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Pre-requisites

Manifolds, complex manifolds, differential forms,
de Rham cohomology, basic Hodge theory:

ker d =
H* = — de {0,d,0}

kerd N (im d)=+

ker d N ker d*

ker A (A = dd* + d*d)
H.
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Vector bundles

We start with a C-manifold M, where C is one
of {continuous, C1, C*>, C%, holomorphic, al-
gebraic}, i.e. its transition functions on over-
laps are of class C, making it possible to define
functions of class C on M.

A vector bundle over M is a family “C-varying”
vector spaces over M: i.e. each fibre has a
linear structure — can add, scalar multiply, etc.

Definition 1 A rank r complex vector bundle
E over M is a C-manifold E = M such that
there exist local isomorphisms g;; over small
open subsets U C M to U x C" — U which
differ on overlaps UV = U NV by fibrewise-
linear C'-isomorphisms, i.e. by
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So we can form the bundle as [[;(U xC")/ ~
where we glue via the transition functions gy, :
for x € U NV identify

UxC"> (z,v) ~(z,9p5y(z)(v)) €V xCT
for all v e CT.

Then we can talk about C-sections; mapss: M —
E such that wos =id of class C in local trivi-
alisations. The vector space of sections is de-
noted MN(E).

FE is called trivial if is isomorphic to a product
M x CT: equivalently if it has r» global sections
which form a basis of the fibre E; := n~1(2)
at each point z € M.



Bundles on contractible manifolds are trivial
(lift a contraction of M to xz to a contraction
of E to E, and pick a trivialisation of E;) in
the classes C = C", C°°. Homotopic bundles
are isomorphic.

From now on C = C°° unless specifically men-
tioned.

Example — bundles on spheres

A bundle over 5" = D" U, ; D" is trivial over
each hemisphere D™, and glued across gn—1
(or small neighbourhood U NV thereof — the
overlap of open sets U, V containing the hemi-
spheres) by a map

sl . GL(r,C).

Thus isomorphisms classes of bundles on S"™
are in 1-1 correspondence with w,,_1(GL(r,C)).
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For instance line bundles L on S2 = PL:

m1(GL(1,C)) = m(C*) = m(UQ1)) = Z;

we call this integer classifying the bundle its
first Chern class c{(L).

This bundle can be constructed holomorphi-
cally since there is a holomorphic represen-
tative of n € Z = w1 (C*) given by the map
zZh:UNV — C*. This holomorphic bundle is
denoted H™ = H®" or O(n).

We can relate n = ¢; to zeros of sections.
Pick the trivial section 1 in the trivialisation
of L over U:; under the transition map 2" this
becomes the section 2" in L|'s trivialisation
over UNV. So we can extend this to a section
of L over all of S2 having n zeros in V.

So c;(L) = e(L) is the number of (signed) ze-
ros of a section of L — the self intersection of
the zero section S2 in L.



Chern classes

More generally we could define ¢, (L) € H?(M,7)
for any complex line bundle L over any com-
pact manifold M to be the Poincaré dual of
the zero set of a transverse C°° section.

(Zero set a submanifold; given another section can choose
a transverse isotopy between the two whose zero set
gives a cobordism between the two zero sets making

them homologous.)

We would also like to define c,(E) € H?P(M)
to be Poincaré dual to the dependency locus
of (r —p+ 1) generic sections of E,

cp(E) = PD(Z(s1 A... A sp_pt1)) € HP(M).

(S0 ¢, (E) = e(E), ¢(E) = ¢;(NE).)



Then, choosing sections [; of L;, we find (on
dropping the PDs for clarity),

co(L1®Ly) = Z(LWdlo) =2Z(l1)NZ(lo)
= c¢1(L1)Ucq(L2).
Similarly, for E of rank 2 with sections s;,

co(E® L) Z((s1®0)A(s2®1))
= Z((51A382)D(51®1))
(via N2(E@L)=N°E @ EQL)

Z(s1 Nso)NZ({) U Z(s1)
= 1 (BE)ey(L) + co(E).

More generally, for bundles A, B of ranks a, b,

we have the decomposition

p :
N(A® B) £ P N'(A) @ NP7'(B).
i=0
So choosing p sections (a; ® b;), we compute
c,r_p_|_1(A ®B) (r=a+b=rk(A® B)) via

Z((al/\.../\ap)@(al/\.../\ap_1®bp)@...
...@(al®b2/\.../\bp)@(b1/\...bp)).
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This equals

(Z(al) NZMBLA ... A bn))
U (Z(al Aas) N Z(bo A ... A bp))
U... U (Z(al/\.../\ap)mZ(bp)>.
Taking Poincaré duals, then,
c,r_p_|_1(A ® B) =
ca(A)ep_py1(B)+ ... Fcq_p11(A)e(B),
giving the Whitney sum formula

c,(A® B) = Z cp(A)cy(B).
p+q=n

Letting ce(E) = Y;¢,(E) € H?*(M) (cg = 1)
denote the total Chern class we can write this

ce(A D B) = ce(A)ce(B).



