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Outline

• Nonnegativity of polynomials.

• Infeasibility of real equations: Positivstellensatz.

• Sums of squares and the P-satz. Finding certificates using SDP.

• Exploiting structure. Groups and symmetries.

• Representation theory and an invariant-theoretic viewpoint.

• Sums of squares on invariant rings.

• Computing with invariants. Symmetric representations.

• An example in geometric theorem proving.
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Nonnegativity of polynomials

How to check if a given F (x1, . . . , xn) (of even degree) is globally nonnegative?

F (x1, x2, . . . , xn) ≥ 0, ∀x ∈ R
n

• For d = 2, easy (check eigenvalues). What happens in general?

• It is decidable, but NP-hard when d ≥ 4.

• Possible approaches: Decision algebra, Tarski-Seidenberg, quantifier elim-
ination, etc. Very powerful, but bad complexity properties.

• Lots of applications.

• Want “low” complexity, at the cost of possibly being conservative.
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A sufficient condition

A “simple” sufficient condition: a sum of squares (SOS) decomposition:

F (x) =
∑

i

f2
i (x)

If F (x) can be written as above, for some polynomials fi, then F (x) ≥ 0.

A purely synctactic, easily verifiable certificate.

Is this condition conservative? Can we quantify this?

• In some cases (for example, polynomials in one variable), it is exact.

• Known counterexamples, but perhaps “rare” (ex. Motzkin, Reznick 99,
etc.)

Can we compute it efficiently?

• Yes, using semidefinite programming.

3



Checking the SOS condition

Given F (x), degree 2d.

Basic method, the “Gram matrix” (Shor 87, Choi-Lam-Reznick 95, Powers-
Wörmann 98, Nesterov, Lasserre, etc.)

Let z be a suitably chosen vector of monomials (in the dense case, all mono-
mials of degree ≤ d).

Then, F is SOS iff:

F (x) = zTQz, Q ≥ 0

• Comparing terms, obtain linear equations for the elements of Q.

• Can be solved as a semidefinite program (with equality constraints).

• Factorize Q = LTL. The SOS is given by f = Lz.
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Example

F (x, y) = 2x4 + 5y4 − x2y2 + 2x3y

=


 x2

y2

xy




T 
 q11 q12 q13

q12 q22 q23

q13 q23 q33





 x2

y2

xy




= q11x
4 + q22y

4 + (q33 + 2q12)x
2y2 + 2q13x

3y + 2q23xy3

An SDP with equality constraints. Solving, we obtain:

Q =


 2 −3 1

−3 5 0
1 0 5


 = LTL, L =

1√
2

[
2 −3 1
0 1 3

]

And therefore

F (x, y) =
1

2
(2x2 − 3y2 + xy)2 +

1

2
(y2 + 3xy)2

Using SOSTOOLS: [Q,Z]=findsos(2*x^4+5*y^4-x^2*y^2+2*x^3*y)
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Polynomial systems over the reals

• When does a system of equations and inequalities have real solutions?

• A remarkable answer: the Positivstellensatz.

• A fundamental theorem in real algebraic geometry, due to Stengle.

• A common generalization of Hilbert’s Nullstellensatz and LP duality.

• Guarantees the existence of infeasibility certificates for real solutions of
systems of polynomial equations.

• Sums of squares are a fundamental ingredient.

How does it work?
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P-satz and SDP

Given {x ∈ Rn | fi(x) ≥ 0, hi(x) = 0}. Define:

Cone(fi) =
∑

si · (
∏

j fj), Ideal(hi) =
∑

ti · hi,

where the si, ti ∈ R[x] and the si are sums of squares.

To prove infeasibility, find f ∈ Cone(fi), h ∈ Ideal(hi) such that

f + h = −1.

• Can find certificates by solving SDPs!

• A complete SDP hierarchy, given by certificate degree (P. 2000).

• Tons of applications:
optimization, dynamical systems, quantum mechanics...
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Exploiting structure

Crucial for good performance. What algebraic properties can we profit of?

• Sparseness: few nonzero coefficients.

– Newton polytopes techniques.

• Ideal structure: equality constraints.

