2-Catalog Segmentation, Facility Location, and the Markov Decision

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/ yyye

Joint work with M. Mahdian, D. Xu and Jiawei Zhang.

- 2-Catalog Segmentation
- SDP Relaxation and Approximation
- Facility Location
- Greedy Algorithm and Approximation
- The Markov Decision Problem

2-Catalog Segmentation Problem

- Input: A ground set I of n items, a family $\{S_1, S_2, \cdots, S_m\}$ of subsets of I and an integer $1 \leq k \leq n$.
- Output: Subsets $A_1, A_2 \subset I$ such that $|A_1| = |A_2| = k$.
- \bullet Objective: To maximize $\sum_{i=1}^m \max\{|S_i \cap A_1|, |S_i \cap A_2|\}.$
- **Application:** I is the list of goods; there are m customers where customer i is interested in the goods of $S_i; A_1$ and A_2 are the two catalogs one of which could be sent to each of the customers such that the (total) satisfaction is maximized.

The Partition Version

- **Input:** A bipartite graph $G = (A, B, E)$ with $|A| = n$ and $|B| = m$,
- \bullet Output: A partition of $B=B_1\cup B_2$, and two subsets A_1,A_2 of A such **that** $|A_1| = |A_2| = k$
- **Objective:** To maximize $w(A_1, B_1) + w(A_2, B_2)$.

Connections between the two versions:

 $A \longleftrightarrow I;$

 $B \longleftrightarrow$ Customers;

the set of edges connected to $i (\in B_i) \longleftrightarrow S_i.$

Previous Results

- The problem was proposed by Kleinberg, Papadimitriou and Raghavan (1998).
- A simple greedy algorithm with performance guarantee (KPR 1998): simply selects $A_1 \in A$ to be the k nodes of largest degrees, $A_2 \in A$ be any k nodes in $A, B_1 = B, B_2 = \emptyset$.
- A polynomial time approximation scheme (KPR 1998): for all dense instances of 2-CatSP, in which each node of B has a degree of a constant fraction of n .
- 0.56-approximation algorithm for the case $k = n/2$ by Dodis, Guruswami and Khanna (1999).

Our Results

A randomized approximation algorithm based on the semidefinite programming relaxation which has performance guarantee:

- \bullet $\frac{1}{2}$ $\frac{1}{2}$ for all $k\in [1,n];$
- strictly better than $\frac{1}{2}$ when $k \geq \frac{n}{3}$ $\frac{n}{3}$;
- 0.67 when $k = \frac{n}{2}$ $\frac{n}{2}$.

• A new integer programming formulation which allows us to obtain a SDP relaxation.

—The main difficulty was that $A_1 \cap A_2 = \emptyset$ is not required.

—The new IP model uses two-dimensional vector variables.

• A new variants of the Goemans-Williamson rounding technique which allows us to take the advantage of the underline structure of the problem:

— the graph is bipartite;

— the cardinality constraints are on the set of A only

A Special Case

- $k=\frac{n}{2}$ $\frac{n}{2}$ and it is required that $A_1 \cap A_2 = \emptyset$ (Disjoint Case).
- $\bullet\,$ Each of the node in A is either in A_1 or $A_2.$ For $i\in A,$ $x_i=1$ iff $i\in A_1,$ otherwise $x_i = -1$; for $j \in B$, $x_j = 1$ iff $j \in B_1$.
- The problem can be formulated as

$$
w_* := \quad \text{Maximize} \quad \frac{1}{2} \sum_{i \in A, \ j \in B} w_{ij} (1 + x_i x_j)
$$

(1)

subject to
$$
\sum_{i \in A} x_i = 0,
$$

$$
x_i^2 = x_j^2 = 1 \quad i \in A, j \in B
$$

Relationship with Max-Bisection

• This special case is very similar to the well-known Max-Bisection problem:

$$
w_* := \quad \text{Maximize} \quad \frac{1}{2} \sum_{i \in A, \ j \in B} w_{ij} (1-x_ix_j)
$$

subject to
$$
\sum_i x_i = 0,
$$

$$
x_i^2 = 1
$$

- Is fairly easy to solve since the known SDP based approximation algorithms can also applied to this special case of 2-Catalog problem (DGK 1999).
- 0.65 -approximation by the result of Frieze and Jerrum (1995). 0.699 -approximation by the results of Ye (1999) in running time $O(n^{3.5}),$ and 0.701 by Halperin and Zwick (2001) in $O(n^{9.5})$.

