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We will begin by considering what is, in some sense, the largest
of the special holonomy cases in Berger’s list:

Dimension Group Invariant forms (generators)
n SO(n) 1€ A% x1e A"
n=2m U(m) 1eA% weA?
n=2m SU(m) 1A weA? ¢, peA™
n=4m | Sp(m)-Sp(1) 1€A ®cA?
n=4m Sp(m) 1€ A% wi,ws w3 e A2
n= Go 1€A pe A3, xpe At
n=_8 Spin(7) 1A’ ®cA?




1. Unitary Holonomy: Endow R2?" with its standard inner
product and the orthogonal complex structure

0, —I,
g = (In ) ) |
Define the unitary group U(n) C SO(2n) and embed into GL(n, C)
via

U(n) = { A € S0(2n) “

b

AanJnA}B( _ab>l—>a—|—ib.
If (M?2",g) has holonomy conjugate to a subgroup of U(n),
then M possesses a g-parallel, orthogonal almost-complex struc-
ture J : TM — TM. Corresponding to this, there is also a g-
parallel 2-form w related to the almost complex structure by

w(v,w) = g(Jv,w)

In fact, via this equation, any two of (g, J,w) serve to determine
the third.



The fact that J and w are parallel w.r.t. g implies
(1) wis closed: dw =0
(2) J is integrable: Each point of M has a coordinate neigh-
borhood (U, z) with z : U — C™ a coordinate system sat-
isfying dz(Jv) = idz(v) for all v € TU.
Proof sketch: We already saw that w is closed.

The integrability of J follows from the Newlander-Nirenberg
Theorem. The point is that, in geodesic coordinates z = (z°)
centered on m € M, we have

k
J = JF(z) % ®@da! and (VJ), = %(O) de? ® % ® da!.
The Nijnhuis tensor of J (which, by NNT, obstructs integrability)
is linear in the first partials of J in any coordinate system. Thus,
VJ = 0 implies that J is integrable.

Still, there remains the question: How many such metrics can
there be?



Say that a pair (J,w) defined on M are compatible if

(1) w(v,Jv) >0 V0#veTM, and

(2) w, Jw) =w(w,Jv) VezeM, v,weT, M.
In this case, we say that the metric g defined by

g(v,w) = w(v, Jw)
is the associated metric.
Proposition: If (J,w) are a compatible pair on M?2" and J is
integrable and w is closed, then J and w are g-parallel, where g is
the associated metric. In particular, the holonomy of g is conjugate
to a subgroup of U(n).
Proof sketch: Since J is integrable, M has an atlas of J-holomorphic
charts: (U, z) with z : U — C™ where dz(Jv) = idz(v). Then (2)
above and the definition of g imply that
wy = tih;pde! adk and gy = hyjdzdodzR

for functions h;z = hiy on U with h = (h;z) > 0 (by (1) above).



Finally, the closure of w implies that (at least locally), there exists
a function f on U so that
0 f
92192k
Conversely, starting with any smooth ‘potential’ function f on a
domain D C C™ such that the quadratic form
0? L —
g=— f_ dz7odzF
0270z
is positive definite on D, one computes that the standard complex
structure J on C™ and the 2-form
i 02 L —
w = — - f— dZJOde.
2 02102k
are parallel with respect to the Levi-Civita connection of g. (Hint:
to simplify the calculations, add the real part of a holomorphic
function of z to f and choose holomorphic coords w = (w’) so that
f = |w|? + (terms vanishing to order > 4).)
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Consequences:

(1) Metrics in dimension 2n with unitary holonomy exist and
depend on one ‘arbitrary’ function of 2n variables, up to
diffeomorphism.

(2) The ‘generic’ such metric has holonomy equal to U(n).

The data (M, g, J,w) as above (with the integrability conditions
assumed) is said to define a Kdhler structure. Such manifolds have
been extensively studied, in large part because these are the natural
metrics one would like to use in studying complex manifolds (M, J).