– SOS on quotient rings.

– Compute in the coordinate ring. Quotient bases (Gröbner).

• Symmetries: invariance under a group.

– SOS on invariant rings

– Representation theory and invariant-theoretic methods.

– Enabling factor in applications.

In this talk, we focus on this last case.
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Symmetries

Symmetry is invariance under a group of transformations (automorphisms).

General advantages of exploiting symmetries:

• Smaller, more compact representations.

• Eliminates eigenvalue multiplicities.

• Faster, better conditioned, more robust numerically.

• Collapse group-conjugate solutions.

Huge benefits in many areas: dynamical systems, bifurcation theory, PDEs,
geometric mechanics, etc...

Exploitation of symmetries is an enabling factor in applications.

What’s a symmetry group? What can be done in SDP/SOS?
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Symmetry groups

A group is a set G with a binary operation G × G → G.

Associative, with identity and inverse.

In general, can be finite, or infinite.

Examples: The group operation is matrix multiplication.

• A finite collection T of matrices Ti, i = 1, . . . , n, satisfying

I ∈ T , TiTj ∈ T ∀i, j, T−1
i ∈ T ∀i.

• The group O(n) of unitary matrices UTU = I.

• The set of diagonal matrices D = diag(d1, d2, . . . , dn).

The first two groups are compact sets, but the third one is not.
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Symmetry reduction

In practice, many problems are invariant under a group of transformations.

p(x) = p(Tx), ∀T ∈ T
where T ⊆ GL(Rn) is a matrix group.

• Ex: minx4 + y4 + z4 − 4xyz + x + y + z.

Invariant under permutations of x, y, z:[
1 0 0
0 1 0
0 0 1

]
,

[
1 0 0
0 0 1
0 1 0

]
,

[
0 1 0
1 0 0
0 0 1

]
,

[
0 1 0
0 0 1
1 0 0

]
,

[
0 0 1
1 0 0
0 1 0

]
,

[
0 0 1
0 1 0
1 0 0

]
.

• Ex: Nonnegativity of even forms (copositivity).

What are the geometric, algebraic, and computational implications?
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Example

From Boyd’s talk, past Monday. Our thanks to
Stephen and Lin Xiao.

The fastest Markov chain in a graph.

An (n, m) complete bipartite graph (n ≥ m).

The mixing rate depends on the eigenvalues of the associated matrix.
Their question: how to design the transition probs to maximize the rate?

The complete bipartite graph has a Sn × Sm automorphism group.

12



Invariant SDPs

If L is an affine subspace of Sn, and C, X ∈ Sn, an SDP is given by:

min〈C, X〉 s.t. X ∈ L ∩ Sn
+

Definition: Given a finite group G, and associated representation σ, a σ-
invariant SDP is one where both the feasible set and the cost function are
invariant under the group action.

That is:

〈C, X〉 = 〈C, T (g)X〉, ∀g ∈ G, X ∈ S ⇒ T (g)X ∈ S ∀g ∈ G

Example:

min a + c, s.t.

[
a b
b c

]
,

invariant under the Z2 action generated by:
[

X11 X12
X12 X22

]
→

[
X22 −X12

−X12 X11

]
.
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Symmetry and convexity

Key property of symmetric con-
vex sets: the “group average”
1
|G|

∑
g∈G σ(g)x always belongs to the

set.

So, in convex optimization we can al-
ways restrict the solution to the fixed-
point subspace

{x|σ(g)x = x, ∀g ∈ G}.

Non convex Convex

Instead of looking for solutions in the original space, use the orbit (quotient)
space.
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The fixed point subspace

Is the set of elements invariant under the group. For convex problems, the
solution is always there.

Earlier example:

min a + c, s.t.

[
a b
b c

]
,

invariant under the Z2 action generated by:
[

X11 X12
X12 X22

]
→

[
X22 −X12

−X12 X11

]
.

The fixed point subspace are matrices of the form
[

a 0
0 a

]
, so the problem

reduces to:

min2a, s.t. 2a ≥ 0.

A special representation: Let ρ : G → GL(Rn) be a representation of the
group G, and let σ : G → GL(Sn) be the induced representation through

σ(g)M := ρ(g)TMρ(g), ∀ g ∈ G.