(2)

A Harder Special Case

- $k=\frac{n}{2}$ $\frac{n}{2}$ but $A_1 \cap A_2 = \emptyset$ is not required (General Case).
- One dimensional binary variables are not sufficient to model this problem.
- DGK (1999) reduce this problem to the Disjoint Case, and show that the 0.651 -approximation for the latter implies a 0.56 -approximation for the General Case.
- If we use the 0.70 -approximation for Disjoint case, we get a 0.58-approximation for the General Case.

General Case

- Each node i of A has four possible choices: $A1 \setminus A2$, $A2 \setminus A1$, $A1 \cap A2$ and $A \setminus (A1 \cup A2)$.
- One binary variable cannot characterize all choices of node i .
- $\bullet\,$ We design a two-dimensional vector (x_i,y_i) for each node $i\in A$ such that $x_i = 1$ iff $i \in A_1$, otherwise $x_i = -1$; and $y_i = 1$ iff $i \in A_2$, otherwise $y_i = -1$. We assign variable z_j for each node $j \in B$ such that $z_j = 1$ iff $i \in B_1$, otherwise $z_j = -1$.

An Integer Programming Formulation

A quadratic formulation can be obtained by using these vector variables together with an additional reference variable u_0 , which makes the objective function and constraints homogeneous:

$$
w_* := \quad \text{Maximize} \quad \frac{1}{4} \sum_{i \in A, \ j \in B} w_{ij} (2 + u_0 x_i + u_0 y_i + x_i z_j - y_i z_j)
$$

subject to
$$
\sum_{i \in A} u_0 x_i = \sum_{i \in A} u_0 y_i = 2k - n,
$$

$$
u_0^2 = x_i^2 = y_i^2 = z_j^2 = 1 \quad i \in A, j \in B
$$
(3)

SDP Relaxation

Let vector $u = (u_0; x \in R^n; y \in R^n; z \in R^m)$ and consider matrix $U=uu^T$. Then, it is straightforward to obtain an SDP relaxation of (3):

$$
\text{Max} \sum_{1 \leq i \leq n, \ 2n+1 \leq j \leq 2n+m} w_{ij} \frac{(2+U_{0i}+U_{0(n+i)}+U_{ij}-U_{(n+i)j})}{4}
$$

s.t.
$$
\sum_{i=1}^{n} U_{0i} = \sum_{i=n+1}^{2n} U_{0i} = 2k - n,
$$

$$
\sum_{1 \le i,j \le n} U_{ij} = \sum_{n+1 \le i,j \le 2n} U_{ij} = (2k - n)^2,
$$

$$
U_{ii} = 1, \quad i = 0, 1, ..., 2n + m
$$

$$
U \succeq 0.
$$

(4)

A High-Level Algorithm

 $\bullet\,$ Solve the SDP relaxation and obtain an optimal matrix $\bar U$ which can be write as $\overline{}$ \mathbf{r}

$$
\bar{U}=\left(\begin{array}{cccc} \bar{U}_{00} & \bar{U}_{0x} & \bar{U}_{0y} & \bar{U}_{0z} \\[1em] \bar{U}_{x0} & \bar{U}_{xx} & \bar{U}_{xy} & \bar{U}_{xz} \\[1em] \bar{U}_{y0} & \bar{U}_{yx} & \bar{U}_{yy} & \bar{U}_{yz} \\[1em] \bar{U}_{z0} & \bar{U}_{zx} & \bar{U}_{zy} & \bar{U}_{zz} \end{array}\right)
$$

according to sub-blocks corresponding to u_0 , x, y, and z.

