MANIFOLDS WITH SPECIAL HOLONOMY LECTURE 2: SOME COMPLEX GEOMETRY

ROBERT L. BRYANT

DUKE UNIVERSITY

12 AUGUST 2003

We will begin by considering what is, in some sense, the largest of the special holonomy cases in Berger's list:

1. Unitary Holonomy: Endow \mathbb{R}^{2n} with its standard inner product and the orthogonal complex structure

$$
J_n = \begin{pmatrix} 0_n & -\mathbf{I}_n \\ \mathbf{I}_n & 0_n \end{pmatrix}.
$$

Define the unitary group $U(n) \subset SO(2n)$ and embed into $GL(n, \mathbb{C})$ via

$$
\mathrm{U}(n) = \{ \ A \in \mathrm{SO}(2n) \ \bigg| \ A J_n = J_n A \ \} \ni \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \longmapsto a + \mathrm{i} b.
$$

If (M^{2n}, g) has holonomy conjugate to a subgroup of $U(n)$, then M possesses a q -parallel, orthogonal almost-complex structure $J: TM \rightarrow TM$. Corresponding to this, there is also a qparallel 2-form ω related to the almost complex structure by

$$
\omega(v, w) = g(Jv, w)
$$

In fact, via this equation, any two of (g, J, ω) serve to determine the third.

The fact that J and ω are parallel w.r.t. q implies

(1)
$$
\omega
$$
 is closed: $d\omega = 0$

(2) J is integrable: Each point of M has a coordinate neighborhood (U, z) with $z: U \to \mathbb{C}^n$ a coordinate system satisfying $dz(Jv)=idz(v)$ for all $v \in TU$.

Proof sketch: We already saw that ω is closed.

The integrability of J follows from the Newlander-Nirenberg Theorem. The point is that, in geodesic coordinates $x = (x^i)$ centered on $m \in M$, we have

$$
J = J_l^k(x) \frac{\partial}{\partial x^k} \otimes dx^l \text{ and } (\nabla J)_m = \frac{\partial J_l^k}{\partial x^j}(0) dx^j \otimes \frac{\partial}{\partial x^k} \otimes dx^l.
$$

The Nijnhuis tensor of J (which, by NNT, obstructs integrability) is linear in the first partials of J in any coordinate system. Thus, $\nabla J = 0$ implies that J is integrable.

Still, there remains the question: How many such metrics can there be?

Say that a pair (J, ω) defined on M are *compatible* if

(1)
$$
\omega(v, Jv) > 0 \quad \forall \ 0 \neq v \in TM
$$
, and

$$
(2) \ \omega(v, Jw) = \omega(w, Jv) \quad \forall \ x \in M, \ v, w \in T_xM \ .
$$

In this case, we say that the metric q defined by

$$
g(v, w) = \omega(v, Jw)
$$

is the associated metric.

Proposition: If (J, ω) are a compatible pair on M^{2n} and J is integrable and ω is closed, then J and ω are q-parallel, where q is the associated metric. In particular, the holonomy of q is conjugate to a subgroup of $U(n)$.

Proof sketch: Since J is integrable, M has an atlas of J-holomorphic charts: (U, z) with $z: U \to \mathbb{C}^n$ where $dz(Jv) = idz(v)$. Then (2) above and the definition of q imply that

$$
\omega_U = \tfrac{1}{2} \mathrm{i} \, h_{j \bar k} \, \mathrm{d} z^j \wedge \mathrm{d} \overline{z^k} \qquad \text{and} \qquad g_U = h_{j \bar k} \, \mathrm{d} z^j \circ \mathrm{d} \overline{z^k}
$$

for functions $h_{i\bar{k}} = \overline{h_{k\bar{\jmath}}}$ on U with $h = (h_{i\bar{k}}) > 0$ (by (1) above).