15



Restriction to the fixed point

In SDP, the restriction to the fixed-point subspace takes the form:

σ(g)M = M =⇒ ρ(g)M − Mρ(g) = 0, ∀g ∈ G. (1)

The Schur lemma of representation theory exactly characterizes the matrices
that commute with a group action.

Example: circulant matrices.

A =




a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1


 , Z =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




• A cyclic group {Z, Z2, Z3, Z4 = I}, and AZk − ZkA = 0.

• There exists a change of coordinates (the Fourier matrix) under which
all matrices A are diagonal (scalar distinct blocks).
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Decomposing the problem

In the general case, the blocks are not necessarily scalar, or distinct.

Using Schur’s lemma, every group representation decomposes as a direct sum
of N irreducible representations:

ρ = m1ϑ1 ⊕ m2ϑ2 ⊕ · · · ⊕ mNϑN

where m1, . . . , mN are the multiplicities. Therefore, an isotypic decomposition:

C
n = V1 ⊕ · · · ⊕ VN, Vi = Vi1 ⊕ · · · ⊕ Vini

.

In the symmetry-adapted basis, matrix M in (1) has a block diagonal form:

M = (Im1 ⊗ M1) ⊕ . . . ⊕ (ImN
⊗ MN)

Not only the SDP block-diagonalizes, but also many blocks are identical!
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Reduction

In the new coordinates (for instance),

TMT T =




M1 0 0 0 0 0
0 M2 0 0 0 0
0 0 M2 0 0 0
0 0 0 M2 0 0
0 0 0 0 M3 0
0 0 0 0 0 M3




• The coordinate transformation depends only on the group, and not on
the problem data.

• Smaller, coupled problems.

• But, instead of checking if a big matrix is PSD, we can just use the Mi.
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Example

min c1 + c2, s.t.


 a b b

b c1 d
b d c2


 ≥ 0 (2)

SDP is invariant under permutation of the last two rows and columns. To
restrict the problem to the stable subspace, we impose the constraint c1 =
c2 = c, obtaining:

min2c, s.t.


 a b b

b c d
b d c


 ≥ 0 (3)

Now, the block diagonalization procedure can be applied, and the constraint
simplified to:

minimize 2c, s.t.

[
a

√
2b√

2b c + d

]
≥ 0, c − d ≥ 0 (4)
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Boyd’s example

The fixed-point reduced SDP looks like:[
In − mp p En×m

p Em×n Im − np

]

Let’s decompose it!

Irreps of the symmetric group are well-known, so Sn × Sm is easy.
Only three appear nontrivially, and after changing coordinates we have:[

1 − np p
√

nm
p
√

nm 1 − mp

]
, In−1 ⊗ (1 − mp), Im−1 ⊗ (1 − np).

Can easily solve now: popt = min
(

1
n
, 2

n+2m

)
.
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SOS and invariant theory

Even more special structure: the representation ρ in Rn induces another rep-
resentation τ of G the space of monomials, via τm(x) := m(ρx).

This brings in invariant theory: the study of the ring of invariant polynomials.

What happens with SOS?

Caveat: A “natural” conjecture (sum of invariant polys) is not true.

An S2 invariant poly: p(x, y) = p(y, x). Take as invariants the elementary
symmetric functions s1 := x + y, s2 = xy, so the invariant ring is isomorphic
to R[s1, s2]. Consider

(x1 − x2)
2 = s2

1 − 4s2

is not a sum of squares in R[s1, s2].

Reason: “hidden” constraints. Not every real s1, s2 map to real x1, x2.

Nevertheless, for efficiency reasons, we want to compute on the invariant
ring. How, and what’s the right representation?
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A detour: SOS matrices

We know about SOS polynomials. What about matrices of polynomials?

Def: A matrix P (x) ∈ R[x]n×n is SOS if yTP (x)y is a sum of squares in R[x, y].

Implies that P (x) is positive semidefinite for all x.

Useful in many applications, such as control and quantum mechanics.

Example:

M =

[
x2 − 2x + 2 x

x x2

]
is SOS.