- Use some (randomized) rounding technique to obtain a $\{-1,1\}$ solution \hat{x},\hat{y},z,u which produce $\hat{A}_1,\hat{A}_2,B_1,B_2.$ (The solution may not be feasible, i.e, the cardinality constraints may not be satisfied.)
- $\bullet\,$ Use a greedy adjusting procedure to get a feasible solution A_1,A_2,B_1,B_2 from the above solution.

Greedy Procedure

Let A_1,A_2 be the subsets of A with cardinality k such that $w(A_1,B_1)$ is maximized and $w(A_2, B_2)$ is maximized.

$$
w(A_1, B_1) + w(A_2, B_2) \ge
$$
\n
$$
\begin{cases}\n\frac{k}{|\hat{A}_1|} \cdot w(\hat{A}_1, B_1) + \frac{k}{|\hat{A}_2|} \cdot w(\hat{A}_2, B_2) & \text{if } |\hat{A}_i| \ge k, i = 1, 2; \\
w(\hat{A}_1, B_1) + \frac{k}{|\hat{A}_2|} \cdot w(\hat{A}_2, B_2) & \text{if } |\hat{A}_1| \le k, |\hat{A}_2| \ge k; \\
\frac{k}{|\hat{A}_1|} \cdot w(\hat{A}_1, B_1) + w(\hat{A}_2, B_2) & \text{if } |\hat{A}_1| \ge k, |\hat{A}_2| \le k; \\
w(\hat{A}_1, B_1) + w(\hat{A}_2, B_2) & \text{if } |\hat{A}_i| \le k, i = 1, 2,\n\end{cases}
$$
\n(5)

$$
w(A_1, B_1) + w(A_2, B_2) \ge \max{\frac{1}{2}, \frac{k}{n}} w_*.
$$

Analysis of the Algorithm

We want to bound the quantity of

$$
w(A_1, B_1) + w(A_2, B_2).
$$

Assume that the greedy adjusting procedure guarantees that

$$
w(A_1, B_1) + w(A_2, B_2) \ge f(k/|\hat{A}_1|, k/|\hat{A}_2|) \left(w(\hat{A}_1, B_1) + w(\hat{A}_2, B_2)\right).
$$

Then, (roughly speaking), it is sufficient to bound

- $\bullet~$ The expected values of $|\hat{A}_1|,|\hat{A}_2|$
- $\bullet\,$ The variance of $|\hat{A}_1|,|\hat{A}_2|$
- $\bullet\,$ The expected value of $w(\hat{A}_1,B_1)+w(\hat{A}_2,B_2).$

Goemans-Williamson Rounding Technique

- $\bullet\,$ Factorize the optimal matrix $\bar{U}=V^TV$ where $V=(v_0,V_x,V_y,V_z)$ is a $(2n + m + 1) \times (2n + m + 1)$ matrix.
- Randomly choose a unit vector u from S^{2n+m} .
- $\bullet\,$ For each node i , if $u\cdot v_i$ has the same sign as $u\cdot v_0$, then it is $1;$ otherwise it $is -1$.
- This randomized rounding produces a solution which has an expected objective value close to the optimal one, and the expected number of nodes in \hat{A}_1 or \hat{A}_2 are close to k as desired.
- \bullet The problem is that the variances of $|\hat{A}_1|$ or $|\hat{A}_2|$ could be very large.

A Combined Rounding

- The identity matrix I can be used as the rounding matrix which has a better bound on the expected values and variances of $|\hat{A}_1|$ or $|\hat{A}_2|$, but a worse bound on the objective value. (For simplicity, we only consider $k=\frac{n}{2}$ $\frac{n}{2}$ here).
- We have shown that a careful combination of the optimal matrix U and the identity matrix I can improve the overall approximation ratio, i.e., to balance the bounds on the objective value and the sizes.
- We can apply this combined rounding technique to our problem.
- Can we do better by exploiting the structure of the problem?

Structure of the Problem

- Recall that our graph is bipartite and the cardinality constraints are only on the set A .
- For the nodes in A , we can apply combined rounding matrix.
- For the nodes in B , we do not want to use the combined rounding since it has a negative effect on the objective value.
- A new rounding matrix may take advantage of this fact. But note that it must be semi-definite.

