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OUTLINE

e | wo matrix cones:

— negative-semidefinite symmetrics

— stable nonsymmetrics

What do they have in common?

e "Convex-like" properties: regularity
e “Active-set-like” properties:

partial smoothness
e “Robustness” properties:

— Lyapunov characterizations

— Pseudospectra

— Kreiss matrix theorem

— stability radii and the Hoo-norm
— Lipschitz effects
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THE SEMIDEFINITE CONE

S" — the space of n-by-n
real symmetric matrices.

S” — the set of negative-

semidefinites.

In this space

X>Y means Y — X e€8S".

Properties of S :
e closed convex cone

e rich algebraic structure
(homogeneous, self-dual .. .)

e powerful modeling tool in modern
optimization.



THE STABLE CONE

M™ — the space of n-by-n

complex matrices.

M"™| — the set of stable matrices:

all eigenvalues have real part < 0.

Properties of M" :
e closed cone (eigenvalues continuous)

e basic modeling tool: all trajectories
of £ = Ax go to zero exponentially

& AeintM .

But not convex:
[—1 1 01 —1 2}

1 11|00 1 —1
stable + stable = unstable

So no nice global structure.
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LOCAL PROPERTIES

Key property of a closed convex set F':
normal cone map

N_ (x)
r € F o Np(z) = Fr

T "
Nn {4d:d —r) <0
is a closed multifunction:

Lr ~ Pj7 dr c NF(ZET)
Ty — T, dyr —d
= dENF(SE).

But many nonconvex
sets have this property
(for suitable Nr). Eg:
{z : g;(x) <0 Vi} when
{Vg;(x) : i active} lin. ind.
Crucial for nonsmooth analysis.

d
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NORMALS AND REGULARITY

d € Np(x) (a regular normal) means
dle < 0 for all tangent e, ie. whenever

" — x in F and

Ty — X
> €.
lzr — =
F' Clarke regular at z d. nok
means regular normal \ regular
map N closed at x. \

(Clarke. . . or Rockafellar/Wets, 1998)



REGULARITY OF STABLE CONE
Thm (Burke/Overton '99)

If A€ MP" satisfies
(%) every imaginary eigenvalue
has geometric multiplicity 1
then M™ is regular at A.

Eg: Jordan block

(010 ---0]
001---0
Jnp=1: 1 & - i
000 --. 1
000 0]

Note: the “nonderogatory”’ assumption
(%) is generic—within the matrices
having imaginary eigenvalues of any
given algebraic multiplicities, those
failing (*) have lower dimension.
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ACTIVE SET IDEAS

Eg Given Ay,..., A, B € S",
denote optimal solution of SDP

min {ch TxjA;j—Be€ Syi}
J
by z(c).
Usually,
rank (Z TjAj — B)
J

stays constant for small changes in c,
and
c — x(c)

smooth.



PERSISTENCE OF JORDAN FORM

E_g_ Given Aq,..., A, B € M",
denote optimal solution of

min el z : ~x;A; — BE€ M”

J
by z(c).
Usually, each imaginary eigenvalue of
Z:CjAj — B
J
has

e geometric multiplicity 1
e algebraic multiplicity constant

for small changes in ¢, and
c — x(c)

smooth.



EXAMPLE

Minimize ¢! z subject to
—2900--- 0
o 00---0

Alz)=| z3 00 --- 0| —z1Ip+ Jp

' zp 00---0
stable.

For ¢ =[1,0,0,...,0]%, optimal z =0,
so A(x) = Jy, (single Jordan block).
For ¢ close to [1,0,0, ... ,O]T, optimal
A(x) remains a single Jordan block.

WHY?
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PARTLY SMOOTH SETS

A framework for “active-set” ideas.

Eg Consider min{c'z : z € F},
where F = {z € R?: 23 > |z1| + 23}.
> x,

As c varies near [0,0, 1}, optimal z(c)
varies smoothly on active manifold

M= {z:z; =0, z3=15}.

Reason:

e N continuous on M, and
e [’ “sharp” around M.
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PARTLY SMOOTH: THE DEFINITION

Suppose M C F' a manifold:
e defined locally by smooth equations

e linearly independent gradients.

Closed I partly smooth relative to M
if regular throughout M, and normal
cone satisfies

e Npy(z) = span Np(z) for x € M

er € M — Np(x) continuous:
de Np(z), 2" - zin M =
Ad" € Np(z") with d" — d.

Partly smooth sets have good calculus.
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THE CONES

Thm (Oustry, '00) For any r,
S” is partly smooth relative to

{X :rank X =r}.

