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Algebraische Theorie der Korper
E. Steinitz (1910)

Integral domains (§3)

e Definition: Commutative rings without zero-
divisors (Krdnecker)

e Main result: Every integral domain has a
quotient ring.

e Gives the construction that has become fa-
miliar from basic algebra.



Moderne Algebra

B. van der Waerden (1930)

Chapter III, §12: Quotient construction

e Gives Steinitz’'s construction of quotient
rings for commutative integral domains.

e Does not mention Steinitz.

e Sources for chapters II and III were lecture
notes of Noether and Artin.



The question

The problem of embedding a noncommutative
ring without zero-divisors in a noncommutative
field is an unsolved problem, except in some
special cases.

Terminology:

e domain = ring without zero-divisors.

e division ring = noncommutative field.



The Answers

A. Malcev (1933): example of a noncommu-
tative domain whose multiplicative semigroup
cannot be embedded in a group.

A. Malcev (1939): necessary and sufficient
condition for a semigroup to be embedded in
a group.

P. M. Cohn (1975): necessary and sufficient
condition for a domain to be embedded in a
division ring.



The key point

The quotient construction used in the com-
mutative case breaks down if the domain is
noncommutative.



Quotient ring

Let R be a (not necessarily commutative) do-
main.

The right quotient ring of R is a ring Q(R)
such that

1. RCQ(R),

2. every 0 # c € R is invertible in Q(R);

3. every element of Q(R) can be written in
the form ac~ 1, where a,c € R and ¢ # 0.



The key argument

Let R be a domain with quotient ring Q(R),
and let a,c € R, with ¢ # 0.

By (2): ¢! € Q(R).
By (1): a € Q(R).
Since Q(R) is a ring ¢ la € Q(R).

By (3): there exist ay,c1 € R, with ¢; 7 0 such
that ¢ 1a = alcl_l.

Therefore: acy = cap must hold in R.



The Quotient Problem

The result: If R has a quotient ring then,
given a,c € R, ¢ = 0, there exist a1,¢1 € R
such that

aci =caq and c¢1 #= 0.

Problem: Is this condition sufficient?

Answer: Yes, proved independently by:

e O. Ore (1931)

e D. E. Littlewood (1931)

e J. H. M. Wedderburn (1932)



O. Ore (1899-1968)

(The Cathedral School (Oslo)
Studied at { Oslo University
| GOttingen University

Oslo University (1925-1927)

Worked at _ _
Yale University (1927-1968)



O. Ore (1899-1968)

Mathematical interests:

e algebraic number theory (1923-1930)

e noncommutative rings and lattices (1930-
1955)

e graph theory (1955-1968)

Books on the history of mathematics (Abel,
Cardano).

Helped to edit Dedekind’'s complete works.
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Linear equations over noncommutative fields

Annals of Mathematics (1931)

Aim: define determinants over noncommuta-
tive domains, by generalizing work of A. R.
Richardson, A. Heyting and E. Study.

Van der Waerden’s question is mentioned in a
footnote at the introduction.
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Linear equations over noncommutative fields

Key concept: A regular ring is a (not neces-
sarily commutative) domain which satisfies

My, . Existence of common multiplum
When a #= 0, b # 0 are two elements of
S, then it is always possible to deter-
mine two other elements m =0, n # 0
such that

an = bm. (1)
Nowadays:

e Regular ring = Ore domain.

e My. = Ore condition.
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Relation between My . and determinant

ri1a11 + xoa1n2 = by,
r1a21 + Toasp = bo

with coefficients in a regular ring S. Use My,.
to find A1o> and Ao, such that

a12A20 = anpAio

Right multiply first equation by A>> and second
by A1o> and subtract them:

r1a11A20 + x2a12A20 = b1 Aoo,
r1a21A12 + x0ap0A12 = brA10

r1(a11A20 —an1A12) = b1 Az — b Ao

This is Cramer’s rule!
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Subsection 2

Theorem 1 All reqular rings can be considered
as subrings (more exactly: are isomorphic to a
subring) of a non-commutative field.

Ore gives:

e (unmotivated) definitions for equality, ad-
dition and multiplication of “fractions’ .

e detailed proofs that all the required prop-
erties are satisfied.

e NO interesting examples of noncommuta-
tive regular rings.
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Common Denominators

Define () to be ab~1.

Question When is (%) equal to (%)?