New Rounding Matrix

We use the matrix $\bar{U}(\theta) + (1 - \theta)P$ as the rounding matrix, where $\theta \in [0, 1]$,

$$
\bar{U}(\theta) = \left(\begin{array}{ccc} \bar{U}_{00} & \sqrt{\theta}\bar{U}_{0x} & \sqrt{\theta}\bar{U}_{0y} & \bar{U}_{0z} \\ \sqrt{\theta}\bar{U}_{x0} & \theta\bar{U}_{xx} & \theta\bar{U}_{xy} & \sqrt{\theta}\bar{U}_{xz} \\ \sqrt{\theta}\bar{U}_{y0} & \theta\bar{U}_{yx} & \theta\bar{U}_{yy} & \sqrt{\theta}\bar{U}_{yz} \\ \bar{U}_{z0} & \sqrt{\theta}\bar{U}_{zx} & \sqrt{\theta}\bar{U}_{zy} & \bar{U}_{zz} \end{array}\right)
$$

and

$$
P = \begin{pmatrix} 0 & 0_{1 \times n} & 0_{1 \times n} & 0_{1 \times m} \\ 0_{n \times 1} & I_{n \times n} & 0_{n \times n} & 0_{n \times m} \\ 0_{n \times 1} & 0_{n \times n} & I_{n \times n} & 0_{n \times m} \\ 0_{m \times 1} & 0_{m \times n} & 0_{m \times n} & 0_{m \times m} \end{pmatrix}
$$

.

Analysis of the New Rounding

Recall that we want to bound

- The expected values of $|\hat{A}_1| = \frac{1}{2}$ $\overline{2}$ $\overline{ }$ $_{i\in A}(1+\hat{x}_{i}\hat{u}_{0})$ and $|\hat{A}_{2}|.$
- $\bullet\,$ The variance of $|\hat{A}_1|$ which can be treated as $|\hat{A}_1|(n - |\hat{A}_1|) = \frac{1}{4}$ $\overline{}$ $\hat{x}_{i,j \in A} (1 - \hat{x}_{i} \hat{x}_{j}),$ and that of $|\hat{A}_2|.$
- The expected value of

$$
w := w(\hat{A}_1, B_1) + w(\hat{A}_2, B_2)
$$

=
$$
\sum_{i \in A, j \in B} w_{ij} \frac{(2 + \hat{x}_i \hat{u}_0 + \hat{y}_i \hat{u}_0 + \hat{x}_i \hat{z}_j - \hat{y}_i \hat{z}_j)}{4}
$$

Analysis of the New Rounding (Continued)

The following are straightforward from Goemans-Williamson and our rounding

$$
E[\hat{x}_i \hat{u}_0] = \frac{2}{\pi} \arcsin(\sqrt{\theta} \bar{U}_{0i}), \qquad i \in A,
$$

\n
$$
E[\hat{y}_i \hat{u}_0] = \frac{2}{\pi} \arcsin(\sqrt{\theta} \bar{U}_{0(m+i)}), \quad i \in A,
$$

\n
$$
E[\hat{z}_j \hat{u}_0] = \frac{2}{\pi} \arcsin(\bar{U}_{0j}), \qquad j \in B,
$$

\n
$$
E[\hat{x}_i \hat{z}_j] = \frac{2}{\pi} \arcsin(\sqrt{\theta} \bar{U}_{ij}), \qquad i \in A, j \in B,
$$

\n
$$
E[\hat{y}_i \hat{z}_j] = \frac{2}{\pi} \arcsin(\sqrt{\theta} \bar{U}_{(m+i)j}), \quad i \in A, j \in B.
$$

These equations are enough for us for bounding the expected objective value and the sizes.