For any list of numbers £ and X € M"
X e M}
means X has imaginary eig/vals with
e geometric multiplicities 1

e algebraic multiplicities constant,

listed (downward) by L.

Thm (Arnold, '71) M’ a manifold.
Thm MP" partly smooth rel. to M.
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SPECTRAL ABSCISSA

Asymptotic decay for trajectories of
x = Az measured by spectral abscissa:

a(A) = max{Rez : z eig/val of A}.
(So, Ac M" & a(A) <0.)

Unlike maximum eig/val Apax on S”,

1S «I — “(: ;>
>k

® Nnot convex

e not Lipschitz:
a(X)— oY) £ kX =Y.

« is differentiable a.e., since
semi-algebraic: its epigraph defined by
polynomial equations and inequalities.
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PEAKING AND APPROXIMATION

Classical characterization a(A) =
inf{y:2yvP = PA+ A*P, P ¢ H}  }

(P Hermitian) suggests a “Lyapunov”
approximation: for small § > 0,

o’(A) = inf{y: 2yP = PA+ A*P,
[>= P> 6I}.

Advantages

e Stops transient peaks for © = Ax.
e Characterization attained.

s Lipschitz and “more” convex:

0l (A) = A (A ZA*) |

Disadvantage (computationally):
large auxiliary variable P.
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ROBUSTNESS

How do we check
A €S" robustly?
Suppose we mean, for small € > 0,

IX —A<e = XeSm

In terms of functions, we need
Amax(A) < 0 robustly.
In other words:

0> m

A X
= ||X—a}ﬁ§e max( )

(the robust regularization)

What is robust regularization of
spectral abscissa a7
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PSEUDOSPECTRA

Ae(A) ={e/vals of X : || X — Al <€}
={z: opin(A4 — 2I) < €}

(where oy, is smallest singular value).

Robust regularization of « is
pseudospectral abscissa:

ae(A) = max{Rez : z € A(A)}.

4

Computing ag is
relatively easy (like
finding Hoo-norms).

Kreiss matrix thm =

Vo >0 Je>€e >0andc, so
dag < ad < ca.

Hence reducing o, also discourages
transient peaks.
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ASIDE: KREISS MATRIX THEOREM

FcM"is:
(a) Lo-stable if p =

sup || AF|| < oo.
keN, AcF

(b) strictly Hermitian-stable if ¢ =
inf{y: Hy(A) #0VAe F} < oo
where H € Hy(A) means

H> A'HA, v = H >~ LI.

(c) pseudospectral stable if r =

1 |
sup —(|Ae(F)| — 1) < o0.

Thm (Kreiss '62) (a) < (b) < (c),
and p, q, r related.
Thim (Spijker '91) r < p < enr.
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PSEUDOSPECTRAL ABSCISSA

ae(A) —_
max{Re z : opin(A — 2I) < €}.

Like the Lyapunov approximation af,

e reducing o, discourages transient
peaks for & = Ax (by Kreiss)

e optimum in characterization is
attained (but easier to compute)

® o/ approximates «, because a¢ — «
“variationally” as € | 0, so

argming e — argming .

e enhances convexity, because, as
€ — 00,

variationally.
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H.-NORM

For stable A, complex stability radius
B(A) = inf{||X — A|| : X not stable}

1
Is = (s — A)~HiH,,

Prop If A maximizes 3 over a set F/,
then it also minimizes Qg 4) over F.

So as € decreases through R, set of
minimizers argmin - ¢ evolves through

e minimizers of Ajpax(Ssymmetric part)
e minimizers of Hyo-norm

e minimizers of spectral abscissa.
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LIPSCHITZ PROPERTIES

An advantage of Lyapunov
approximation: it's Lipschitz. What
about pseudospectral abscissa a?

Thm Consider set E and function f:
e F closed, semi-algebraic (or ...)

o f locally Lipschitz off £/ and “grows
sharply” from E:

Tp(z) C c{y : d(—f)(z)(y) <O}

Then robust regularization (for € > 0)

ge(x) =sup{g(y) : [ly — z|| < €}

loc. Lip. around any point, if € small.

Hence a¢ loc. Lip. around any fixed
nonderogatory matrix, once € small.
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SUMMARY

Unlike largest eigenvalue Apax on S™,
the spectral abscissa o on M™ is

® not convex

e not Lipschitz.

But it is:
e regular at nonderogatory matrices

e partly smooth at nonderog. matrices
(— easy sensitivity analysis)

e a.e. differentiable (— sampling
algorithms).

e We can approximate «, robustly and
computably, by the pseudospectral
abscissa o, which has enhanced
convexity and Lipschitz properties.
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