Defining Chern classes in cohomology instead

of homology gives them functoriality ce(f*E) =
f*ce(F) and allows them to be defined for C°-
vector bundles on more general topological spaces.
In fact the Whitney sum formula, co = 1, ¢;(0(1))
on P" being the standard generator [w] € H2(P",7),
and functoriality are enough to determine the
Chern classes generally.

Any bundle is a quotient of a trivial infinite
dimensional bundle

N(E)x M 2% E — 0,

defining a map f: M — Gr(oo,r) to the infinite
Grassmannian, unique up to homotopy. The
cohomology of Gr can be calculated to be a
polynomial ring on generators ¢, € H?' (the
Chern classes of the universal quotient bundle
Q') and we define the Chern classes of E by

¢;(E) =¢,(f*Q) = f"e; (= fci(Q)).
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We now want to see these classes on manifolds
defined in terms of differential geometry.

Connections

Connections give a way of differentiating in
a bundle; equivalently a choice of specifying
which sections are constant (“parallel”).

Definition 2 A connection A in the bundle E
is a C-linear map
da: T(E) = QYE)
S.tL. da(fs) =sdf + fdas Vf € C>°(M).
I.e. dj is a local (but not tensorial; i.e. not C*(M)-

linear) operator T,M®I (E) — E, such that (da) (fs) =
s.X(f) 4+ f.(da)ys.)

This extends uniquely to d4: QP(E) — QPTI(E)
such that

da(wAs) =dswA s+ (—1)wAdys
for all w € QY (M), s € QP(E).
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Connections are far from unique; the difference
of 2 connections is a tensor in QL(End E):

(da —dp)(fs) sdf + fdas — (sdf + fdps)
= f(da—dp)s
SO dy — dp is C°(M)-linear.

The converse is also true: dy +a: s +— dgs +
a(s) is a connection. So in a local trivialisation
connections just look like d+a so by gluing a’'s
by a partition of unity argument we can show
they exist.

Therefore the set of connections is

{da,+a : a€ QY(EndE)},

an infinite dimensional affine space modelled
on Q1(EndE).
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Given any oz € Q1(E): we can find a section s
of E such that s(z) =0, (das)z = oz.

(The question is local so we can assume that FE is trivial
over U C R" but dy = d 4+ a may be non-trivial: a # 0.
Then QY(E), = T:M ® E, is invariantly the E-valued
linear functions vanishing at z, so o, defines a linear

section s such that s(z) = 0 and (ds), = o,. Thus
da(s)e = (ds)s +a(s)y =0+ 0 =0,.)

So given an element of E; can pick a section
e with that value at £ whose derivative at x is
Zero. (Set o, = (dae), giving s as above; then replace

e by e + s.)

Differentiating this section (thought of as a
map M — E) gives n*TM — TE splitting the
exact sequence of bundles

O >TxE >TE — w*TM — 0.

An equivalent definition of a connection is such
a splitting.
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Curvature

Can in fact integrate up such horizontal lifts e
to give parallel sections along curves in M.

Parallel transporting a frame of E, around an
infinitesimally small loop in M gives an infinites-
imal automorphism of the fibre E.; i.e. an el-
ement of End E,: the curvature of A at x.

Fy:=d%: T(E) » Q%(E)
is a tensor F, € Q2(End E):
d5(fs) = da(fdas+ sdf)

df Adys+ fd5s +das Adf
fd%s.
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Tensors can be differentiated with respect to
A by the obvious product rule

(dah)(s1,...,8;) := d(h(s1,...,5))

—h(dgs1,82,..-,8t) —...—h(s1,...,8_1,dASL).
Thus we find that
Fay, = (dga+a)(dg+a)

dq+da(an)F+ands+ana
Fp+dpa—+aAa.

Also (exercise)
daFs =0,

the (second) Bianchi identity.
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Metrics

A hermitian metric h on E is a C°° choice of a
hermitian metric h(-, - ), on each fibre E;, i.e.
a section h € N(E* ® E*) which is conjugate-
symmetric and nondegenerate on each fibre.

Using convexity of the space of hermitian met-
rics and partitions of unity we can glue local
metrics (positive definite self-adjoint matrices
hi; = h(s;,s;) = h;;) to give global ones.

A unitary connection is one for which d4h = 0.
Picking Agp unitary we find that the space of
unitary connections A is

A= Ao+ Q' (u(E)),

where u denotes skew-adjoint endomorphisms.
Accordingly parallel transport is unitary and
Fa € Q2(u(E)). (Al bundles, connections unitary
from now on unless specified.)
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Automorphisms of bundles are called, intimi-
datingly, gauge transformations. If A is a con-
nection and g an automorphism, then we can
form the pull-back connection ¢g*A by

g lodgog=ds+ g tda(g).

The group of gauge transformations is usu-
ally denoted by G, and the set of isomorphism
classes of connections, A/G, by B.

