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2-Catalog Segmentation Problem

• Input: A ground set I of n items, a family {S1, S2, · · · , Sm} of subsets of I

and an integer 1 ≤ k ≤ n.

• Output: Subsets A1, A2 ⊂ I such that |A1| = |A2| = k.

• Objective: To maximize
∑m

i=1 max{|Si ∩A1|, |Si ∩A2|}.

• Application: I is the list of goods; there are m customers where customer i

is interested in the goods of Si; A1 and A2 are the two catalogs one of which

could be sent to each of the customers such that the (total) satisfaction is

maximized.
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The Partition Version

• Input: A bipartite graph G = (A,B, E) with |A| = n and |B| = m,

• Output: A partition of B = B1 ∪B2, and two subsets A1, A2 of A such

that |A1| = |A2| = k

• Objective: To maximize w(A1, B1) + w(A2, B2).

Connections between the two versions:

A ←→ I ;

B ←→Customers;

the set of edges connected to i(∈ Bi) ←→ Si.
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Figure 1: Graph Representation
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Figure 2: 2-Catalog Segmentation
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Figure 3: Disjoint 2-Catalog Segmentation
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Previous Results

• The problem was proposed by Kleinberg, Papadimitriou and Raghavan

(1998).

• A simple greedy algorithm with performance guarantee (KPR 1998): simply

selects A1 ∈ A to be the k nodes of largest degrees, A2 ∈ A be any k

nodes in A, B1 = B, B2 = ∅.

• A polynomial time approximation scheme (KPR 1998): for all dense instances

of 2-CatSP, in which each node of B has a degree of a constant fraction of n.

• 0.56-approximation algorithm for the case k = n/2 by Dodis, Guruswami

and Khanna (1999).
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Our Results

A randomized approximation algorithm based on the semidefinite programming

relaxation which has performance guarantee:

• 1
2 for all k ∈ [1, n];

• strictly better than 1
2 when k ≥ n

3 ;

• 0.67 when k = n
2 .
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Key Techniques

• A new integer programming formulation which allows us to obtain a SDP

relaxation.

—The main difficulty was that A1 ∩A2 = ∅ is not required.

—The new IP model uses two-dimensional vector variables.

• A new variants of the Goemans-Williamson rounding technique which allows

us to take the advantage of the underline structure of the problem:

— the graph is bipartite;

— the cardinality constraints are on the set of A only
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A Special Case

• k = n
2 and it is required that A1 ∩A2 = ∅ (Disjoint Case).

• Each of the node in A is either in A1 or A2. For i ∈ A, xi = 1 iff i ∈ A1,

otherwise xi = −1; for j ∈ B, xj = 1 iff j ∈ B1.

• The problem can be formulated as

w∗ := Maximize
1
2

∑

i∈A, j∈B

wij(1 + xixj)

subject to
∑

i∈A xi = 0,

x2
i = x2

j = 1 i ∈ A, j ∈ B

(1)
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Relationship with Max-Bisection

• This special case is very similar to the well-known Max-Bisection problem:

w∗ := Maximize
1
2

∑

i∈A, j∈B

wij(1− xixj)

subject to
∑

i xi = 0,

x2
i = 1

(2)

• Is fairly easy to solve since the known SDP based approximation algorithms

can also applied to this special case of 2-Catalog problem (DGK 1999).

• 0.65-approximation by the result of Frieze and Jerrum (1995).

0.699-approximation by the results of Ye (1999) in running time O(n3.5),

and 0.701 by Halperin and Zwick (2001) in O(n9.5).
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A Harder Special Case

• k = n
2 but A1 ∩A2 = ∅ is not required (General Case).

• One dimensional binary variables are not sufficient to model this problem.

• DGK (1999) reduce this problem to the Disjoint Case, and show that the

0.651-approximation for the latter implies a 0.56-approximation for the

General Case.

• If we use the 0.70-approximation for Disjoint case, we get a

0.58-approximation for the General Case.
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General Case

• Each node i of A has four possible choices: A1 \A2, A2 \A1, A1 ∩A2
and A \ (A1 ∪A2).

• One binary variable cannot characterize all choices of node i.

