On the History of the *Frobenius*- and *Tchebotarev*-Density

1 Dirichlet Density. Dirichlet (1837)

Definition 1 M a set of prime numbers. Density $\delta(M)$ of M:

$$\begin{split} \delta(M) &:= \lim_{s \to 1^+} \sum_{p \in M} \frac{1}{p^s} / \log \frac{1}{s-1}, \quad s > 1; \\ &\sum_{p \in M} \frac{1}{p^{1+w}} = \delta(M) log(\frac{1}{w}) + P(w), \quad w > 0, \end{split}$$

P(w) convergent.

Theorem 2 (Dirichlet 1837)

If
$$(a,m) = 1$$
 and

 $M(a) = \{ p = mx + a : x \in \mathbb{Z}, p \text{ prime} \},\$

Then

$$\delta(M(a)) = \frac{1}{\varphi(m)} = \frac{1}{\text{number of classes}}$$

is independent of the class [a] modulo m. φ : Euler function.

Kronecker (2.2.1880)	Dedekind (1872)
(programmatic chavacter)	(Remark on decomposition
Frobenius (Nov. 1880)	7 stickelbeuger
	> Dedekind
Frobenius <u>3.6.1882</u>	Dede Kind
Frobenius	Dedekind (abstract
	on the decomposition
	law in normal extensions
	and its subfields.
	Existence of Frobenius aut.)
<	· 🗸
Published 1896	Published 1894:
(Hurwitz: letter	Zur Theorie der Ideale
to Frobenius on	(Hilbert 1894 : Theory
the density theorem)	of Galoisian Number
	Fields, Ramification Theory)

Remarks 3:

(1)**Dirichlet:** Theorem 2 follows from

 $L(1,\chi) \neq 0$ for $\chi \neq \chi_0$. Without this property one has only $\delta(M(a)) \leq \frac{1}{\varphi(m)}$ in general.

(2) Theorem 2 \Rightarrow $L(1, \chi) \neq 0$ for $\chi \neq \chi_0$.

(3) Weber: Theorem 2 follows from the fact that there is a class field K over \mathbb{Q} to the congruence group $(\mathbb{Z}/m\mathbb{Z})^{\times}$, namely

 $K = \mathbb{Q}(\zeta_m), \quad \zeta_m = e^{\frac{2\pi i}{m}}.$

(4) **Kronecker:** Theorem 2 follows from the fact that

 $\phi_m(x) := \operatorname{Irred}(\zeta_m)$ is of degree $\varphi(m)$.

(5) Eisenstein (1847) densities \rightarrow Minkowski \rightarrow Siegel (1935-37) \rightarrow Tamagawa (numbers).

(6) Theorem 2 was motivated by the Quadratic Reciprocity Law (Legendre, Gauss).

2 Kronecker. Irreducibility

Theorem 4: (Gauss 1801)

For p a prime number, $\phi_p(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$ is irreducible (over \mathbb{Q}).

Proofs:

Gauss (1801), Kronecker (1845), Schönemann (1846), Eisenstein (1847), Dedekind (1857, for composite p).

Remark 5: Proof by **Kronecker** (1845) by means of polynomials in the polynomial ring: $\mathbb{Q}(\zeta_p) = \mathbb{Q}[x]/\phi_p(x).$ Suggested by Kummer (1845).

Theorem 6: (Kronecker 1855, 62, 70, 77) $K = \mathbb{Q}(\sqrt{-d})$ of discriminant -d < 0, \mathfrak{o}_f order in K of conductor f, $h = h_f$ class number of \mathfrak{o}_f , $\mathcal{C}_1, \ldots, \mathcal{C}_h$ classes of \mathfrak{o}_f , $j(\mathcal{C}_i)$ singular modulus of the class \mathcal{C}_i . Then: (1) $j(\mathcal{C}_1), \ldots, j(\mathcal{C}_h)$ are algebraic integers (class invariants).

(2) $j(\mathcal{C}_1), \ldots, j(\mathcal{C}_h)$ are the roots of a polynomial $H(x) \in K[x]$ of degree h (over K) (class equation).

(3) H(x) is **irreducible** over K, hence the $j(\mathcal{C}_i)$ are all conjugate (over K).