Finally, the closure of ω implies that (at least locally), there exists a function f on U so that

$$
h_{j\bar{k}} = \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k}.
$$

Conversely, starting with any smooth 'potential' function f on a domain $D \subset \mathbb{C}^n$ such that the quadratic form

$$
g = \frac{\partial^2 f}{\partial z^j \partial \overline{z^k}} \, \mathrm{d} z^j \mathrm{d} \overline{z^k}
$$

is positive definite on D , one computes that the standard complex structure J on \mathbb{C}^n and the 2-form

$$
\omega = \frac{1}{2} \frac{\partial^2 f}{\partial z^j \partial \overline{z^k}} \, dz^j \text{od} \overline{z^k}.
$$

are parallel with respect to the Levi-Civita connection of g. (Hint: to simplify the calculations, add the real part of a holomorphic function of z to f and choose holomorphic coords $w = (w^j)$ so that $f = |w|^2 +$ (terms vanishing to order ≥ 4).)

Consequences:

- (1) Metrics in dimension 2n with unitary holonomy exist and depend on one 'arbitrary' function of 2n variables, up to diffeomorphism.
- (2) The 'generic' such metric has holonomy equal to $U(n)$.

The data (M, g, J, ω) as above (with the integrability conditions assumed) is said to define a Kähler structure. Such manifolds have been extensively studied, in large part because these are the natural metrics one would like to use in studying complex manifolds (M, J) .

A very fundamental example is the Riemannian symmetric space

$$
\mathbb{CP}^n = \mathrm{SU}(n+1)/\mathrm{S}\big(\mathrm{U}(1)\times \mathrm{U}(n)\big),
$$

i.e., complex projective space. Up to constant multiples, there is only one $SU(n+1)$ -invariant metric q on this space and it has holonomy isomorphic to $U(n)$, so there is a corresponding invariant complex structure J and 2-form ω .

Important Properties of Kähler manifolds: (M, q, J, ω)

- (1) Every complex submanifold $N \subset M$ inherits a Kähler structure just by pullback. (In particular, the smooth points of an algebraic variety $V \subset \mathbb{C}P^n$ inherit a Kähler structure.)
- (2) (Wirtinger) The forms $\phi_p = \frac{1}{p!} \omega^p$ are *calibrations* on M with respect to the metric q . In particular, a compact, complex p-dimensional subvariety $N \subset M$ minimizes volume in its homology class.
- (3) (Hodge decomp.) There is a ∇ -parallel splitting

$$
\Lambda^k(T^*M) \otimes \mathbb{C} = \bigoplus_{p+q=k} \Lambda^{p,q}(T^*M) \qquad \text{(as J-eigenspaces)}
$$

and a decomp. of d: $\Omega^k(M) \to \Omega^{k+1}(M)$ as $d = \partial + \overline{\partial}$ with

$$
\partial : \Omega^{p,q}(M) \to \Omega^{p+1,q}(M)
$$

$$
\overline{\partial} : \Omega^{p,q}(M) \to \Omega^{p,q+1}(M).
$$

2. Special Unitary Holonomy. Let

$$
SU(n) = \{ A \in U(n) \mid \det_{\mathbb{C}} A = 1 \}.
$$

Note that $SU(n)$ can be characterized as the subgroup of $GL(2n,\mathbb{R})$ that preserves the exterior forms

$$
\omega_0 = \frac{1}{2} \mathbf{i} \left(\mathrm{d} z^1 \wedge \mathrm{d} \overline{z^1} + \cdots + \mathrm{d} z^n \wedge \mathrm{d} \overline{z^n} \right) \Upsilon_0 = \mathrm{d} z^1 \wedge \mathrm{d} z^2 \wedge \cdots \wedge \mathrm{d} z^n.
$$

In fact, the algebra of $SU(n)$ -invariant exterior forms on \mathbb{C}^n is generated by ω_0 , Υ_0 , and $\overline{\Upsilon_0}$.

