STABILITY FOR SYMMETRIC VERSUS NONSYMMETRIC MATRICES: A COMPARISON

Adrian Lewis

Simon Fraser University Canada

October 2, 2002

(Including joint work with Jim Burke and Michael Overton)

OUTLINE

- Two matrix cones:
 - negative-semidefinite symmetrics
 - stable nonsymmetrics

What do they have in common?

- "Convex-like" properties: regularity
- "Active-set-like" properties:partial smoothness
- "Robustness" properties:
 - Lyapunov characterizations
 - Pseudospectra
 - Kreiss matrix theorem
 - stability radii and the \mathbf{H}_{∞} -norm
 - Lipschitz effects

THE SEMIDEFINITE CONE

 $oxed{\mathbf{S}^n}$ — the space of n-by-n real symmetric matrices.

 $\begin{bmatrix} \mathbf{S}_{-}^{n} \end{bmatrix}$ — the set of negative-semidefinites.

In this space

$$X \succeq Y$$
 means $Y - X \in \mathbf{S}_{-}^{n}$.

Properties of \mathbf{S}_{-}^{n} :

- closed convex cone
- rich algebraic structure (homogeneous, self-dual . . .)
- powerful modeling tool in modern optimization.

THE STABLE CONE

 $oxed{\mathbf{M}^n}$ — the space of n-by-n complex matrices.

 M_{-}^{n} — the set of <u>stable</u> matrices: all eigenvalues have real part ≤ 0 .

Properties of \mathbf{M}_{-}^{n} :

- closed cone (eigenvalues continuous)
- basic modeling tool: all trajectories of $\dot{x} = Ax$ go to zero exponentially $\Leftrightarrow A \in \operatorname{int} \mathbf{M}^n$.

But **not** convex:

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}.$$
stable + stable = unstable

So no nice global structure.

LOCAL PROPERTIES

Key property of a closed convex set F: normal cone map

$$x \in F \mapsto N_F(x) =$$

$$\bigcap_{y \in F} \{d : d^T(y - x) \le 0\}$$

is a **closed** multifunction:

$$x_r \in F, d_r \in N_F(x_r)$$

 $x_r \to x, d_r \to d$
 $\Rightarrow d \in N_F(x).$

But many <u>nonconvex</u> sets have this property (for suitable N_F). Eg: $\{x:g_i(x)\leq 0\ \forall i\}$ when $\{\nabla g_i(x):i\ \text{active}\}\ \text{lin. ind.}$

Crucial for nonsmooth analysis.

NORMALS AND REGULARITY

 $d \in N_F(x)$ (a <u>regular normal</u>) means $d^Te \leq 0$ for all tangent e, ie. whenever

N (x)

regular

F Clarke regular at x means regular normal map N_F closed at x.

(Clarke... or Rockafellar/Wets, 1998)

REGULARITY OF STABLE CONE

Thm (Burke/Overton '99) If $A \in \mathbf{M}_{-}^{n}$ satisfies

 $\begin{cases} \text{every imaginary eigenvalue} \\ \text{has geometric multiplicity } 1 \\ \text{then } \mathbf{M}^n_- \text{ is regular at } A. \end{cases}$

Eg: Jordan block

$$J_n = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Note: the "nonderogatory" assumption (*) is generic—within the matrices having imaginary eigenvalues of any given algebraic multiplicities, those failing (*) have lower dimension.

ACTIVE SET IDEAS

 $\underline{\mathbf{Eg}}$ Given $A_1, \dots, A_k, B \in \mathbf{S}^n$, denote optimal solution of SDP

$$\min \left\{ c^T x : \sum_{j} x_j A_j - B \in \mathbf{S}^n_- \right\}$$

by x(c).

Usually,

$$\operatorname{rank}\left(\sum\limits_{j}x_{j}A_{j}-B\right)$$

stays constant for small changes in c, and

$$c \mapsto x(c)$$

smooth.

PERSISTENCE OF JORDAN FORM

 $\underline{\mathbf{Eg}}$ Given $A_1, \dots, A_k, B \in \mathbf{M}^n$, denote optimal solution of

$$\min \left\{ c^T x : \sum_{j} x_j A_j - B \in \mathbf{M}_{-}^n \right\}$$

by x(c).

Usually, each imaginary eigenvalue of

$$\sum_{j} x_{j} A_{j} - B$$

has

- geometric multiplicity 1
- algebraic multiplicity constant

for small changes in c, and

$$c \mapsto x(c)$$

smooth.

EXAMPLE

Minimize c^Tx subject to

$$\mathcal{A}(x) = \begin{bmatrix} -x_2 & 0 & 0 & \cdots & 0 \\ x_2 & 0 & 0 & \cdots & 0 \\ x_3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & 0 & \cdots & 0 \end{bmatrix} - x_1 I_n + J_n$$

stable.