A very fundamental example is the Riemannian symmetric space

CP" = SU(n+1)/S(U(1)x U(n)),
i.e., complex projective space. Up to constant multiples, there
is only one SU(n+1)-invariant metric g on this space and it has

holonomy isomorphic to U(n), so there is a corresponding invariant
complex structure J and 2-form w.



Important Properties of Kahler manifolds: (M, g, J,w)

(1) Every complex submanifold N C M inherits a Kéhler
structure just by pullback. (In particular, the smooth
points of an algebraic variety V' C CP" inherit a Kahler
structure.)

(2) (Wirtinger) The forms ¢, = %w” are calibrations on M
with respect to the metric g. In particular, a compact,
complex p-dimensional subvariety N C M minimizes vol-
ume in its homology class.

(3) (Hodge decomp.) There is a V-parallel splitting

AMT*M)® C = @ APYT* M) (as J-eigenspaces)
p+q=k
and a decomp. of d : Q% (M) — QF1(M) as d = 9+ 0 with
Q: QPI(M) — QPYha (M
d: QPI(M) — QPITH(M).

—_ ~—



n h Cso(n) K(h) as an h-module
n s0(n) R @ S3(R™) @ W, (R")
n=2m > 2 u(m) R® Sy (C™)R @ S2%(C™)R
n=2m > 2 su(m) So?(Cm)R
n=4m >4 | sp(m)®sp(1) R @ S*(C?™)R
n=4m >4 sp(m) St(C?m)R
n="7 9o VO? ~ RT7

spin(7)
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Dimension Group Invariant forms (generators)
n SO(n) 1€ A% x1e A"
n=2m U(m) 1 €A% weA?
n=2m SU(m) 1€A% weA? ¢,9peA™
n=4m | Sp(m)-Sp(1) 1€A ®cA?
n=4m Sp(m) 1€ A% wi,ws w3 e A2
n="7 Go 1€A pe A3, xpe At
n=_8 Spin(7) 1A’ ®cA?




2. Special Unitary Holonomy. Let

SU(n)={ A€ U(n)| detc A =1}.
Note that SU(n) can be characterized as the subgroup of GL(2n, R)
that preserves the exterior forms

wo = 3i(dzt adzl + -+ de" adz?)

To=dz' ade®n - ade™
In fact, the algebra of SU(n)-invariant exterior forms on C" is
generated by wp, Yo, and Y.

Conversely, let V be a (real) v. s. of dim. 2n and let w and T be
exterior forms of degrees 2 and n, respectively, on V' such that

1. Y is decomposable and satisfies TAY # 0

Then there is a unique complex structure J : V' — V so that T
spans A™Y(V). Suppose now further that w is real-valued and

2. w(v, Jv) > 0 for v # 0 and w € AM(V).
Then there is a constant A > 0 such that (w, T) ~ (wg, ATy).



Now suppose that (M?", g) has holonomy conjugate to a subgroup
of SU(n) C SO(2n). Then, in addition to having a parallel complex
structure J and 2-form w, the manifold will support a g-parallel C-
valued n-form Y € Q™9(M). Multiplying Y by a positive constant,
we can suppose
3. TAY = 22— w™.
in® n!
Of course, since T is g-parallel, it must be closed (and co-closed).
A pair (w,T) of closed forms on a 2n-manifold M satisfying
(pointwise) the conditions (1—3) listed above constitute a Calabi-
Yau structure on M.

Proposition: For any Calabi-Yau structure (w,Y) on M?", the
associated almost complex structure J is integrable and the forms w
and Y are parallel with respect to the associated metric g.

Proof sketch: By hypothesis, locally T = ¢'a¢2A---A(" where
the ¢* and the ¥ are linearly independent.



Now, J is defined by ¢*(Jv) = i¢*(v) for v € TM and the
hypothesis dT = 0 implies that J is integrable and that Y is ac-
tually holomorphic w.r.t. J. In fact, it is possible to choose local
J-holomorphic coordinates (U, z) so that

YTy =dzt adz?a -+ Adz™ = dz.