(4) $L = K(j(\mathcal{C}_i))$ is independent of the class \mathcal{C}_i .

(5) L/K is **abelian** of degree [L:K] = h (hence solvable over \mathbb{Q}).

(6) $\operatorname{Gal}(L/K) \cong \operatorname{Cl}(\mathfrak{o}_f)$ class group of \mathfrak{o}_f .

(7) If \mathfrak{o}_f is the principal order in K, i.e. $\mathfrak{o}_f = \mathfrak{o}(K)$, then L/K is unramified (conjecture of Kronecker \rightarrow class field theory of Weber).

(8) L is an associate species to K,i. e. every ideal in K becomes principal in L.

3 Kronecker Density

 \downarrow

Kronecker's Program:

 $\phi_p(x) \in \mathbb{Q}[x] \quad \text{irreducible } \searrow \\ F(x) \in K[x] \text{ irreducible?} \\ H(x) \in \mathbb{Q}(\sqrt{-d})[x] \text{ irreducible } \nearrow$

Kronecker's Program: Algebraic Theory of Polynomial Rings (1882) \rightarrow Hilbert \rightarrow Grothendieck.

(1) What are the characteristic properties of irreducible polynomials?

(2) Starting point: Dirichlet's and Kummer's Class Number Formula.

Theorem 7: (Main Theorem)

(Kronecker 1880, dedicated to Kummer)

Let $F(x) \in \mathbb{Z}[x]$,

r: number of irreducible factors of F(x), ν_p : number of solutions of $F(x) \equiv 0$ modulo p, for a prime p.

Then

$$\sum_{p} \frac{\nu_p}{p^{1+w}} = r \log{(\frac{1}{w})} + P(w), \quad w > 0;$$

P(w) convergent for small w.

$$\lim_{s \to 1+} \sum_{p} \frac{\nu_p}{p^s} / \log\left(\frac{1}{s-1}\right) = r, \quad s > 1.$$

Definition 8: (Kronecker 1880)

Let $F(x) \in \mathbb{Z}[x]$ and $k \in \mathbb{N}$.

(1) $M_k = \text{set of primes } p \text{ for which } F(x) \equiv 0$ modulo p has k solutions modulo p $= \{p : \ \nu_p = k, \ p \text{ prime}\}$

(2)
$$D_k := \delta(M_k) = \lim_{s \to 1+} \sum_{p \in M_k} \frac{1}{p^s} / \log(\frac{1}{s-1})$$

Theorem 9:

Let $F(x) \in \mathbb{Z}[x]$, n = degree of F(x), r = number of irreducible factors of F(x), $D_k = \delta(M_k)$, $M_k = \{p : \nu_p = k, p \text{ prime}\}$, $k \in \mathbb{N}$.

Then

- (1) $\sum_{k=1}^{n} kD_k = r$, in particular
- (2) $\sum_{k=1}^{n} kD_k = 1 \iff F(x)$ is irreducible.

Remarks 10:

(1) Kummer, Dedekind: $F(x) \in \mathbb{Z}[x]$, F(x) irreducible, $F(\alpha) = 0$, $K = \mathbb{Q}(\alpha)$, p prime, $p \not\mid [\mathfrak{o}(K) : \mathbb{Z}[\alpha]]$. Decomposition of p in $K = \mathbb{Q}(\alpha) \longleftrightarrow$ Decomposition of F(x) modulo p. Hence

 $M_k = \{p \text{ prime: } p \text{ splits off } k \text{ prime divisors} \\ \mathfrak{p}, \ \mathfrak{p} \mid p, \text{ of first degree in } K \}$ Hence D_k depends only on the decomposition law of the primes p with respect to $\mathbb{Q}(\alpha)/\mathbb{Q}$.

(2) Kronecker: D_k depends only on the Galois group G of F(x): G = Gal(F(x)), in particular on the **affect** $\mathcal{A} = (\mathcal{S}_n : G)$ or the **order of affect** $a = |\mathcal{A}| = \frac{|\mathcal{S}_n|}{|G|} = \frac{n!}{g}$ of G.

