.

�

 H F G

FT C BT

GT B A


 − s


 0 0 0

0 I 0
0 0 −I


 � 0, s ∈ �.

Note that s is now free.
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The Case of General Robust QMIs

Characterize the set of m×m symmetric matrices C, Bj, Aij, i, j = 1, ..., n,

such that

C + 2

n∑
j=1

xjBj +

n∑
i=1

n∑
j=1

xixjAij � 0

holds for all x ∈ D, where D ⊆ �n is a given domain.

Let us define

Km,n(D) =







C B1 · · · Bn

B1 A11 · · · A1n
... ... ... ...

Bn An1 · · · Ann



∣∣∣∣∣∣∣∣

C + 2

n∑
j=1

xjBj +

n∑
i=1

n∑
j=1

xixjAij � 0

for all x ∈ D



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Characterization of Dual Cone

Theorem 5. [Luo-Sturm-Zhang]

• We have

K∗
m,n(D) = cone {(x⊗x)⊗ (y⊗y) | for all x ∈ H(D) ⊆ �1+n

, and y ∈ �m},

where ⊗ stands for the Kronecker product of two matrices, and

H(D) = cl

{[
t

x

] ∣∣∣∣ x/t ∈ D

}

is the homogenization of D.
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Homogenization of D

• If D = �n, then H(D) = �n+1, so

K∗
m,n(D) = cone {X ⊗ Y | for all X ∈ Sn+1

+ , Y ∈ Sm+ }.

• If D = {x | ‖x‖ ≤ 1}, then H(D) = {(t, xT )T | ‖x‖ ≤ t}, so

K∗
m,n(D) = cone {(x ⊗ x) ⊗ Y | for all x ∈ SOC(n+ 1), Y ∈ Sm+ }

= cone {X ⊗ Y | for all X ∈ Sn+1
+ , Tr (JX) ≥ 0, Y ∈ Sm+ }.

where J = Diag(1,−1,−1, ...,−1).

• General characterization of H(D) exists for D defined by a single quadratic

(in)equality.
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Characterizing the Dual Cone K∗
m,n(�n)

• Notice that K∗
m,n lies in the linear subspace

Lm,n := Lin {X ⊗ Y | X ∈ S1+n
, Y ∈ Sm}

=







G00 G01 · · · G0n

G10 G11 · · · G1n
... ... ... ...

Gn0 Gn1 · · · Gnn


 ∈ S(1+n)×m

∣∣∣∣∣∣∣∣
GT
ij = Gij,

0 ≤ i, j ≤ n




• We also know K∗
m,n ⊂ S(n+1)m

+ , implying K∗
m,n ⊆ S(n+1)m

+ ∩ Lm,n.

• Theorem 6 [Luo-Sturm-Zhang] There holds K∗
m,1(�1) = S2m

+ ∩ Lm,1. In other

words, [
G00 G01

G01 G11

]
∈ cone {X ⊗ Y | X ∈ S2

+, Y ∈ Sm+ }

⇐⇒ G00, G11, G01 symmetric,

[
G00 G01

G01 G11

]
� 0.
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Negative Results

• Negative result

For general n and m, checking whether or not a given QMI system

is nonnegative over �n is NP-hard.

• In general, let

C1 =




 A1 • U

...

Ak • U



∣∣∣∣∣∣ U ∈ Sn+


 , and C2 =




 B1 • V

...

Bk • V



∣∣∣∣∣∣ V ∈ Sm+


 .

Nemirovskii showed that

Checking if a given C1 ⊆ C2 is NP-hard.

10 October 2002 18



McMaster University Zhi-Quan (Tom) Luo

Robust QMI System in �n

• For example, if n = 1, we have

C + 2xB + x
2A � 0, ∀ x ∈ � ⇔

[
C B
B A

]
� 0.

• Similar result holds for m = 2 (but n is arbitrary), i.e.,:[
c(x) b(x)

b(x) a(x)

]
� 0, ∀x ∈ �n ⇔ A LMI system

where a(x), b(x), c(x) are some scalar (non-homogeneous) quadratic functions.