Proof:

yTMy = (y1 + xy2)
2 + (x − 1)2y2

2
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Symmetric representations

We consider here the simplest case, i.e., when the invariant ring is isomorphic
to a polynomial ring (for example, the symmetric group).

That is, we can rewrite every invariant polynomial as p(θ1, . . . , θn).

Thm: Every SOS invariant polynomial can be written as

p(θ) =
∑N

i=1 trace Si · Πi, Si,Πi ∈ R[θ]ni×ni.

where Si(θ) are SOS matrices, and the Πi(θ) are constructed from the irre-
ducible representations of G.

The matrices Πi are PSD on the image of Rn under the θi, but not necessarily
over the whole space.
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Example

Robinson form: invariant under (x, y) → (−y, x), (x, y) → (y, x).

r(x, y) = x6 + y6 − x4y2 − y4x2 − x4 − y4 − x2 − y2 + 3x2y2 + 1.

Dihedral symmetry: group D4, 8 elements, 5 irr. reps (4 · 12 + 22 = 8).

The primary invariants are: θ1 = x2 + y2, θ2 = x2y2, so

r̃(θ1, θ2) = θ3
1 − θ2

1 − 4θ1θ2 − θ1 + 5θ2 + 1.

For r(x, y) − t we have t∗ = −3825
4096

, with:

Πi 1 θ2 θ2
1 − 4θ2 θ2(θ2

1 − 4θ2)

[
θ1 θ2

1 − 2θ2

θ2
1 − 2θ2 θ1(θ2

1 − 3θ2)

]

Si

(
−89

64
+ θ1

2

)2
0 0 0

[
(θ1 + 5

8
)2 −2(θ1 + 5

8
)

−2(θ1 + 5
8
) 4

]
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The orbit space

Consider the orbit space, the image of Rn un-
der the invariants.

(x, y)− > (θ1, θ2) = (x2 + y2, x2y2)

It is always a semialgebraic set.
-0.5 0.5 1 1.5 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

-0.5 0.5 1 1.5 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

For nonnegativity, the following are equivalent:

• p(x) ≥ 0, ∀x ∈ Rn.

• p̃(θ) ≥ 0, ∀θ ∈ Θ(Rn).

Our representation says something similar, but for SOS.

The matrices Πi are related to the stratifications of the orbit space.

Remark: Similarities with Schmüdgen, and P-satz representations.
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SOS over everything...

Algebraic tools are essential to exploit problem structure:

Standard Equality constraints Symmetries

polynomial ring R[x] quotient ring R[x]/I invariant ring R[x]G

monomials (deg ≤ k) standard monomials isotypic components

1
(1−λ)n =

∑∞
k=0

(
n+k−1

k

)
· λk Hilbert series Molien series

Finite convergence Block diagonalization
for zero dimensional ideals
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Geometric theorem proving

• A geometric inequality arising from circle packings (Ronen Peretz):

α

β γ

X

Y

Z
U

Y+V

Z+W

X+U

V

W

α · (X + Y − Z) + β · (U + V − W ) ≤ γ · ((X + U) + (Y + V ) − (Z + W ))

• Not easy to prove. Not semialgebraic, in the standard form.

• The inequality holds if certain polynomial expression is nonnegative.

• Using SOS/SDP, we will obtain a very concise proof.
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Geometric theorem proving

The theorem is true if:

L(a, b, c, d) = a2b2 (a − b)2 + (a − b)2 c3d3 + a2d2 (1 − ab)
(
1 + ab − 2 b2

)
−

−adbc
(
2 − 4 ab + ba3 + ab3

)
+ b2c2 (1 − ab)

(
1 + ab − 2 a2

)
+

+
(
c2b (1 − ab)

(
2 a − b − ab2

)
− cd

(
a2 + b2 + 2 a3b3 − 4 a2b2

)
+d2a (1 − ab)

(
2 b − a − a2b

))
cd

is nonnegative in [0,1]4. Using the nonlinear transformation:

t → t2

1 + t2

that maps (−∞,∞) to [0,1), and clearing denominators, we obtain the poly-
nomial

P (x, y, z, w) = L(
x2

1 + x2
,

y2

1 + y2
,

z2

1 + z2
,

w2

1 + w2
)(1 + x2)4(1 + y2)4(1 + z2)3(1 + w2)3.
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Big poly