Conversely, let V be a (real) v. s. of dim. 2n and let ω and Υ be exterior forms of degrees 2 and n , respectively, on V such that

1. Υ is decomposable and satisfies $\Upsilon \wedge \Upsilon \neq 0$

Then there is a unique complex structure $J: V \to V$ so that Υ spans $\Lambda^{n,0}(V)$. Suppose now further that ω is real-valued and

2. $\omega(v, Jv) > 0$ for $v \neq 0$ and $\omega \in \Lambda^{1,1}(V)$.

Then there is a constant $\lambda > 0$ such that $(\omega, \Upsilon) \simeq (\omega_0, \lambda \Upsilon_0)$.

Now suppose that (M^{2n}, q) has holonomy conjugate to a subgroup of $SU(n) \subset SO(2n)$. Then, in addition to having a parallel complex structure J and 2-form ω , the manifold will support a q-parallel \mathbb{C} valued n-form $\Upsilon \in \Omega^{n,0}(M)$. Multiplying Υ by a positive constant, we can suppose

3.
$$
\Upsilon \wedge \overline{\Upsilon} = \frac{2^n}{\mathrm{i}^{n^2} n!} \, \omega^n.
$$

Of course, since Υ is q-parallel, it must be closed (and co-closed).

A pair (ω, Υ) of closed forms on a 2*n*-manifold M satisfying (pointwise) the conditions $(1-3)$ listed above constitute a *Calabi*-Yau structure on M.

Proposition: For any Calabi-Yau structure (ω, Υ) on M^{2n} , the associated almost complex structure J is integrable and the forms ω and Υ are parallel with respect to the associated metric q. *Proof sketch:* By hypothesis, locally $\Upsilon = \zeta^1 \wedge \zeta^2 \wedge \cdots \wedge \zeta^n$ where the ζ^k and the $\overline{\zeta^k}$ are linearly independent.

Now, J is defined by $\zeta^k(Jv)=i\zeta^k(v)$ for $v \in TM$ and the hypothesis $d\Upsilon = 0$ implies that J is integrable and that Υ is actually holomorphic w.r.t. J. In fact, it is possible to choose local J-holomorphic coordinates (U, z) so that

$$
\Upsilon_U = dz^1 \wedge dz^2 \wedge \cdots \wedge dz^n = dz.
$$

We have already seen that the integrability of J and the closure of ω imply that, locally, there is a function f on U such that

$$
\omega_U = \frac{\mathrm{i}}{2} \frac{\partial^2 f}{\partial z^j \partial \overline{z^k}} \,\mathrm{d} z^j \wedge \mathrm{d} \overline{z^k} \qquad \text{and} \qquad g_U = \frac{\partial^2 f}{\partial z^j \partial \overline{z^k}} \,\mathrm{d} z^j \mathrm{d} \overline{z^k}
$$

The hypotheses on ω and Υ then imply

$$
\left(\frac{\partial^2 f}{\partial z^j \partial \overline{z^k}}\right) > 0 \qquad \text{and} \qquad \det\left(\frac{\partial^2 f}{\partial z^j \partial \overline{z^k}}\right) = 1.
$$

Now one can compute that, if f is any smooth function on a domain $D \subset \mathbb{C}^n$ that satisfies these two conditions, then g as as metric on D not only leaves ω and J parallel, but $\Upsilon = dz$ as well. Thus, the holonomy of such a metric lies in $SU(n)$.

Local Properties: Let (ω, Υ) be a Calabi-Yau structure on M^{2n} .

- (1) The general Calabi-Yau structure depends on 2 functions of 2n−1 variables (modulo diffeomorphism) and is realanalytic in J-holomorphic coordinates.
- (2) The associated metric q of the 'generic' Calabi-Yau structure on M^{2n} has holonomy equal to $SU(n)$.
- (3) The associated metric q is Ricci-flat. Conversely, if M is simply connected and (M, q, J, ω) is a Kähler structure for which q is Ricci-flat, then q admits a parallel holomorphic volume form Υ such that (ω, Υ) is Calabi-Yau.
- (4) (Harvey-Lawson) The real-valued n-form $\phi = \text{Re}(\Upsilon)$ is a calibration on (M, q) (called the special Lagrangian calibration). It calibrates a large family of Lagrangian submanifolds of M. In fact, any real-analytic (n−1)-dimensional submanifold $P \subset M$ that satisfies $P^*\omega = 0$ (i.e., is sub-Lagrangian) lies in a unique (local) analytically irreducible Lagrangian submanifold $N \subset M$ that is calibrated by ϕ .