For $c = [1, 0, 0, \dots, 0]^T$, optimal x = 0, so $\mathcal{A}(x) = J_n$, (single Jordan block).

For c close to $[1,0,0,\ldots,0]^T$, optimal $\mathcal{A}(x)$ remains a single Jordan block.

WHY?

PARTLY SMOOTH SETS

A framework for "active-set" ideas.

Eg Consider $\min\{c^Tx:x\in F\}$, where $F=\{x\in\mathbf{R}^3:x_3\geq |x_1|+x_2^2\}$.

As c varies near $[0,0,1]^T$, optimal x(c) varies smoothly on <u>active manifold</u>

$$\mathcal{M} = \{x : x_1 = 0, \ x_3 = x_2^2\}.$$

Reason:

- ullet N_F continuous on ${\mathcal M}$, and
- ullet F "sharp" around ${\mathcal M}$.

PARTLY SMOOTH: THE DEFINITION

Suppose $\mathcal{M} \subset F$ a manifold:

- defined locally by smooth equations
- linearly independent gradients.

Closed F partly smooth relative to \mathcal{M} if regular throughout \mathcal{M} , and normal cone satisfies

Partly smooth sets have good calculus.

THE CONES

 $\underline{\mathbf{Thm}}$ (Oustry, '00) For any r, \mathbf{S}_{-}^{n} is partly smooth relative to

$${X : \mathsf{rank}\,X = r}.$$

For any list of numbers ${\mathcal L}$ and $X\in {\mathbf M}^n$

$$X \in \mathbf{M}^n_{\mathcal{L}}$$

means X has imaginary eig/vals with

- geometric multiplicities 1
- ullet algebraic multiplicities constant, listed (downward) by \mathcal{L} .

 $\overline{\mathbf{Thm}}$ (Arnold, '71) $\mathbf{M}^n_{\mathcal{L}}$ a manifold.

 $\overline{\mathbf{Thm}}$ \mathbf{M}^n_{-} partly smooth rel. to $\mathbf{M}^n_{\mathcal{L}}$.

SPECTRAL ABSCISSA

Asymptotic decay for trajectories of $\dot{x} = Ax$ measured by spectral abscissa:

$$\alpha(A) = \max\{\operatorname{Re} z : z \text{ eig/val of } A\}.$$

(So,
$$A \in \mathbf{M}^n_- \Leftrightarrow \alpha(A) \leq 0$$
.)

Unlike maximum eig/val λ_{\max} on \mathbf{S}^n ,

- not convex
- not Lipschitz:

$$\alpha(X) - \alpha(Y) \not \le k ||X - Y||.$$

 α is differentiable a.e., since semi-algebraic: its epigraph defined by polynomial equations and inequalities.

PEAKING AND APPROXIMATION

Classical characterization $\alpha(A) = \inf\{\gamma : 2\gamma P \succeq PA + A^*P, \ P \in \mathbf{H}^n_{++}\}$ (P Hermitian) suggests a "Lyapunov" approximation: for small $\delta > 0$, $\alpha^{\delta}(A) = \inf\{\gamma : 2\gamma P \succeq PA + A^*P, A^*P\}$

$$\alpha^{\delta}(A) = \inf\{\gamma : 2\gamma P \succeq PA + A^*P, I \succeq P \succeq \delta I\}.$$

Advantages

- Stops transient peaks for $\dot{x} = Ax$.
- Characterization attained.
- ullet α^{δ} Lipschitz and "more" convex:

$$\alpha^{1}(A) = \lambda_{\max} \left(\frac{A + A^{*}}{2} \right).$$

 $\underline{\mathbf{Disadvantage}}$ (computationally): large auxiliary variable P.

ROBUSTNESS

How do we check

$$A \in \mathbf{S}^n_-$$
 robustly?

Suppose we mean, for small $\epsilon > 0$,

$$||X - A|| \le \epsilon \implies X \in \mathbf{S}_{-}^{n}.$$

In terms of functions, we need

$$\lambda_{\max}(A) \leq 0$$
 robustly.

In other words:

$$0 \ge \max_{\|X - A\| \le \epsilon} \lambda_{\max}(X)$$

(the robust regularization) $= \lambda_{\max}(A) + \epsilon.$

What is robust regularization of spectral abscissa α ?

PSEUDOSPECTRA

$$\Lambda_{\epsilon}(A) = \{ \text{e/vals of } X : ||X - A|| \le \epsilon \}$$
$$= \{ z : \sigma_{\min}(A - zI) \le \epsilon \}$$

(where σ_{\min} is smallest singular value).