• We design a two-dimensional vector (xi, yi) for each node i ∈ A such that

xi = 1 iff i ∈ A1, otherwise xi = −1; and yi = 1 iff i ∈ A2, otherwise

yi = −1. We assign variable zj for each node j ∈ B such that zj = 1 iff

i ∈ B1, otherwise zj = −1.
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An Integer Programming Formulation

A quadratic formulation can be obtained by using these vector variables together

with an additional reference variable u0, which makes the objective function and

constraints homogeneous:

w∗ := Maximize
1
4

∑

i∈A, j∈B

wij(2 + u0xi + u0yi + xizj − yizj)

subject to
∑

i∈A u0xi =
∑

i∈A u0yi = 2k − n,

u2
0 = x2

i = y2
i = z2

j = 1 i ∈ A, j ∈ B

(3)
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SDP Relaxation

Let vector u = (u0; x ∈ Rn; y ∈ Rn; z ∈ Rm) and consider matrix

U = uuT . Then, it is straightforward to obtain an SDP relaxation of (3):

Max
∑

1≤i≤n, 2n+1≤j≤2n+m

wij

(2 + U0i + U0(n+i) + Uij − U(n+i)j)
4

s.t.
∑n

i=1 U0i =
∑2n

i=n+1 U0i = 2k − n,
∑

1≤i,j≤n Uij =
∑

n+1≤i,j≤2n Uij = (2k − n)2,

Uii = 1, i = 0, 1, ..., 2n + m

U º 0.

(4)
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A High-Level Algorithm

• Solve the SDP relaxation and obtain an optimal matrix Ū which can be write

as

Ū =




Ū00 Ū0x Ū0y Ū0z

Ūx0 Ūxx Ūxy Ūxz

Ūy0 Ūyx Ūyy Ūyz

Ūz0 Ūzx Ūzy Ūzz




according to sub-blocks corresponding to u0, x, y, and z.

• Use some (randomized) rounding technique to obtain a {−1, 1} solution

x̂, ŷ, z, u which produce Â1, Â2, B1, B2. (The solution may not be feasible,

i.e, the cardinality constraints may not be satisfied.)

• Use a greedy adjusting procedure to get a feasible solution A1, A2, B1, B2

from the above solution.
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Greedy Procedure

Let A1, A2 be the subsets of A with cardinality k such that w(A1, B1) is

maximized and w(A2, B2) is maximized.

w(A1, B1) + w(A2, B2) ≥



k
|Â1| · w(Â1, B1) + k

|Â2| · w(Â2, B2) if |Âi| ≥ k, i = 1, 2;

w(Â1, B1) + k
|Â2| · w(Â2, B2) if |Â1| ≤ k, |Â2| ≥ k;

k
|Â1| · w(Â1, B1) + w(Â2, B2) if |Â1| ≥ k, |Â2| ≤ k;

w(Â1, B1) + w(Â2, B2) if |Âi| ≤ k, i = 1, 2,

(5)

and

w(A1, B1) + w(A2, B2) ≥ max{1
2
,
k

n
}w∗.
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Analysis of the Algorithm

We want to bound the quantity of

w(A1, B1) + w(A2, B2).

Assume that the greedy adjusting procedure guarantees that

w(A1, B1)+w(A2, B2) ≥ f(k/|Â1|, k/|Â2|)
(
w(Â1, B1) + w(Â2, B2)

)
.

Then, (roughly speaking), it is sufficient to bound

• The expected values of |Â1|, |Â2|
• The variance of |Â1|, |Â2|
• The expected value of w(Â1, B1) + w(Â2, B2).



MS&E, Stanford University Semidefinite Programming, Berkeley, 2002 20

Goemans-Williamson Rounding Technique

• Factorize the optimal matrix Ū = V T V where V = (v0, Vx, Vy, Vz) is a

(2n + m + 1)× (2n + m + 1) matrix.

• Randomly choose a unit vector u from S2n+m.

• For each node i, if u · vi has the same sign as u · v0, then it is 1; otherwise it

is−1.

• This randomized rounding produces a solution which has an expected

objective value close to the optimal one, and the expected number of nodes in

Â1 or Â2 are close to k as desired.

• The problem is that the variances of |Â1| or |Â2| could be very large.
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A Combined Rounding

• The identity matrix I can be used as the rounding matrix which has a better

bound on the expected values and variances of |Â1| or |Â2| , but a worse

bound on the objective value. (For simplicity, we only consider k = n
2 here).