Global Existence.

Calabi's Complete Example. Idea: Look for a rotationally invariant metric on \mathbb{C}^n with $\Upsilon = dz$, i.e., with

$$
\omega = \frac{1}{2} \,\partial \bar{\partial} \big(f(|z|^2)\big).
$$

Now, $\omega > 0$ implies $f'(\rho) > 0$ and $\rho f''(\rho) + f'(\rho) > 0$ $(\rho = |z|^2)$. The volume relation between ω^n and $\Upsilon_0 \overline{\Upsilon}$ becomes the ODE

$$
f'(\rho)^{n-1}(\rho f''(\rho) + f'(\rho)) = 1.
$$

This has a first integral

$$
(\rho f'(\rho))^n = \rho^n + c.
$$

If $c = 0$, this is the flat metric. If $c > 0$, this says that

$$
\omega = \frac{\mathrm{i}}{2} \partial \bar{\partial} \big(f(|z|^2) \big) = \frac{\mathrm{i}}{2} \partial \left(\frac{(|z|^{2n} + c)^{1/n}}{|z|^2} z \cdot \mathrm{d} \bar{z} \right),\,
$$

but this metric is singular at $z = 0$ if $n > 1!$

However, this singularity can be resolved: Blow up \mathbb{C}^n at the origin

$$
\widehat{\mathbb{C}^n} \longrightarrow \mathbb{C}^n
$$

where

$$
\widehat{\mathbb{C}^n} = \{ ([w], z) \mid w \neq 0, z = \lambda w \},
$$

and then divide by the \mathbb{Z}_n action $([w], z) \cdot \lambda = ([w], \lambda z) (\lambda^n = 1)$. The resulting space

$$
X_n = \widehat{\mathbb{C}^n}/\mathbb{Z}_n
$$

turns out to be a smooth *n*-manifold, namely $\Lambda^{n,0}(\mathbb{C}\mathbb{P}^{n-1})$, the canonical bundle of \mathbb{CP}^{n-1} .

Now, ω lifts up to $\widehat{\mathbb{C}^n}$ to become a smooth 2-form $\widehat{\omega}$ that's degenerate on the blow-up divisor. However, it then pushes down to X_n to be a smooth and positive $(1, 1)$ -form $\tilde{\omega}$.

Finally Υ goes along for the ride to induce a holomorphic volume form Υ on X_n .

The resulting $(\tilde{\omega}, \tilde{\Upsilon})$ is a Calabi-Yau structure whose underlying metric \tilde{q} on X_n is complete. This is Calabi's example.

Compact examples. Calabi conjectured and S.T. Yau proved the following existence result that supplies lots of examples of metrics with holonomy in $SU(n)$ (in theory).

Theorem: Let M be a compact complex n-manifold that admits a holomorphic volume form Υ and a Kähler form ω_0 . Then there exists a function f on M and a real constant $\lambda > 0$ so that

 $(\omega_0 + i\partial\bar{\partial}f, \lambda \Upsilon)$

is a Calabi-Yau structure on M.

Example: If $X_n \subset \mathbb{C}\mathbb{P}^{n+1}$ is a smooth hypersurface of degree $n+2$, it has a nonvanishing holomorphic n -form. It certainly has a Kähler form, just pull back the Kähler form on \mathbb{CP}^{n+1} . Thus, by the Calabi-Yau Theorem, such an X_n carries a Calabi-Yau structure. It can be shown that this can never be a product and, in fact, the holonomy is always equal to $SU(n)$.

When $n = 2$, the quartic surface $X_2 \subset \mathbb{CP}^3$ is one of the famous K3 surfaces. Its Calabi-Yau metrics are still not explicitly known.