P(x,y,z,w) =
x^4*w^4+x^8*y^4+x^8*w^4-2*x^6*y^6-2*z^2*y^2*x^2*w^2+z^4*y^8+2*z^4*y^6+y^4*z^6+2*y^6*z^6
+y^8*z^6+2*x^6*w^6+x^8*w^6+2*x^6*w^4+x^4*y^8+z^4*y^4+x^4*w^6+4*x^6*w^6*z^2+8*x^6*w^6*y^4
+4*x^8*w^6*y^2+8*x^6*w^6*y^2+2*x^8*w^6*z^2+4*x^4*w^6*y^4+4*x^4*w^6*y^2+4*x^8*y^2*w^4
+8*x^6*y^4*w^4+4*x^4*y^4*w^4+8*y^2*x^6*w^4+4*z^4*y^4*x^2+8*z^4*y^6*x^2-4*z^4*y^6*x^6
+6*z^4*y^8*x^4+8*z^4*y^6*x^4+4*z^4*y^4*x^4+2*z^4*y^4*x^8+3*z^4*y^4*w^2+4*z^4*y^6*w^4
+6*z^4*y^6*w^2+2*z^4*y^4*w^4+2*z^4*y^8*w^4+3*z^4*y^8*w^2+4*z^4*y^8*x^2+4*z^6*y^6*w^2
+8*z^6*y^6*x^4+4*z^6*y^8*x^2-6*x^6*y^6*w^2-6*x^6*y^6*z^2+3*y^4*x^8*z^2+3*x^4*y^8*z^2
+3*z^2*w^4*x^8+2*y^8*z^6*w^2+3*z^2*w^4*x^4+6*z^2*w^4*x^6+4*z^4*w^4*x^6+2*z^4*w^4*x^8
+2*z^4*w^4*x^4+3*x^8*y^4*w^2+3*x^4*y^8*w^2+2*x^4*w^4*y^8+6*x^8*w^4*y^4-4*x^6*w^4*y^6
+2*x^4*z^2*w^6+4*x^8*y^4*w^6+4*x^4*y^8*z^6+2*y^4*z^6*w^2+4*x^2*y^4*z^6+4*x^4*y^2*w^4
+4*x^4*y^4*z^6+8*x^2*y^6*z^6-8*z^4*y^6*x^2*w^4-24*z^4*y^6*x^4*w^4-16*z^4*y^6*x^6*w^4
+12*z^4*y^8*x^4*w^2-16*z^4*y^4*x^2*w^4-4*z^4*y^2*x^8*w^2-40*z^4*y^4*x^4*w^4
-12*z^4*y^2*x^4*w^2-8*z^4*y^2*x^2*w^4+8*x^2*y^4*z^6*w^2+16*x^2*y^6*z^6*w^2
+8*x^4*y^4*z^6*w^2+8*x^4*w^6*y^4*z^2+16*x^6*w^6*y^2*z^2+8*x^4*w^6*y^2*z^2
+16*x^6*w^6*y^4*z^2+8*x^8*w^6*y^2*z^2+16*x^4*y^6*z^6*w^2-4*z^4*y^2*x^2*w^2
-12*z^4*y^2*x^6*w^2-16*z^4*y^2*x^4*w^4-16*z^4*y^4*x^4*w^2-20*z^4*y^4*x^6*w^2
+12*z^4*y^6*x^2*w^2+4*z^4*y^6*x^4*w^2-14*x^4*y^4*z^2*w^2-6*x^4*y^2*z^2*w^2
+6*x^4*y^8*z^2*w^2+6*y^4*x^8*z^2*w^2-20*x^6*y^6*z^2*w^2-6*y^2*x^6*z^2*w^2
-16*z^2*w^4*x^6*y^6+12*z^2*w^4*y^2*x^6-12*z^2*w^4*x^2*y^4-16*z^2*w^4*x^4*y^4
+4*z^2*w^4*x^6*y^4-12*z^2*w^4*x^2*y^6+8*z^2*w^4*x^8*y^2-20*z^2*w^4*x^4*y^6
-6*x^2*y^4*z^2*w^2-6*x^2*y^6*z^2*w^2-10*x^4*y^6*z^2*w^2-10*y^4*x^6*z^2*w^2
-2*x^2*y^8*z^2*w^2-2*y^2*x^8*z^2*w^2+12*z^2*w^4*x^8*y^4-4*z^2*w^4*x^2*y^8
-4*x^2*w^4*y^2*z^2+8*x^4*y^8*z^6*w^2+8*x^8*y^4*z^2*w^6-8*z^4*y^2*x^6*w^4
+8*x^2*y^8*z^6*w^2-16*z^4*y^6*x^6*w^2+8*z^4*y^8*x^2*w^2-24*z^4*y^4*x^6*w^4