• Moreover, the following co-centered robust QMI can also be characterized by an LMI:[
xTCx + c xTBx + b

xTBx + b xTAx + a

]
� 0, ∀ ‖x‖ ≤ 1 ⇔

[
C + cI B + bI
B + bI A + aI

]
� 0.
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Applications in Robust Convex Optimization

• Robust convex optimization models in mathematical programming have received much

attention recently (Ben-Tal and Nemirovskii).

Convex program

minimize f(x)

subject to gi(x) ≤ 0, ∀i =⇒

Robust version

minimize max‖∆‖≤εf(x,∆)

subject to gi(x,∆) ≤ 0,

for all ‖∆‖ ≤ εi,

• The robust formulation is still convex, but has infinitely many constraints.

=⇒ reformulation is necessary.

• Arguably all engineering design problems should be treated in a robust way.
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Robust Linear Programming

• Robust optimization models are used for applications where data are inaccurate or

unreliable. For example,

maximize min‖∆c‖≤ε0(c + ∆c)Tx
subject to (ai + ∆ai)Tx ≥ bi + ∆bi,

for all ‖(∆ai,∆bi)‖ ≤ εi,

⇐= Robust LP

• Notice that the design variable x is required to satisfy the linear constraints for all

small perturbations.

• Design variable x must then lie in a more restricted (but still convex) area.
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Robust Linear Constraint

• Linear constraint: S = {x | aTx ≥ b} represents a half space.

• Robust linear constraint:

S̄ = {x | (a + ∆a)Tx ≥ b+ ∆b, ∀ ‖(∆a,∆b)‖ ≤ ε}

is seen as the intersection of infinitely many half spaces

• In fact, robust feasible region can be characterized as

S̄ = {x | aTx − b− ε
√

‖x‖2 + 1 ≥ 0}

=⇒ Robust linear programming is reduced to SOCP (Ben-Tal and Nemirovskii).
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A More General Robust LP Model

• Consider a robust linear program (more general than Ben-Tal/Nemirovskii)

maximize min‖∆x‖≤δ,‖∆c‖≤ε0(c + ∆c)T (x + ∆x)

subject to (ai + ∆ai)T (x + ∆x) ≥ (bi + ∆bi),

for all ‖(∆ai,∆bi)‖ ≤ εi, ‖∆x‖ ≤ δ,

• Two perturbations are considered.

– The problem data ({ai}, {bi}, c) might be affected by unpredictable perturbation

(e.g., measurement error)

– Implementation errors due to finite arithmetic; xactual := xopt + ∆x, xopt optimal

solution.
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Example: Design of a Linear Phase FIR Filter

• For a linear phase FIR filter h = (h1..., hn) ∈ �n, the frequency response is

H(e
jω

) = e
−jnω

(h1 + h2 cosω + · · · + hn cos(nω)) = e
−jnω

(cos ω)
Th.

• Spectral envelope constraint:

L(e
−jω

) ≤ (cos ω)
Th ≤ U(e

−jω
), ∀ω ∈ [0, π] (6)
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Example: Design of a Linear Phase FIR Filter

• Finding a discrete h (say, 4-bit integer) satisfying (6) is NP-hard.

• Ignoring discrete structure of h, we can find a h satisfying (6) in poly. time. However,

rounding such solution to the nearest discrete h may degrade performance significantly.

• Strategy:

(a) discretize the frequency [0, π];

(b) find a solution robust to discretization and rounding errors.

• This leads to the following notion of robustly feasible solution:

L(e−jωi) ≤ (cos ωi + ∆i)
T (h + ∆h) ≤ U(e−jωi),

for all ‖∆i‖ ≤ ε, ‖∆h‖ ≤ δ.

