Kronecker to Mittag-LefHler, 4 April 1886:

I promised Hermite I would not bring up again
the circumstance that made me so angry last year.
... I have newly worked out a great deal of the mate-
rial [for lecture courses|, and beyond this I have put
the foundations of algebra in an entirely new form.
... You will recall that I originally intended to give
you my works on this subject for publication. ...
The so-called fundamental theorem of algebra is re-
placed by my new “fundamental theorem of general
arithmetic.” ... I owe this beautiful and sure foun-
dation of algebra to my sharp critique of the method
of defining quantities that began with Heine and to
the precious Galois principle. It will appear in the

100th volume of our journal.



This letter points to Kronecker’s paper “Ein Fun-
damentalsatz der Allgemeinen Arithmetik” as his
definitive statement of his positive criticism of the
Grossendefinitionen that were becoming current at
that time and that he associated with Heine.

Although Kronecker’s views in this matter had

scant influence on the development of algebra in the

following decades, I believe théy are worth our at-
tention both because they bring to a successful con-
clusion (to my way of thinking) well over a century
of thought about ‘the fundamental theorem of al-
gebra’ and because they are central to Kronecker’s
approach to algebra, an approach that, valuable as it
is, is in danger of remaining forever, in André Weil’s
words, “buried in the impressive but seldom opened

volumes of his Complete Works.”



In the letter he also says that the “modern”
method of defining quantities (his quotation marks)
cannot be used for the definition of the coeflicients
of two polynomials if one intends to use the algo-
rithm for finding their greatest common divisor. He
does not elaborate, but he surely means that if, for
example, you want to-invert a nonzero element of
‘the field Q[+/2], which involves finding the greatest
common divisor of 2 — 2 and a nonzero polynomial
f(z) of degree less than 3 as a linear combination of
z3 — 2 and f(x), it won’t do to know the coefficients
of f(x) as real numbers; they must be known ezactly
as rational numbers.

In other words, in arithmetic and algebra, which
were Kronecker’s greatest interests, real numbers are

not only inappropriate but unacceptable.



As you all know, Gauss’s doctoral dissertation of
1799 was devoted to what we call the fundamental
theorem of algebra and what Kronecker called the so-
called fundamental theorem of algebra. Gauss criti-
cized earlier proofs of Euler, Lagrange and Laplace,
saying that they were circular insofar as they used
computations with the roots of the polynomial in the
course of proving that the roots were complex num-
bers.

How, he asked, can you compute with the roots
before you have proved that they are complex num-
bers?

This is in fact the key question that Kronecker’s
Fundamentalsatz answers. To put it more tersely:

How can you compute with the roots of a given

polynomaal?



In a peculiar way, Galois gave the pragmatic an-
swer to this question. His answer was on the one
hand unfounded, in a sense I will explain, at the
same time that it was, paradoxically, the foundation
of Galois theory.

The essential idea was what Kronecker was refer-
ring to when he wrote of “the precious Galois prin-
ciple” (der kostliche Galoisschen Princip).

It is: Make use of the fact that you can evaluate
symmetric polynomials of the roots to find a quantity
with the two properties that (1) each root of the given
polynomial can be expressed rationally in terms of it,
and (2) it is a root of a known polynomial.

In modern terms: Find a primitive element for

the splitting field of the given polynomial.



An example makes the process clear. Let the
given polynomial be z3 — 2. The three roots a, b,
¢ of this equation of course satisfy a + b + ¢ = 0,
ab + bc + ca = 0 and abc = 2.

Let ¢t = a—b. Then t is the root of a polynomial of

degree 6 (fulfilling the second of the two properties

.- we're requiring), namely, the polynomial (X —a +

bI(X+a—b)(X—=b+c)(X+b=c)(X—c+a)(X+c—a),
a polynomial in X of degree 6 whose coeflicients are
symmetric in a, b, ¢ and can therefore be evaluated.

Here we are of course computing with a, b, ¢ as
if we knew how. And of course we do know how to
compute with symmetric functions of them even if
we don’t know what they are! Galois seems never
to have bothered himself with the question of what

they were.
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In fact, that polynomial of degree 6 in X is
X% 4+ 108. T'll indicate briefly how to arrive at this
conclusion.

First combining the three pairs of factors, we find
itis (X% — (a —b)?)(X? - (b—¢)?)(X? — (c —a)?).
Thus it is just a matter of finding the coefficients of
X?* X? and the constant term. The first of these is
—(a=0)*—=(b—-c)?—-(c—a)*=-2(a®>+b*+ %)+
2(ab+bc+ca) = —2(a+b+c)?+6(ab+bc+ca) = 0.
I'll skip the proof that the coefficient of X? is also
0. The proof that the constant term —(a — b)%(b —
¢)?(c — a)? = 108 is easy using a trick that is worth

taking the 30 seconds that will be needed to show it.