We have already seen that the integrability of J and the closure
of w imply that, locally, there is a function f on U such that
i O%f S — 0% f R
wy = = ——dz’ AdzF and gy = ———dzlodz*¥
2 02102k 0210z
The hypotheses on w and T then imply

2 2
( 8' f_> >0 and det ( 8, f_> =1
079 0zk 079 0zk

Now one can compute that, if f is any smooth function on a domain
D C C" that satisfies these two conditions, then g as as metric on D
not only leaves w and J parallel, but T = dz as well. Thus, the
holonomy of such a metric lies in SU(n).




Local Properties: Let (w, ) be a Calabi-Yau structure on M?".

(1)

(2)
(3)

The general Calabi-Yau structure depends on 2 functions
of 2n—1 variables (modulo diffeomorphism) and is real-
analytic in J-holomorphic coordinates.

The associated metric g of the ‘generic’ Calabi-Yau struc-
ture on M?" has holonomy equal to SU(n).

The associated metric g is Ricci-flat. Conversely, if M is
simply connected and (M, g, J,w) is a Kahler structure for
which g is Ricci-flat, then g admits a parallel holomorphic
volume form Y such that (w, T) is Calabi-Yau.
(Harvey-Lawson) The real-valued n-form ¢ = Re(T) is a
calibration on (M, g) (called the special Lagrangian calibra-
tion). It calibrates a large family of Lagrangian subman-
ifolds of M. In fact, any real-analytic (n—1)-dimensional
submanifold P C M that satisfies P*w = 0 (i.e., is sub-
Lagrangian) lies in a unique (local) analytically irreducible
Lagrangian submanifold N C M that is calibrated by ¢.



Global Existence.
Calabi’s Complete Example. Idea: Look for a rotationally in-
variant metric on C™ with T = dz, i.e., with

i

w =2 00(f(|=%).
Now, w > 0 implies f/(p) > 0 and pf”(p)+f"(p) >0 (p = |2|?).
The volume relation between w” and YTAY becomes the ODE

)" pf"(p) + f'(p) = 1.

This has a first integral

(pf' ()" =p"+c
If ¢ = 0, this is the flat metric. If ¢ > 0, this says that

i = i 2n 1/n
w =2 00(f(|2%) = 50 (% . -dz> ,

but this metric is singular at z =0 if n > 1!



However, this singularity can be resolved: Blow up C™ at the origin
Cn—C"
where -
Cr = {([w], 2) ‘w#O,zz)\w },
and then divide by the Z, action ([w], z) - A = ([w],Az) (A" =1).
The resulting space
X, =C"/Z,

turns out to be a smooth n-manifold, namely A™°(CP"~!), the
canonical bundle of CP"~!.

Now, w lifts up to C" to become a smooth 2-form @ that’s de-
generate on the blow-up divisor. However, it then pushes down
to X, to be a smooth and positive (1, 1)-form .

Finally T goes along for the ride to induce a holomorphic volume
form T on Xn.

The resulting (@, T) is a Calabi-Yau structure whose underlying
metric g on X, is complete. This is Calabi’s example.



Compact examples. Calabi conjectured and S.T. Yau proved the
following existence result that supplies lots of examples of metrics
with holonomy in SU(n) (in theory).

Theorem: Let M be a compact complex n-manifold that admits
a holomorphic volume form Y and a Kahler form wg. Then there
exists a function f on M and a real constant A > 0 so that

(wo + i&éf, AT )
is a Calabi-Yau structure on M.

Example: If X,, C CP"*! is a smooth hypersurface of degree n+2,
it has a nonvanishing holomorphic n-form. It certainly has a Kahler
form, just pull back the Kihler form on CP"*!'. Thus, by the
Calabi-Yau Theorem, such an X,, carries a Calabi-Yau structure.
It can be shown that this can never be a product and, in fact, the
holonomy is always equal to SU(n).

When n = 2, the quartic surface X, C CP? is one of the famous
K3 surfaces. Its Calabi-Yau metrics are still not explicitly known.