• ∆i accounts for discretization error, while ∆h takes care of rounding errors.
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Robustly Feasible Solution

Definition ⇒ (ai + ∆ai)T (x + ∆x) ≥ (bi + ∆bi),

for all ‖(∆ai,∆bi)‖ ≤ εi, ‖∆x‖ ≤ δ, ∀i

�

aTi (x + ∆x) − bi − εi

√
‖x + ∆x‖2 + 1 ≥ 0, ∀‖∆x‖ ≤ δ, ∀i

�

 I

√
εi

[
x + ∆x

1

]
√
εi
[
(x + ∆x)T 1

]
aTi (x + ∆x) − bi


 � 0, ∀ ‖∆x‖ ≤ δ, ∀i
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Robustly Feasible Solution: LMI formulation

Using our early results, we obtain the following equivalent LMI characterization of

robustly feasible solution




I
√
εi

[
x
1

] √
εi

[
I
0

]
√
εi

[
x
1

]T
aTi x − bi − µiδ

1
2a
T
i

√
εi

[
I
0

]T
1
2ai µiI




� 0, µi ≥ 0, ∀i.
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Robust Linear Programming: Continued
As for the objective, we introduce a new variable t and a new constraint

t− (c + ∆c)T (x + ∆x) ≥ 0, ∀ ‖∆c‖ ≤ ε0, ‖∆x‖ ≤ δ

�

t− cT (x + ∆x) ≥ ε0‖x + ∆x‖, ∀ ‖∆x‖ ≤ δ

�[
I

√
ε0x + ∆x√

ε0(x + ∆x)T t− cT (x + ∆x)

]
� 0 ∀ ‖∆x‖ ≤ δ

�
 I

√
ε0x,

√
ε0I√

ε0xT t− cTx − µ0δ −1
2c
T

√
ε0I −1

2c µ0I


 � 0, µ0 ≥ 0.
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Robust LP: LMI formulation

min t

s.t.




I
√
εi

[
x
1

] √
εi

[
I
0

]
√
εi
[
xT 1

]
aTi x − bi − µiδ

1
2a
T
i√

εi [I 0] 1
2ai µiI


 � 0, µi ≥ 0, ∀i,


 I

√
ε0x,

√
ε0I√

ε0xT t− cTx − µ0δ −1
2c
T

√
ε0I −1

2c µ0I


 � 0, µ0 ≥ 0.

Remark: This extends the work of Ben-Tal and Nemirovskii.
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Robust Beamforming Application

y

x
1

x x2 M
xM−1

1 2 M−1 Mw w w w

• Widely used in wireless communications, microphone array speech processing, radar,

sonar, medical imaging, radio astronomy.

• The output of a narrowband beamformer is given by

y(k) = wHx(k) (7)

where k is the sample index.
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Robust Beamforming

• The observation vector is given by

x(k) = s(k) + i(k) + n(k) = s(k)a + i(k) + n(k) (8)

where s(k), i(k), and n(k) are the desired signal, interference, and noise components,

respectively. Here, s(k) is the signal waveform, and a is the signal steering vector.

• The robustness of a beamformer to a mismatch between the nominal (presumed) and

real signal steering vectors becomes the main issue.

• Such mismatches can occur in practical situations as a consequence of look direction

and signal pointing errors, imperfect array calibration and distorted antenna shape, array

manifold mismodeling due to source wavefront distortions caused by environmental

inhomogeneities, near-far problem, source spreading and local scattering.
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Robust Beamforming

• The optimal weight vector can be obtained through the maximization of the

Signal-to-Interference-plus-Noise Ratio (SINR)

SINR =
σ2

s |wHa|2
wHRi+nw

(9)

where Ri+n = E
{

(i(t) + n(t)) (i(t) + n(t))
H
}

.

• The maximization of (9) is equivalent to

minimizew wHRi+nw subject to wHa = 1 (10)

• The optimal weight vector is

wopt = αR−1
i+n a (11)

where α =
(
aHR−1

i+na
)−1

is the normalization constant (to be omitted for brevity).
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Robust Beamforming

• In practical applications, the exact signal-plus-noise covariance matrix Ri+n is

unavailable. Therefore, the sample covariance matrix

R̂ =
1

N

N∑
n=1

x(n)x(n)
H

(12)

should be used. Here, N is the training sample size.