1 1
(a—=b)(b—c)(c—a)=|a b c
a? b 2

because both sides are polynomials of degree 3 that
contain bc? and are zero whenever two of a, b, ¢ are
equal. Therefore, the square of this determinant is
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Thus, the difference ¢ = a — b of any two roots of
r° — 2 is a root of X® + 108. But that is of course
the easy part. The hard part is to express a, b and
c rationally in terms of ¢.

I will spend a moment on this because Peter Neu-
mann called my reconstruction of Galois’ proof “far-
fetched”, and I feel that I have new evidence for it in
the form of the following sentence of Abel, published
a few years before Galois’ work:

“When a quantity satisfies, at the same time, two
given algebraic equations, these equations have a
common factor of the first degree. When one sup-
poses that they have no other common factor than
this one, one can always, as one knows, express the
unknown as a rational function of the coefficients of

the two equations.” (Emphasis added.)
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Galois’ basic construction uses the formula

(V—a)(V-=0)(V —c)

VBV~ )= o
= “//3__5 = V;:Zg = V2 +aV +a?

or, more generally,
: f(V) - f(a)

(V= (V=) (V=e) =

(where V' is a new unknown) to express the elemen-
tary symmetric polynomials (and therefore all sym-
metric polynomials) in b, ¢, ... , as polynomials in a.
With V = —t+a, we have (—t+a—0b)(—t+a—c) =
(—t+a)®+a(—t+a)+a? = t?—2at+a?—at+a’+a’ =

t2 — 3at + 3a?.
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But the first factor on the left is zero by the defini-
tion of ¢, so we have the two relations a®> —2 = 0 and

t? —3at + 3a® = 0 to determine a rationally in terms

of t. Explicitly, 0 = (t+a)(t*—3at+3a?)—3(a®—2) =

—2at? + t3 + 6, from which we find a = t;j;@ Then

andc=—a—-b=-5

31 a__ 043 43
h=g—t— t246=2t> _ —t°46 s

2t2 T 2¢t2

gives the expressions of all three roots of z° — 2 ra-
tionally in terms of a root ¢ of t® + 108.
Kronecker thought that true scientific value lay in

formulas. The mathematical truth just derived is

3 +6 —t3+6 6
52 )(z — —2152—)(x + )

3 —2=(x— 2
mod t° + 108,

or, if you prefer it without denominators,

8t0(x3 — 2) = (2t%z — 3 — 6)(2t%z + t2 — 6)(2t%z + 6)
mod t°® + 108.
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The same method exactly can be used to derive,
for a given polynomial f(z) (the case in which f(x)
is monic and irreducible with integer coefficients is
the natural one to consider first) a formula of the

same form

f(z) = (@ =p1®)(z = p2(t) - (2= pn(t)) mod G(f)

where G(t) is an irreducible, monic polynomial with
integer coefficients and where p1(t), p2(t), ..., pn(t)
are rational functions in ¢ with integer coefficients.
The construction is: (1) Set ¢t = Aa+Bb+---+FEe
where a, b, ... , e are the roots of the given f(z) and
where A, B, ..., E are strategically chosen integers.

(In the example, A=1, B=-1,C =0.)
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(2) Multiply t—(Aa+Bb+---4+Cc) by the (n—1)!
polynomials in ¢, a, b, ... , e obtained by permuting
b, c, ..., ein all possible ways.

The result is on the one hand 0 (the first factor
is zero by the definition of ¢) and on the other hand,
since it is symmetricin b, c.. .. , e, it can be expressed
as a polynomial in ¢t and a, say F(t,a) = 0.

(3) Use the two relations f(a) = 0 and F(t,a) =0
to express a rationally in terms of the coefficients of
the two relations and therefore as a rational function
of t, call it p,(%).

Since you can do the same for all roots, not just for
a, you get, when G(t) is the irreducible polynomial

of which ¢ is a root,

f(z) = (& = pa(t)) - (x = pe(t)) mod G(2).
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You will of course be uneasy about the require-
ment that the integer multipliers A, B, ..., E be
‘chosen strategically,” but this is easily explained.
Galois requires that the n! quantities Aa+ Bb+-- -+
Fe obtained by permuting the roots a, b, ..., € be
distinct, and this is easy (in theory, not computa-

“tionally) to guarantee: The product of the n!(n!—1)

- differences of these quantities.is symmetric in the

roots and is therefore a known known polynomial in
A, B, ..., E with integer coefficients.

