On the History of the
Frobenius- and
Tchebotarev-Density
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1 Dirichlet Density. Dirichlet (1837)

Definition 1 M a set of prime numbers.
Density 6(M) of M

Z ! -5(M)log(1)—|—P(w), w > 0,

1+w
w
peEM p

P(w) convergent.

Theorem 2  (Dirichlet 1837)
If (a,m)=1 and

M(a)={p=max+a: x €Z, pprime},

Then

S(M(a)) = —— = 1

¢(m)  number of classes

is independent of the class [a] modulo m.
@: Fuler function.
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Remarks 3:

(1)Dirichlet: Theorem 2 follows from

L(1,x) #0 for x # Xo-

Without this property one has only
O0(M(a)) < ﬁ in general.

(2) Theorem 2 = L(1,x) # 0 for x # xo.

(3) Weber: Theorem 2 follows from the
fact that there is a class field K over Q to the
congruence group (Z/mZ)*, namely

2w

K = Q(Cm>7 Cm =em.

(4) Kronecker: Theorem 2 follows from the
fact that

Gm(x) = Irred((,,) is of degree ¢p(m).

(5) Eisenstein (1847) densities — Minkowski
— Siegel (1935-37) — Tamagawa (numbers).

(6) Theorem 2 was motivated by the Quadratic
Reciprocity Law (Legendre, Gauss).



2 Kronecker. Irreducibility

Theorem 4: (Gauss 1801)
For p a prime number,
Pp(z) =P+ 2P 2+t +1
is irreducible (over Q).

Proofs:

zauss (1801), Kronecker (1845),
Schonemann (1846), Eisenstein (1847),
Dedekind (1857, for composite p).

Remark 5: Proof by Kronecker (1845)
by means of polynomials in the polynomial ring:

Q(¢p) = Qlzl/¢p(2).
Suggested by Kummer (1845).

Theorem 6: (Kronecker 1855, 62, 70, 77)
K = Q(v/—d) of discriminant —d < 0,
of order in K of conductor f,
h = h; class number of oy,
Ci,...,Ch classes of oy,
7(C;) singular modulus of the class C;.

Then:



(1) §(Cq),...,7(Cp) are algebraic integers
(class invariants).

(2) §(C1),...,7(Ch) are the roots of a poly-
nomial H(x) € K|z| of degree h (over K)
(class equation).

(3) H(x) is irreducible over K, hence the
7(C;) are all conjugate (over K).

(4) L= K(5(Cy))

is independent of the class C;.

(5) L/K is abelian of degree [L : K] = h

(hence solvable over Q).
(6) Gal(L/K) = Cl(of) class group of oy.

(7) If o is the principal order in K, i.e.
or = 0o(K), then L/K is unramified (conjecture
of Kronecker — class field theory of Weber).

(8) L is an associate species to K,
i.e. every ideal in K becomes principal in L.
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3 Kronecker Density

Kronecker’s Program:

¢p(z) € Q|7 irreducible \
F(z) € K|z]irreducible?

H(z) € Q(v/—d)[z] irreducible
!

Kronecker’s Program: Algebraic Theory of
Polynomial Rings (1882) — Hilbert — Grothendieck.

(1) What are the characteristic properties of
irreducible polynomials?

(2) Starting point: Dirichlet’s and Kummer’s
Class Number Formula.



Theorem 7: (Main Theorem)
(Kronecker 1880, dedicated to Kummer)

Let F(x) € Z|x],
r: number of irreducible factors of F(x),
v,: number of solutions of F'(z) = 0 modulo p,

for a prime p.

Then
Y _ plog (1) 4 P 0:
; p1+w — T 108 (J) + ('U}), w > )

P(w) convergent for small w.

1

: Vp .
Sli>r{1+§p:ps /log(s_l) =r, s>1.

Definition 8: (Kronecker 1880)

Let F(x) € Z|z] and k € N.
(1) M}, = set of primes p for which F'(z) =0
modulo p has k£ solutions modulo p

={p: v, =k, pprime}

(2) Dy = 6(My) = limg14 ZpeMk 1% / log (Ei_l>



Theorem 9:

Let F'(x) € Z|z]|, n = degree of F(z),
r = number of irreducible factors of F/(z),
Dy = 06(Mg), Mp=A{p:vy,=k,p prime},
ke N.

Then

(1) Z kD =, in particular
k=1

(2) Zkazl & F(z) isirreducible.
k=1

Remarks 10:

(1) Kummer, Dedekind:  F(z) € Zlx],
F(z) irreducible, F(a) =0, K = Q(«a),
p prime, p [ [o(K) : Z[a]].
Decomposition of pin K = Q(a) <+—
Decomposition of F/(z) modulo p.

Hence
My = {p prime: p splits off k prime divisors
p, p | p, of first degree in K}

Hence



Dy, depends only on the decomposition law of
the primes p with respect to Q(a)/Q.