• In this case, the problem (10) should be rewritten as

minimizew wHR̂w subject to wHa = 1. (13)
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Robust Beamforming

• In practical applications, the steering vector distortions e can be bounded:

‖e‖ ≤ ε.

• Then, the actual signal steering vector belongs to the set

A(ε) = {c | c = a + e , ‖e‖ ≤ ε}

• We impose a constraint that for all vectors in A(ε), the array response should not be

smaller than one, i.e.

|wHc| ≥ 1 for all c ∈ A(ε)
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Formulation

• The robust formulation of adaptive beamformer is

minimizew wHR̂w
subject to |wH(a + e)| ≥ 1, for all ‖e‖ ≤ ε.

• For each choice of e, the condition |wH(a + e)| ≥ 1 represents a nonlinear and

nonconvex constraint on w.

• Since there are an infinite number of vectors e with ‖e‖ ≤ ε, the robust beamforming

problem is a semi-infinite nonconvex quadratic program.

• It is well known that the general nonconvex quadratically constrained quadratic

programming problem is NP-hard and thus intractable.

10 October 2002 35



McMaster University Zhi-Quan (Tom) Luo

Convex Reformulation

• However, due to the special structure of the objective function and the constraints,

the robust beamforming problem can be reformulated, surprisingly, as a convex second

order cone program:

minimizew wHR̂w
subject to wHa ≥ ε‖w‖ + 1 , Im

{
wHa

}
= 0.

[Vorobyov-Gershman-Luo, 2001]

• The reformulation is based on S-Procedure type results and the homogeneous nature

of the objective function.

• The above SOCP can be efficiently and easily solved via interior point method.

• Similar work has been done recently independently by Boyd’s group.
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Simulation Examples

Example 1: Steering vector mismatch due to local scattering

• In this example, the presumed signal steering vector is a plane wave impinging on the

array from 3◦.
• The real steering vector is formed by five signal paths and is given by

ã = a +

4∑
i=1

e
jψib(θi) (14)

where a corresponds to the direct path, whereas b(θi) (i = 1, 2, 3, 4) correspond to

the coherently scattered paths, with θi, i = 1, 2, 3, 4 independently drawn.

• The phases ψi, i = 1, 2, 3, 4 are independently and uniformly drawn from the interval

[0, 2π].
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Performance Comparison
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(b) output SINR versus SNR; 1st example
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Simulation Examples

Example 2: Near-far steering vector mismatch

• In this example, we model the so-called near-far steering vector mismatch of the

desired signal, whereby the presume steering vector of the signal is a plane wave

impinging on the array from the normal direction 0◦, whereas the real steering

vector corresponds to the source located in the near field of the antenna at the

distance D2/λ = (M − 1)2λ/4 from the geometrical center of the array, where

D = (M − 1)λ/2 is the length of array aperture.

• The performance of the methods tested versus the number of training snapshots N

for the fixed SNR = −10 dB is shown in Fig. (c). Fig. (d) shows the performance of

these techniques versus SNR for the fixed training data size N = 30.
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Performance Comparison
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(c) output SINR v.s. sample size N ; 2nd
example
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(d) output SINR versus SNR; 2nd example
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Concluding Remarks

Our work is on-going in two fronts: theoretical and application, both are nontrivial.

1. We provided a summary of our recent progress on the theoretical front:

• Various extensions of the well known S-Procedure to the matrix setting

• Characterization of robust QMI over the Stiefel manifold

2. In terms of applications:

• Robust linear programming with data and rounding errors

• Robust beamforming: seemingly nonconvex and difficult ⇒ convex SOC

• Other applications we have successfully pursued:

channel equalization, transmitter-receiver design, robust Kalman filtering, ...
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Concluding Remarks

• Good news: Recent advances in convex optimization research (LMI, SDP, SOC, interior

point methods, robust optimization,...) are beginning to to find exciting applications

in digital signal processing and communications, giving powerful new modeling and

computational tools to solve previously considered intractable problems. Previously

used tools in these engineering disciplines are Linear Least Squares, Gradient Descent.

Thank You!

http://www.ece.mcmaster.ca/∼luozq
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