Is P (x, y, z, w) ≥ 0 for all real values of x, y, z, w?

29



Properties

• Sparsity:

– P has degree 20, but only degree 12 in (x, y) and degree 8 in (z, w).

Also, quite sparse (123 monomials): A dense (4,20) poly has 10626
monomials.

• Symmetries:

– P has many symmetries, some inherited from L, some a result of the
transformation.

(x, y, z, w) → (y, x, w, z)
→ (±x,±y,±z,±w)

∗ The first one corresponds to interchange of the triangles.

∗ The other ones are byproducts of t → t2

1+t2
.

– A group with 32 elements and 14 irr. reps (8 · 12 + 6 · 22 = 32).
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• No sparsity, no symmetries: 1001 × 1001, 10626 vars.

• Sparsity, no symmetry: 137 × 137, 1328 vars.

• Sparsity, symmetry: 14 coupled LMIs, varying dimensions:

Irr. Rep. # 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Multiplicity 1 1 1 1 1 1 1 1 2 2 2 2 2 2
Dim. SDP 9 6 6 4 8 5 3 2 11 7 8 7 8 6

Can easily solve this!
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The proof

• It turns out that P (x, y, z, w) is a sum of five squares:

P (x, y, z, w) = A2(z2 + w2 + 2z2w2) + B2 + C2.

where

A = −y2z2 − y4z2 + x2w2 + 2x2y2w2 − 2x2y2z2 − x2y4 − 2x2y4z2 + x4w2 + x4y2 + 2x4y2w2

B = (1 + x2 + y2)(−x2w2 − x2z2w2 − x2y2w2 + x2y2z2 + y2z2 + y2z2w2)

C = (x − y)(x + y)(−x2z2w2 + x2y2 + x2y2w2 + x2y2z2 − z2w2 − y2z2w2).

so P is indeed nonnegative (QED?).

We can also write this in the original variables a, b, c, d...
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Solution

L(a, b, c, d) = L1 + L2 + L3

L1 = (c + d)(−a2b + ab2 − ad + bc − bcd + adc − ab2c + a2bd)2

L2 = (1 − c)(1 − d)(ab − 1)2(ad − bc)2

L3 = (1 − c)(1 − d)(a − b)2(ab − cd)2.

From this, stronger conclusions on the sign of L can be derived. Not only
it is nonnegative on the open unit hypercube (0,1)4, but the same property
holds on the much larger region R × R × {c + d ≥ 0, (1 − c)(1 − d) ≥ 0}.

An independently verifiably certificate for nonnegativity.

As a consequence, the original geometric inequality is now proved.
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SOSTOOLS: sums of squares toolbox

Handles the general problem:

minui
c1u1 + · · · + cnun

s.t Pi(x, u) := Ai0(x) + Ai1(x)u1 + · · · + Ain(x)un are SOS

• MATLAB toolbox, freely available.

• Requires MATLAB’s symbolic toolbox, and SeDuMi (SDP solver).

• Natural syntax, efficient implementation.

• Developed by Stephen Prajna, Antonis Papachristodoulou, and PP.

• Includes customized functions for several problems.

Get it from: http://www.aut.ee.ethz.ch/~parrilo/sostools
http://www.cds.caltech.edu/sostools
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