• We have shown that a careful combination of the optimal matrix Ū and the

identity matrix I can improve the overall approximation ratio, i.e., to balance

the bounds on the objective value and the sizes.

• We can apply this combined rounding technique to our problem.

• Can we do better by exploiting the structure of the problem?
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Structure of the Problem

• Recall that our graph is bipartite and the cardinality constraints are only on

the set A.

• For the nodes in A, we can apply combined rounding matrix.

• For the nodes in B, we do not want to use the combined rounding since it has

a negative effect on the objective value.

• A new rounding matrix may take advantage of this fact. But note that it must

be semi-definite.
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New Rounding Matrix

We use the matrix Ū(θ) + (1− θ)P as the rounding matrix, where θ ∈ [0, 1],

Ū(θ) =




Ū00

√
θŪ0x

√
θŪ0y Ū0z√

θŪx0 θŪxx θŪxy

√
θŪxz√

θŪy0 θŪyx θŪyy

√
θŪyz

Ūz0

√
θŪzx

√
θŪzy Ūzz




and

P =




0 01×n 01×n 01×m

0n×1 In×n 0n×n 0n×m

0n×1 0n×n In×n 0n×m

0m×1 0m×n 0m×n 0m×m



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Analysis of the New Rounding

Recall that we want to bound

• The expected values of |Â1| = 1
2

∑
i∈A(1 + x̂iû0) and |Â2|.

• The variance of |Â1| which can be treated as

|Â1|(n− |Â1|) = 1
4

∑
i,j∈A(1− x̂ix̂j), and that of |Â2|.

• The expected value of

w := w(Â1, B1) + w(Â2, B2)

=
∑

i∈A, j∈B

wij
(2 + x̂iû0 + ŷiû0 + x̂iẑj − ŷiẑj)

4
.
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Analysis of the New Rounding (Continued)

The following are straightforward from Goemans-Williamson and our rounding

E[x̂iû0] =
2
π

arcsin(
√

θŪ0i), i ∈ A,

E[ŷiû0] =
2
π

arcsin(
√

θŪ0(m+i)), i ∈ A,

E[ẑj û0] =
2
π

arcsin(Ū0j), j ∈ B,

E[x̂iẑj ] =
2
π

arcsin(
√

θŪij), i ∈ A, j ∈ B,

E[ŷiẑj ] =
2
π

arcsin(
√

θŪ(m+i)j), i ∈ A, j ∈ B.

These equations are enough for us for bounding the expected objective value and

the sizes.
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z(η, γ) :=
w

wSDP
+ γ

M1 + M2

n2
+ ηγ

p1 + p2

n
, (6)

where

w := w(Â1, B1) + w(Â2, B2)

p1 := |Â1|,
p2 := |Â2|,

M1 := |Â1|(n− |Â1|),
M2 := |Â2|(n− |Â2|).
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Our approximation method yields the partitions (Â1, Â2) and (B1, B2),

satisfying the following two inequalities:

E[
w

wSDP
] ≥ α,

E[
pi

n
] ≥ β/2, i = 1, 2,

E[
Mi

n2
] ≥ β/4 i = 1, 2.

E[z(η, γ)] ≥ α + γβ/2 + ηγβ and z(η, γ) ≤ 1 +
γ(1 + η)2

2
.
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If the random variable z(η, γ) meets its expectation, then

w(A1, B1) + w(A2, B2) ≥ R(σ, θ, η, γ) · w∗.
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σ
√

θ α β η γ R

0.37 0.94 0.7450 0.9115 -0.4103 2.7106 0.5045

0.38 0.94 0.7457 0.9193 -0.3890 2.7648 0.5148

0.40 0.93 0.7386 0.9371 -0.3387 3.0095 0.5345

0.42 0.93 0.7401 0.9481 -0.2976 3.1298 0.5534

0.44 0.93 0.7416 0.9566 -0.2578 3.2408 0.5711

0.46 0.92 0.7352 0.9661 -0.2121 3.5163 0.5876

0.48 0.92 0.7369 0.9697 -0.1749 3.6074 0.6029

0.50 0.92 0.7386 0.9709 -0.1388 3.6719 0.6169

Table 1
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Facility Location

In the uncapacitated facility location problem (UFLP), we have

• A set F of nf facilities, where for every facility i ∈ F , a nonnegative number

fi is given as the opening cost of facility i.