Robust regularization of α is pseudospectral abscissa:

$$\alpha_{\epsilon}(A) = \max\{\operatorname{Re} z : z \in \Lambda_{\epsilon}(A)\}.$$

Computing α_{ϵ} is relatively easy (like finding \mathbf{H}_{∞} -norms).

Kreiss matrix thm \Rightarrow

$$\forall \delta > 0 \ \exists \epsilon > \epsilon' > 0 \ \text{and} \ c, c' \ \text{so}$$

$$c'\alpha_{\epsilon'} < \alpha^{\delta} < c\alpha_{\epsilon}.$$

Hence reducing α_{ϵ} also discourages transient peaks.

ASIDE: KREISS MATRIX THEOREM

 $\mathcal{F}\subset \mathbf{M}^n$ is:

- (a) $\underline{L_2\text{-stable}}$ if $p = \sup_{k \in \mathbb{N}} \sup_{A \in \mathcal{F}} ||A^k|| < \infty$.
- (b) strictly Hermitian-stable if $q = \inf\{\gamma: H_{\gamma}(A) \neq \emptyset \ \forall A \in \mathcal{F}\} < \infty$ where $H \in H_{\gamma}(A)$ means $H \succeq A^*HA, \ \gamma I \succeq H \succeq \gamma^{-1}I.$
- (c) pseudospectral stable if r =

$$\sup_{\epsilon} \frac{1}{\epsilon} (|\Lambda_{\epsilon}(\mathcal{F})| - 1) < \infty.$$

 $\begin{array}{ccc} \mathbf{Thm} & \text{(Kreiss '62)} & (a) \Leftrightarrow (b) \Leftrightarrow (c), \\ & \text{and } p,q,r \text{ related.} \end{array}$

Thm (Spijker '91) $r \le p \le enr$.

PSEUDOSPECTRAL ABSCISSA

$$\alpha_{\epsilon}(A) = \max\{\operatorname{Re} z : \sigma_{\min}(A - zI) \le \epsilon\}.$$

Like the Lyapunov approximation $lpha^{\delta}$,

- reducing α_{ϵ} discourages <u>transient</u> peaks for $\dot{x} = Ax$ (by Kreiss)
- optimum in characterization is attained (but easier to compute)
- α_{ϵ} approximates α , because $\alpha_{\epsilon} \to \alpha$ "variationally" as $\epsilon \downarrow 0$, so $\operatorname{argmin}_{F} \alpha_{\epsilon} \to \operatorname{argmin}_{F} \alpha$.
- enhances convexity, because, as $\epsilon \to \infty$,

$$\alpha_{\epsilon}(X) - \epsilon \to \lambda_{\max}\left(\frac{X + X^*}{2}\right)$$

variationally.

\mathbf{H}_{∞} -NORM

For stable A, complex stability radius

$$\beta(A) = \inf\{\|X - A\| : X \text{ not stable}\}\$$

$$= \frac{1}{\|s \mapsto (sI - A)^{-1}\|_{\mathbf{H}_{\infty}}}$$

 $\underline{\mathbf{Prop}}$ If A maximizes β over a set F, then it also minimizes $\alpha_{\beta(A)}$ over F.

So as ϵ decreases through \mathbf{R}_+ , set of minimizers $\operatorname{argmin}_F \alpha_{\epsilon}$ evolves through

- ullet minimizers of $\lambda_{\max}(\text{symmetric part})$
- ullet minimizers of \mathbf{H}_{∞} -norm
- minimizers of spectral abscissa.

LIPSCHITZ PROPERTIES

An advantage of Lyapunov approximation: it's Lipschitz. What about pseudospectral abscissa α_{ϵ} ?

 $\underline{\mathbf{Thm}}$ Consider set E and function f:

- \bullet E closed, semi-algebraic (or ...)
- f locally Lipschitz off E and "grows sharply" from E:

$$T_E(x) \subset \text{cl}\{y : d(-f)(x)(y) < 0\}.$$

Then robust regularization (for $\epsilon > 0$)

$$g_{\epsilon}(x) = \sup\{g(y) : ||y - x|| \le \epsilon\}$$

loc. Lip. around any point, if ϵ small.

Hence α_{ϵ} loc. Lip. around any fixed nonderogatory matrix, once ϵ small.

SUMMARY

Unlike largest eigenvalue λ_{\max} on \mathbf{S}^n , the spectral abscissa α on \mathbf{M}^n is

- not convex
- not Lipschitz.

But it is:

- regular at nonderogatory matrices
- partly smooth at nonderog. matrices
 (→ easy sensitivity analysis)
- a.e. differentiable (→ sampling algorithms).
- We can approximate α , robustly and computably, by the pseudospectral abscissa α_{ϵ} , which has enhanced convexity and Lipschitz properties.