(3) Kronecker: The densities D_k exist, if $G = \operatorname{Gal}(F(x)) = \mathcal{S}_n$

Hilbert (1897): If n-1 among the n densities D_k exist, then all n densities exist.

Frobenius (1896): The densities D_k exist.

(4) Kronecker gives a series of remarkable properties for D_k (without proofs) \rightarrow *Frobenius* (1887) on double congruences \rightarrow on group theory.

Theorem 11:

(1) $F(x) \in \mathbb{Z}[x]$ irreducible, of degree nand galois \Rightarrow

 $D_i = 0$ for $i = 1, \dots, n-1$, $D_n = \frac{1}{n}$.

(2) $F(x) \in \mathbb{Z}[x]$ irreducible, of degree $n \Rightarrow D_n = \frac{1}{a} = \frac{g}{n!}$, where $g = |G|, \ G = \operatorname{Gal}(F(x))$.

(3) $F(x) \in \mathbb{Z}[x]$ irreducible \Rightarrow there are infinitely many primes p such that $F(x) \equiv (x - a_1) \cdots x - a_n$ modulo $p, a_i \in \mathbb{Z}$.

(4) $F(x) \in \mathbb{Z}[x]$ irreducible, $F(\alpha) = 0, \quad K = \mathbb{Q}(\alpha) \implies$ there are infinitely many primes p such that p is completely split in $K = \mathbb{Q}(\alpha)$.

(5) $F(x), F'(x) \in \mathbb{Z}[x],$ deg $F(x) = \deg F'(x) = q$ prime. $\nu_p = \nu'_p$ for all $p \Rightarrow D_i = D'_i$ for all $i = 1, \dots, q \Rightarrow N = N',$ where N, N' are the normal fields of F and F'.

Remarks 12:

(1) *Kronecker*: (5) is a Local-Global-Principle (Boundary Problem for all primes).

(2) For F(x) abelian, this boundary problem is solved by Class Field Theory (Decomposition Law).

Theorem 13:

Let α be a primitive λ -th root of unity, $F(x) = x^{\lambda-1} + x^{\lambda-2} + \ldots + x + 1, \lambda$ prime, $F(\alpha) = 0, \quad G(x) = \text{Irred } (\alpha), \quad r = \deg G(x).$ $M_1 = \{p = \lambda x + 1 : x \in \mathbb{Z}, p \text{ prime}\}$ $= \{p \text{ prime: } F(x) \equiv 0 \text{ modulo } p \text{ admits}$ $\lambda - 1 \text{ roots}\}$

Then

(1)
$$\delta(M_1) = \frac{1}{r}$$

(2) $r = \lambda - 1$, hence F(x) = G(x), and F(x) is irreducible.

Proof: From the Class Number Formula

(Kronecker gives only a sketch \rightarrow Weber)

$$\lim_{s \to 1^+} \log \frac{\prod_{\chi \neq \chi_0} L(s, \chi)}{s - 1} = \lim_{s \to 1^+} \sum_{p \in M_1} \frac{\lambda - 1}{p^s}$$
$$= \frac{\lambda - 1}{r} \log \frac{1}{s - 1}.$$

Remarks 14:

(1) *Kronecker:* Key point Regulator $\neq 0 \Rightarrow L(1, \chi) \neq 0$ for $\chi \neq \chi_0$.

(2) Can be generalized to λ composite.

(3) Analogous proof for the Class Equation $H(x) \in K[x], \quad K = \mathbb{Q}(\sqrt{-d}).$ M_1 is replaced by

 $M = \{p \text{ prime: } \left(\frac{-d}{p}\right) = 1, p \text{ is represented}$ by the principal class of binary quadratic forms of discriminant $-d\}.$

4 Frobenius and Tchebotarev Density

Theorem 15: (Frobenius 1896)

 N/\mathbb{Q} normal of degree $h = [N : \mathbb{Q}]$ and discriminant $d(N/\mathbb{Q})$, $H = \operatorname{Gal}(N/\mathbb{Q})$, $\mathfrak{o} = \mathfrak{o}(N)$ integers in N. For any prime ideal $\mathfrak{p} \subseteq \mathfrak{o}$ with $\mathfrak{p} \not d(N/\mathbb{Q})$, there exists a unique substitution