• A set C of nc cities, where for every city j ∈ C and facility i ∈ F , we have a

connection cost (a.k.a. service cost) cij between city j and facility i.

• The objective is to open a subset of the facilities in F , and connect each city

to an open facility so that the total cost is minimized.

• We will consider the metric version of this problem, i.e., the connection costs

satisfy the triangle inequality.
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Approximation Results



MS&E, Stanford University Semidefinite Programming, Berkeley, 2002 32

approx. factor reference technique/running time

O(ln nc) Hochbaum greedy algorithm/O(n3)

3.16 Shmoys, Tardos, Aardal et al. LP rounding

2.41 Guha and Khuller LP rounding + greedy

1.736 Chudak LP rounding

5 + ε Korupolu, Plaxton, Rajaraman et al. local search/O(n6 log(n/ε))

3 Jain and Vazirani primal-dual method/O(n2 log n)

1.853 Charikar and Guha primal-dual method + greedy/O(n3)

1.728 Charikar and Guha LP rounding + primal-dual method + greedy

1.861 Mahdian et al. greedy algorithm/O(n2 log n)

1.61 Jain et al. greedy algorithm/O(n3)

1.582 Sviridenko LP rounding

1.517 MYZ greedy algorithm + greedy/O(n3)

Table 1: Approximation Algorithms for UFLP
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Hardness Results

Guha and Khuller proved that it is impossible to get an approximation guarantee

of 1.463 for the uncapacitated metric facility location problem, unless

NP ⊆ DTIME[nO(log log n)].
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Cost-Splitting Approximation

An algorithm is called a (γf , γc)-approximation algorithm for UFLP, if for every

instance I of UFLP, and for every solution SOL for I with facility cost FSOL and

connection cost CSOL, the cost of the solution found by the algorithm is at most

γfFSOL + γcCSOL.
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Let γf ≥ 1. Then γc ≤ supk{zk}, where zk

max

∑k

i=1
αi−γf f∑k

i=1
di

s.t. ∀ 1 ≤ i < k : αi ≤ αi+1

∀ 1 ≤ j < i < k : rj,i ≥ rj,i+1

∀ 1 ≤ j < i ≤ k : αi ≤ rj,i + di + dj

∀ 1 ≤ i ≤ k :
∑i−1

j=1 max(rj,i − dj , 0) +
∑k

j=i max(αi − dj , 0) ≤ f

∀ 1 ≤ j ≤ i ≤ k : αj , dj , f, rj,i ≥ 0.
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Conservative Opening Factor δ

Theorem 1 If there is a

(γf , γc)

approximation algorithm for UFLP, then there is a

(γf + ln δ, 1 +
γc − 1

δ
)

approximation for UFLP.

Prove (γf , γc) = (1.104, 1.7805) and select δ = 1.5107.
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Extended Results

Problem Previous ratio Our ratio Reduced Problem

SFLP 3 2 LFLP

K-FLP 3 LP

4.83 3.27 UFLP

2-FLP 4.83 2.17 UFLP

3-FLP 4.83 2.17 UFLP

SMFLP 9 3.98 UFLP

CCFLP 4.59 3.97 UFLP

ANDP 81 34 LBFLP

Table 2: Approximation Algorithms for UFLP
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The Markovian Decision Problem

minimize cT
1 x1 ... +cT

mxm

subject to (I − θP1)x1 ... +(I − θPm)xm = e,

x1 ... xm ≥ 0.

Column stochastic matrix:

eT Pi = eT , i = 1, ...,m

Discount factor:

0 ≤ θ ≤ 1
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Complexity Results

Value-Iteration Policy-Iteration LP-Algorithm Combinatorial Interior-Point

O(n2 · L
1−θ ) O(n3 · 2n

n ) O(n3L)
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Complexity Results

Value-Iteration Policy-Iteration LP-Algorithm Combinatorial Interior-Point

O(n2 · L
1−θ ) O(n3 · 2n

n ) O(n3L) O(n3 · n · ln 1
1−θ )