$$
z(\eta, \gamma) := \frac{w}{w_{SDP}} + \gamma \frac{M_1 + M_2}{n^2} + \eta \gamma \frac{p_1 + p_2}{n},
$$
 (6)

where

$$
w := w(\hat{A}_1, B_1) + w(\hat{A}_2, B_2)
$$

\n
$$
p_1 := |\hat{A}_1|,
$$

\n
$$
p_2 := |\hat{A}_2|,
$$

\n
$$
M_1 := |\hat{A}_1|(n - |\hat{A}_1|),
$$

\n
$$
M_2 := |\hat{A}_2|(n - |\hat{A}_2|).
$$

Our approximation method yields the partitions (\hat{A}_1, \hat{A}_2) and (B_1, B_2) , satisfying the following two inequalities:

$$
E\left[\frac{w}{w_{SDP}}\right] \ge \alpha,
$$

$$
E\left[\frac{p_i}{n}\right] \ge \beta/2, \quad i = 1, 2,
$$

$$
E\left[\frac{M_i}{n^2}\right] \ge \beta/4 \quad i = 1, 2.
$$

 $\mathsf{E}[z(\eta,\gamma)] \geq \alpha + \gamma \beta/2 + \eta \gamma \beta$ and $z(\eta,\gamma) \leq 1+ \gamma$ $\gamma(1+\eta)^2$ 2 . If the random variable $z(\eta, \gamma)$ meets its expectation, then

$$
w(A_1, B_1) + w(A_2, B_2) \ge R(\sigma, \theta, \eta, \gamma) \cdot w_*.
$$

Table 1

Facility Location

In the uncapacitated facility location problem (UFLP), we have

- A set $\mathcal F$ of n_f facilities, where for every facility $i\in\mathcal F$, a nonnegative number f_i is given as the *opening cost* of facility $i.$
- $\bullet\,$ A set ${\cal C}$ of n_c cities, where for every city $j\in {\cal C}$ and facility $i\in {\cal F},$ we have a connection cost (a.k.a. service cost) c_{ij} between city j and facility i.
- The objective is to open a subset of the facilities in $\mathcal F$, and connect each city to an open facility so that the total cost is minimized.
- We will consider the *metric* version of this problem, i.e., the connection costs satisfy the triangle inequality.

Approximation Results

Table 1: Approximation Algorithms for UFLP

Hardness Results

Guha and Khuller proved that it is impossible to get an approximation guarantee of 1.463 for the uncapacitated metric facility location problem, unless $\mathsf{NP} \subseteq \mathrm{DTIME}[n^{O(\log \log n)}].$

Cost-Splitting Approximation

An algorithm is called a (γ_f,γ_c) -approximation algorithm for UFLP, if for every instance $\mathcal I$ of UFLP, and for every solution SOL for $\mathcal I$ with facility cost F_{SOL} and connection cost C_{SOL} , the cost of the solution found by the algorithm is at most $\gamma_f F_{SOL} + \gamma_c C_{SOL}.$

Let
$$
\gamma_f \ge 1
$$
. Then $\gamma_c \le \sup_k \{z_k\}$, where z_k
\nmax $\frac{\sum_{i=1}^k \alpha_i - \gamma_f f}{\sum_{i=1}^k d_i}$
\ns.t. $\forall 1 \le i < k : \alpha_i \le \alpha_{i+1}$
\n $\forall 1 \le j < i < k : r_{j,i} \ge r_{j,i+1}$
\n $\forall 1 \le j < i \le k : \alpha_i \le r_{j,i} + d_i + d_j$
\n $\forall 1 \le i \le k : \sum_{j=1}^{i-1} \max(r_{j,i} - d_j, 0) + \sum_{j=i}^k \max(\alpha_i - d_j, 0) \le f$
\n $\forall 1 \le j \le i \le k : \alpha_j, d_j, f, r_{j,i} \ge 0$.

Conservative Opening Factor δ

Theorem 1 If there is a

 (γ_f, γ_c)

approximation algorithm for UFLP, then there is a

$$
(\gamma_f+\ln\delta,1+\frac{\gamma_c-1}{\delta})
$$

approximation for UFLP.

Prove $(\gamma_f,\gamma_c)=(1.104,1.7805)$ and select $\delta=1.5107.5$

Extended Results

Table 2: Approximation Algorithms for UFLP

Column stochastic matrix:

$$
\mathbf{e}^T P_i = \mathbf{e}^T, \quad i = 1, ..., m
$$

Discount factor:

$$
0\leq \theta \leq 1
$$

Complexity Results

Complexity Results