 $\sigma = F = F_{\mathfrak{p}} \in H \quad \text{such that} \\ F(\omega) \equiv \omega^p \quad \text{modulo } \mathfrak{p}, \quad \text{for all } \omega \in \mathfrak{o}, \\ \text{where } \mathfrak{p} \mid p, \text{ i. e. } p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}.$

Theorem 16:

Let $\mathfrak{p} \subseteq \mathfrak{o}$, \mathfrak{p} a prime ideal in N, $\mathfrak{p} \not\mid d(N/\mathbb{Q})$, $H = \operatorname{Gal}(N/\mathbb{Q})$. Then

(1) $F_{\mathfrak{p}^{\sigma}} = \sigma^{-1} F_{\mathfrak{p}} \sigma, \quad \sigma \in H.$

(2) $p \mapsto [F_{\mathfrak{p}}] = \{\sigma^{-1}F_{\mathfrak{p}}\sigma : \sigma \in H\} = F(p)$ is well defined and depends only on p.

Problem:

Given $\tau \in H = \operatorname{Gal}(N/\mathbb{Q}),$ $C = [\tau] = \{\sigma^{-1}\tau\sigma : \sigma \in H\},$ the conjugacy class of $\tau,$ $M_C = \{p \text{ primes: } F(p) = C\},$ determine $D_C := \delta(M_C).$

Theorem 17: (Frobenius 1896) Let N/\mathbb{Q} be normal, $H = \operatorname{Gal}(N/\mathbb{Q})$, C_1, C_2, \ldots, C_l the conjugacy classes in H, $h_{\lambda} = |C_{\lambda}|, \quad \lambda = 1, 2, \ldots, l.$ \mathfrak{p} a prime ideal in N, $\mathfrak{p} \not\mid d(N/\mathbb{Q}), \quad p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z},$ $F = F_{\mathfrak{p}}$ the Frobenius substitution of $\mathfrak{p}, \quad F \in C_{\lambda},$ $v_{\lambda} = |\{\sigma \in H : \sigma^{-1}F\sigma = F\}|.$ $h = |H| = h_{\lambda}v_{\lambda}, \quad \lambda = 1, 2, \ldots, l.$ $M_{\lambda} = \{p \text{ primes: } F(p) = C_{\lambda}\}.$ If $H = S_n$, then $\sum_{p \in M_{\lambda}} \frac{1}{p^{1+w}} = \frac{h_{\lambda}}{h} \log(\frac{1}{w}) + P_{\lambda}(w), \quad \text{i. e.}$ $D_{\lambda} = \delta(M_{\lambda}) = \frac{h_{\lambda}}{h} = \frac{1}{v_{\lambda}}.$

Remark:

For general $H = \operatorname{Gal}(N/\mathbb{Q})$, Frobenius could only show a weaker result:

Theorem 18:

$$N/\mathbb{Q} \text{ normal, } H = \operatorname{Gal}(N/\mathbb{Q}), \quad h = |H|.$$

$$F \in F(p), \quad f = | < F > | \text{ the order of } F,$$

$$\mathcal{A}(F) = \bigcup_{(r,f)=1} F(p)^r = \bigcup_{(r,f)=1} [F^r]$$

the **division** of $F,$

$$\mathcal{A}_1, \ldots, \mathcal{A}_l \quad \text{all divisions in } H,$$

$$a_{\lambda} = |\{\sigma \in H : \sigma \in \mathcal{A}_{\lambda}\}| = |\mathcal{A}_{\lambda}|$$

the number of substitutions lying in $\mathcal{A}_{\lambda},$

$$A_{\lambda} = \{p \text{ primes: } F(p) \subseteq \mathcal{A}_{\lambda}\}.$$

Then

$$a_{\lambda} = \{p \text{ primes: } F(p) \subseteq \mathcal{A}_{\lambda}\}.$$

$$\delta(A_{\lambda}) = \frac{a_{\lambda}}{h}.$$

Theorem 19: (Tchebotarev, 1925)

Theorem 17 is true for any Galois group $H = \operatorname{Gal}(N/\mathbb{Q})$ over \mathbb{Q} .

Remark 20:

Theorem 19 was already conjectured by Frobenius (1896).