Chern-Weil theory

Fromd sF4 = 0 it follows thatdtr Fy = trdaFy
0 so that [tr F4] € H2(M,R). If we replace A
by A+ a then we get

tr(Fa4q) = tr(Fg+dga+aAia)
trFy +dtr(a) + tr(a A a).

Since tr(AB) is symmetric in A, B and A is
antisymmetric, the last term vanishes. So we
find that [tr F4] € H2(M,R) is independent of
the choice of A. What is it ?
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We go back to our example of O(n) — S2 =
D? Ug1 D?. Pick a trivialisation of O(n) over
D1, and pick the trivial connection on it. This
trivialisation is then glued across the equator
S1 to a trivialisation over D> by any degree n
function f: S1 - C* (e.g. f = 2z").

Thinking of this function as a gauge transfor-
mation it takes the trivial connection on D to
the connection d+ f~1df on D5, in the trivial-
iIsation on D>. We can extend this arbitrarily
to a connection A =d + a over Dy. Then

Fyp = F
g2 4 DQA

= / da=/ a
Do Sl

= /Sldlogf:27m'n.

(E.g. using f = 2", a = dlog f = f~ldf = ndz/z and
fSl ndz/z = 2min.) It follows that

[trFA

: ] = cq € HQ(M, 7)) /[torsion.
271
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Similarly (exercise) all ad-invariant polynomials
of EndE (tr, det, tr( )2, etc.) applied to F4
give de Rham cohomology classes independent
of the connection.
(The ad-invariant polynomials generate the cohomology
of the Grassmannian.)

These also have integrality properties, and one
can check that, modulo torsion, the following
definition coincides (for manifolds) with the
topological one.

Definition 3 co(E) :=det (id+54), i.e.

trFy trEFpq N Fy

14ci1(E)+ca(E)+... = 14+ o o

+. ..

(So e.g. from Fp-4 = tr F4 we recover c1(AN"E) = c1(FE).)
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Connections and holomorphic structures

A O-operator in a bundle on a complex mani-
fold X is “half’ a connection — we can decree
which sections are holomorphic, not constant.

Definition 4 A 0-operator A in the bundle E
is a C-linear map
d4: T(E) = QYNE)
s.t.  04(fs) =s0f + fOus Vfe C®(X).

Extends as before to QPY(E) 94, QPratl(E).

112

Since we are on a complex manifold, 21 ®C
Q199 0%1 and any connection A splits as d4

0p B gA-
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Any holomorphic bundle E has a canonical o-
operator dr since we already know its kernel
(the holomorphic sections) and the rest fol-
lows from the Leibniz rule. I.e. since locally
any section is a C*°-linear combination of lo-
cal holomorphic sections {e;}:_1, Ope; = 0, this
determines

O <Z az-ez-> = Z(éai).ei :

(I.e. usual 0 on open sets; on overlaps we have holo-
morphic transition functions: e/ = > ¢;je;. But d¢;; =0

so we still have dge! = 0, so 9g is well defined.)

So 82 = 0, and the Newlander-Nirenberg the-
orem gives the converse. 531 = 0 is the inte-
grability condition for finding local bases of so-
lutions of 5As — 0; these then define the local
holomorphic trivialisation of the bundle, and
transition functions between different patches
are therefore holomorphic, defining a holomor-
phic structure on E.
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Theorem 5 A hermitian metric h on a holo-
morphic bundle E determines a unique unitary
Chern connection d, compatible with Og:

dA(h)ZO and 5A=5E

(C.f. the Levi-Civita connection on T'M; unique con-
nection compatible with metric and torsion-free.)

Proof. Picking a local holomorphic trivialisa-
tion {ei}le s.t. h= (hz]) = h(Si,Sj), then

Oh;; = h(Oge;, e;) + h(ei, 0ae;) = h(e;, Dse;)
uniquely determines dge; = 04e; as

Ope; =Y Ohi;(h™1) ke
ik
Conversely the Leibniz rule shows this deter-
mines a compatible connection dy4.

Alternatively, in a local unitary frame {e;};_1,
unitarity forces dh(e;,e;) =0, i.e.

h(04e;,e;) = —h(e;, Oge;)
so determining d4e; (and so dy) from 0. O
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Connections on complex manifolds have cur-
vature

Fy=d35

05 @ (0404 +8404) @ 03,
and so are compatible with the (or define a)

holomorphic structure if and only if FX’Q =0 —
a prototype of a gauge theory equation.

So given a holomorphic bundle, metric = con-
nection. To get a closer link try to fix metric
by imposing an equation on the resulting cur-
vature; e.g. the Hermitian-Yang-Mills equa-
tion. (Compare uniformisation for Riemann surfaces:
can study complex geometry by introducing a metric; if
we impose scalar curvature = constant (and volume=1)
the metric is unique and the study of the complex ge-
ometry and (constant scalar curvature) Kahler geometry
are equivalent. Similarly Yau’'s theorem for Hermitian-

Einstein metrics in higher dimensions.)
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