Use My, . to find b7 and B such that
bp1 = Bby ==c
Thus

ab~ 1 = aﬁlc_l and aﬁ_l = ablc_l.
Summing up:

if and only if there exists b1 and £1 such that

bB1 = Bb1 and afB1 = aby.
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Theory of noncommutative polynomials

Annals of Mathematics (1933)

Defines generalized polynomial ring K[x] over
a division ring K, such that

ra = ax + a'.

where a — @ is an endomorphism of K and
a — a’ is a derivation of K.

Ore proves that
e there is a division algorithm in K|x].
e there is a euclidean algorithm in K|z].

e K|[x] is a regular ring.

This paper generalizes a previous one in Crelle
(1931) on formal differential operators.
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D. E. Littlewood (1903-1979)

Graduated from Trinity College (Cambridge)
in 1925.

Worked at

University College Swansea (1930-1947) and
University College of North Wales, Bangor (1948-
1970)

e Met A. R. Richardson at Swansea.

e Published 5 joint papers with Richardson.

e Best known for his work on groups.

e Littlewood-Richardson rule.
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On the Classification of Algebras

Proceedings of the London Mathematical So-
ciety (1933).

Aim: study properties of algebras that are re-
lated to physics, specially Dirac’s g-numbers,
polynomials in x and p such that

pr —xp =1ih/27 (= 1).

Pre Moderne Algebra style

e ring = linear algebra.

e ideal = modulus.
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On the classification of Algebras

Theorem XIX. If P and Q are polynomials in x
and p, then non-zero polynomials R and S can
be found such that

RP = SQ.

Theorem XXI. The algebra of rational expres-
sions in p and x is a division algebra.

19



Proof of Theorem XIX

Suppose that P and () have degree at most r
in x and in p.

Choose R and S of degree at most 3r in x and
in p.

e Total number of coefficients of R and S is
2(3r + 1)2.

o deg,(RP — SQ) and deg,(RP — SQ) < 4r.

e Total number of coefficients of RP — 5Q is
(4r + 1)2.

But
2(3r +1)% > (4r + 1)2.

There are more variables than equations, hence
the system must have a solution.
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J. H. M. Wedderburn (1882-1948)

Noncommutative domains of integrity, Crelle,
(1933)

e Results stated for euclidean domains (=
domains with a euclidean algorithm).

e Gives a detailed proof that works in gen-
eral.

e \/Vas aware that his results applied to more
general rings:

H is a Hamiltonian domain if for all
a € H there exists @ € H with
aa =« € Z(H).
Hence,
a(@ ) =aa" 1 =1.

Enough to invert central elements.
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The web of influences

Dickson & Artin,
Wedderburnl Noether,
vd Wzlaerden
Littlewood| Ore E
Richardson] E
L. Schwarz|
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The next twenty years

The 1940s: generalizations of the construc-
tion to rings with zero-divisors.

The 1950s: new examples of rings that are
Ore domains.
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Rings with zero-divisors

Paul Dubreil: Algébre (1946).

e Studied under E. Noether and E. Artin.

e Direct generalization of Ore’'s approach to
rings with zero-divisors.

K. Asano: Uber die Quotientenbildung von
Schiefringen

e Introduces a totally different approach to
the construction of quotient rings.

e Avoids most of the complicated calcula-
tions required in Ore's direct approach.
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Examples

Ring Author Date | Argument

Ore extension | Ore 1931 | division
algorithm

Weyl algebra Littlewood 1931 | counting
argument

Enveloping N. Jacobson | 1951 | central

algebra polynomial

(positive

characteristic)

Enveloping D. Tamari 1952 | counting

algebra argument

(all fields)

PI domain S. Amitsur 1955 | minimal
identity
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Goldie’s theorem

A. W. Goldie:

T he structure of prime rings under ascending
chain conditions (1958)

Semi-prime rings with maximal conditions (1960)

Goldie’s theorem Every noetherian semiprime
ring has a quotient ring.

All these examples are covered by Goldie’'s the-
orem and the special proofs have mostly been
forgotten.
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Today

The solution of the quotient problem is
usually attributed to Ore.

No mention is made of the fact that Ore
dealt only with domains.

The work of Littlewood, Wedderburn and
Dubreil is never mentioned after the 1960s.

Asano’s approach still survives because his
construction is less ardous than Ore’s di-
rect approach.
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