So all we need to do to find our ‘Galois resolvent’
t is to assign integer values to A, B, ..., E that give
this polynomial a nonzero value (so the n! values are
distinct). (Clearly this polynomial in A, B, ..., F is

nonzero provided the roots a, b, ... , e are distinct.)
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What one needs to be uneasy about is the very
concept of computing with the roots of the given poly-
nomsial. Once again, in my opinion the truly fun-
damental theorem of algebra is the statement that
there is a valid way to compute with the roots of a
polynomial as though they were numbers. (And by
‘numbers’ I mean the most elementary kind 1, 2, 3,

(Galois proved—or at least sketched a fully satis-
factory proof—that if there is any valid way to com-
pute with the roots of a given polynomial f(x), then
the splitting field can be represented explicitly as the
field Q[t] mod G(t) obtained by adjoining to the ra-
tionals Q a single root t of an explicitly computable
(in theory) irreducible and monic polynomial G(t)

with integer coefficients.



16

Again, the theorem constructs for a given f(x)

with integer coefficients a formula

f(z) = (2 = pa(t)) - (2 = pe(t)) mod G(t)

where G is irreducible and monic with integer co-
efficients. This not only constructs a splitting field
" Q[t] mod G(t) of f(a:), it also constructs the roots
pa(t), ... within it. o

Galois deduced this theorem from the tacit as-
sumption that the use of the algebra of symmetric
polynomials is a valid way to find a polynomial of
which t = Aa + Bb+ --- + FEe is a root and to find
a polynomial relation F'(a,t) = 0, which, combined
with f(a) = 0, makes it possible to express a ratio-

nally in terms of ¢.
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Kronecker’s ‘Fundamental Theorem of General
Arithmetic’ is essentially this same statement, but
freed from reliance on any tacit assumptions.

However Kronecker’s theorem, and Galois’ theo-
rem too, i1s more general than the one I have stated.
I have been assuming f(x) has integer coefficients,
but once the theorem has been formulated in this
way 1t is quite natural to allow the coeflicients of
f(x) to contain letters as well as numbers.

Galois had this very much in mind because,
among other things, he wanted to prove that the
roots of 2°+ Ax*+ Bx3+Cz?+Dz+E, a polynomial
whose coefficients are ‘letters’, cannot be expressed
by radicals.

Kronecker in fact defined ‘general arithmetic’ as

the algebra of such polynomials.
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Kronecker’s Fundamental Theorem of Gen-
eral Arithmetic. Given a polynomial F(x) whose
coefficients are polynomials in some set of letters r,
r', r", ... with integer coefficients, you can construct

an explicit congruence relation relation on the ring

of polynomials in x, v, r', r"”, ... with integer coeffi-

. ctents such that the ring of congruence classes i1s an-

integral domain, and some nonzero multiple q- F(x)

of F'(x), where q does not contain x, is congruent to

a product of factors linear in x.
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Confession: I don’t understand the details of Kro-
necker’s proof.

Defense: I can prove it in a very clear, simple,
constructive way. The heart of the method is a Kro-
neckerian algorithm for factoring polynomials whose
coefficients are in a fixed algebraic number field.

Then the construction of the splitting field of
F(z) can follow the naive step-by-step construction
in which one adjoins at each step a root of a factor
of degree greater than 1 that is irreducible over the
field that has been constructed so far, until all the
factors have degree 1.

(I suspect Kronecker would not have liked this
approach because it does not put the Galois group

in evidence.)
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In conclusion, I would like to justify my state-
ment at the outset that Kronecker’s theorem can be
regarded as bringing to a successful conclusion the
study of the so-called fundamental theorem of alge-
bra.

In short, the idea is that a polynomial F'(z) with
integer coefficients has n roots that can be expressed
rationally in terms of a root ¢ of a polynomial (which
can in fact be assumed to be monic and irreducible)
G(t) with integer coefficients. Thus, to find n com-
plex roots of F'(x) we have only to find one complex

root t of G(t).
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It 1s easy to construct one complex root of G(t)
in two steps:

(1) The integral of dlog|G(z)| around the bound-
ary of any square in the complex z-plane on which
|G(z)| is bounded away from zero is zero because
log |G(z)| is single-valued on such a square. Us-
ing this, and using the fact that the integral of
dlog |G(z)| around the boundary of a very large
square is nearly the same as the integral of dlog|z"|
around the same boundary, which is 27ni, one can
find small squares on which |G(z)| is nearly zero.

(2) Given a value of z for which G(z) is nearly
zero, you can use an iteration to construct a se-
quence that converges to an actual zero. (Note that

this convergent sequence encapsulates the part of the

theorem that is not algebra.)