(2) Kronecker: Dy depends only on the
Galois group G of F(z): G = Gal(F(x)),
in particular on the affect A = (S, : G) or the
order of affect a =| A |= % = @g—! of G.

(3) Kronecker:  The densities Dy exist, if
G = Gal(F(x)) =8,

Hilbert (1897): If n — 1 among the n densi-
ties Dy exist, then all n densities exist.

Frobenius (1896): The densities D}, exist.

(4) Kronecker gives a series of remarkable
properties for Dj (without proofs) —
Frobenius (1887) on double congruences — —
on group theory:.



Theorem 11:

(1) F(x) € Z|x] irreducible, of degree n
and galois =
D=0 ftori=1,...,n—1, Dn:%.

(2) F(z) € Z|x] irreducible, of degree n =
D, = 1_ g

a nl?

where g = |G|, G = Gal(F(x)).

(3) F(x) € Z|z] irreducible = there are in-
finitely many primes p such that
F(z)=(x—a1) -z — a,) modulo p, a; € Z.

(4) F(x) € Z|z] irreducible,
F(a) =0, K =Q(a) = there are infinitely
many primes p such that p is completely split
in K = Q(a).

(5) F(z), F'(z) € Z]z],
deg F( ) = deg I'(x) = q prime.
vy =v, forallp = D;=Dj

foralli=1,....¢q = N=N
where N, N’ are the normal fields of F' and F”.
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Remarks 12:

(1) Kronecker: (5)is a Local-Global-Principle
(Boundary Problem for all primes).

(2) For F'(z) abelian, this boundary problem
18 solved by Class Field Theory (Decomposition
Law).

Theorem 13:

Let a be a primitive \-th root of unity,
Flz) =21+ 2224 4241 ) prime,
Fla) =0, G(z)="Trred (@), r=deg G(z).

Mlz{p:)\x+1:x€Z,pprime}

= {p prime: F(z) = 0 modulo p admits
A — 1 roots}
Then

(1) 6(M1) = ;

2)r=X—1,
hence F'(x) = G(z), and F(x) is irreducible.

Proof: From the Class Number Formula,
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(Kronecker gives only a sketch — Weber)

L(s, _
lim+ log JEER i X = hm+ A - !
s—1 S — s—1 pe M, P

A—1 1
= log :
r s—1

Remarks 14:

(1) Kronecker: Key point
Regulator #0 = L(1,x) # 0 for x # xo-

(2) Can be generalized to A composite.

(3) Analogous proof for the Class Equation

H(z) € K[z], K =Q((/—4).

M 1s replaced by

M = {p prime: (_sz) = 1, p is represented
by the principal class of binary quadratic forms

of discriminant —d}.
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4 Frobenius and Tchebotarev Density

Theorem 15: (Frobenius 1896)

N/Q normal of degree h =[N : Q] and
discriminant d(N/Q), H = Gal(N/Q),

0 = o(/N) integers in V.

For any prime ideal p C o with p / d(N/Q),
there exists a unique substitution

o=F =1F, &€ H suchthat
F(w)=wP modulop, forallw € o,
where p | p,ie. pZ=pNZ.

Theorem 16:
Let p Co, paprimeidealin N, p fd(N/Q),
H = Gal(N/Q).
Then

(1) Fpa = O'—leO’, o < H.

(2) p— [Fy]| ={c'Fyo:0€ H} = F(p)
is well defined and depends only on p.
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Problem:

Given 7 € H = Gal(N/Q),
C=|[rl={o" 70 :0€ H},
the conjugacy class of 7,
Mc = {p primes: F(p) = C},
determine D¢ = 6(M¢).

Theorem 17: (Frobenius 1896)
Let N/Q be normal, H = Gal(N/Q),
C1,Cy,...,C7 the conjugacy classes in H,
hy=|Cy|, N=1,2,...,L
p a prime ideal in N, p [ d(N/Q), pZ =pNZ,
F = F, the Frobenius substitution of p, F' € C),
vy=|{oc € H:o'Fo=TF}|.
h = IH‘ :h,\v)\, )\—:1,2,...,l.

M, = {p primes: F(p) = C\}.
If H=3S,, then

S M i pw), e

pEM)

hy 1
DA:(S(MA):%A:U—A.
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Remark:
For general H = Gal(N/Q), Frobenius could

only show a weaker result:

Theorem 18:

N/Q normal, H = Gal(N/Q), h=|H].
FeF(p), f=]|<F >| theorderof F,
A(F) = U(r,f):l F(p)" = U(r,f):l[FT]

the division of F,

Ay, ..., A; all divisions in H,
ay={oc € H: o€ A} = A

the number of substitutions lying in Ay,
Ay = {p primes: F(p) C Ay}

Then
a)

Theorem 19: (Tchebotarev, 1925)

Theorem 17 is true for any Galois group

H = Gal(N/Q) over Q. .

6(Ar)

Remark 20:

Theorem 19 was already conjectured by Frobe-
nius (1896).
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