Gauge theory after Donaldson

. PD . * .
Manifold —E> Moduli space H—> Invariants
M M ‘counting’

The hard parts include:

e compactification of M,

e perturbation of the equations and transver-
sality to make M smooth,

e infinite dimensional symplectic geometry (mo-
ment maps, etc.) to reinterpret the solu-
tions of the equations in terms of purely
geometric data (e.g. algebraic geometry),

e nonlinear analysis to solve the equations.
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The art to doing this is to find the right PDE:

e geometric PDE, ideally first order,

e clliptic (so M finite dimensional),

e Nonlinear with nonlinearities giving nega-
tive feedback so that solution space is com-
pact (or compactifiable naturally so that coho-
mology classes extend over the compactification).
(Topological bounds.)

Such equations usually come from physics as
minimisers (or critical points) of some “ac-
tion” functional (which then gives L2 “energy”
bounds).
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E.g. the Yang-Mills functional for unitary con-
nections on a Riemannian manifold.

YMA:/ F 2:/trF/\F.
(A) Ml Al L S FAN*EY
Critical points: to first order in a,
YM(A4a) = YM(A)—I—/MtrdAa/\*FA
— YM(A)+<a,dj‘4FA).

So critical points are connections A satisfying
the Yang-Mills equations:

|
o

dAF'A
dyFa

|
o
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In some special geometries there are some con-
nections which attain a topological absolute
minimum of Y M, giving a first order equation
in A instead of second order. (Solutions often

called instantons.)

(“Supersymmetry/BPS solutions”. Compare “maps in”
equations, minimal submanifolds etc, and their first or-
der versions — calibrated submanifolds. These are very
often dual to gauge equations under string dualities,
mirror symmetry, etc. and will arise via “bubbling”

later.)

E.g. flat connections Fy = 0. Locally trivial
connections described globally by their parallel
transport (holonomy) round loops, SO

M = Rep (w1 (M),U(r))/ conjugation.
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E.g. On a Riemannian 4-manifold M, A2 £
AT @& A~ the orthogonal +1 eigenspaces of x.

So Fy = FT @ F~ with

YM(A) = [ |FTP+|F P

/MtrF+/\F+ _trF-AF,

—47T262(E)

tr Fo AN F
ftrran s

/MtrF'I'AF"'—I—trF_/\F_.

So
Y M(A) = 4n2c,(E) + 2 /M FT|2
and anti-self-dual (asd) connections are abso-
lute minima:
FT =o.

(These can exist only if ¢,(E) > 0, and are flat F4 = 0
if co = 0. Of course asd connections are Yang-Mills:

dZFAZ—*dA*FAZ*dAFAZO.)
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E.g. On a Kahler manifold,

AN2RC 2N GAS & C.wa A0

gives a corresponding decomposition of Fly,
with

Y M(A) = /M 2|FO22 4 | FL12 4 |12
and
—4r2c,(E) w2 = /M2|F0’2|2—|—|w.F1’1|2—|F6L’1|2.
Therefore the Yang-Mills functional of A equals
4r2co(E) U2 + /M 4|F0:22 4 2| F 112

with absolute minima given by Hermitian-Yang-
Mills connections

02 __
I,1 _
w-FA — O.

(Exercise: these satisfy d%F4 = O by using the Kahler
identities.)
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On a Kahler surface the self-dual 2-forms are

{c4+7:0eN"?}a ()

so the asd equations are the same as the HYM
equations.

These define holomorphic structures on E (82 =
0) with the metric fixed (see below) by the
HYM condition w.F4 = 0.

For E to carry a HYM connection, deg(F) =
c;-w" "1 must equal

1
tr F /\wn_lz—/ tr(w.Fy)w™ = 0.
fyg o LR
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We can generalise to deg #= 0 by splitting the
w component of F4 into a constant piece and
an L2-orthogonal piece; i.e.

Fa=FaF?¢Fy' @ dw.id @ o,

where X is a (topological) constant deg E/ [, w",
and [ tro Aw™ 1 =0.

Then the same analysis shows that connec-
tions with ¢ = 0 are also absolute minima,
giving the general HYM equations

0,2 __
FA = 0,
w.Fj’l — const.id.
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These have a purely holomorphic description
since the second equation more-or-less fixes
the metric, so that solutions are roughly equiv-
alent to holomorphic structures (compare uni-

formisation for Riemann surfaces):

Theorem 6 [Donaldson-Uhlenbeck-Yau]

E admits a compatible Hermitian-Yang-Mills
metric/connection iff it is polystable. This
HYM connection is then unique.

E is stable iff for all coherent subsheaves F' C E we have
u(F) < u(E), where
ci(E)Uw™ ! degFE
p(E) = Jx = :
rank &/ rk £/
This is the generic situation. Polystable = direct sum

of stables of same slope.
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unstable orbit GL(E) orbit

= m~1(0) = {A:w.Fy = \id}

| U(E) orbit

s Al

(Moment map formalism is a nonlinear generalisation of
V/W £ W+, Linearised gauge action on A%l =9, is by
adding a%! = 0,9 for g € T(Endg E); unitary action has
g € M'(su(F)) skew-adjoint. Linearised HYM condition is

w.0,a%! + (w.0,a%1)* =0 = 54’ + (871",

So at level of tangent spaces moment map gives or-
thogonal slice to self adjoint part of gauge action; then

divide by remaining skew adjoint part.)
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Tian observed that these and many other gauge
equations can be fit into a common framework.
Suppose M is a Riemannian n-manifold with a
distinguished closed (n — 4)-form 2 (in exam-
ples it will be a calibration). Then we can
consider 2-asd connections A satisfying

x(Fy N Q) = —F4.

These satisfy the YM equations d% F4 = 0, and
are absolute minimisers of YM(A) if Q is a
calibration.

Q=1
O — wn/2—2

asd equations
HYM equations

Qspin(7) OF Qa, Spin(7) /Gy-instantons
2

Q:4Re0+%

L R

complex asd equations

on CY 4-fold Fg’"" = 0 (A°2=A0FgpA0)
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We can think of gauge theory as nonlinear
Hodge theory. (YM edns dyFy = 0 = d%F4 = Fa
harmonic...) E.g. linear case of flat U(1) con-
nections on topologically trivial bundle:

dy = d+ A, A e QY (M,iR)
d4Fp=0 & d'dA=0
Fy=0 & dA=0
A~exp(g)*(A) & A~ A+ dg.
Instead of dividing by gauge transformations

exp(g) connected to the identity we can impose
the Coulomb gauge condition

d*A =0,
(i.,e. A perpendicular to gauge orbits dg) giving us
the usual Hodge theory dA = 0 = d*A (or
YM d% F4 = AA = 0) with solutions H}(M,R).
Further dividing out by gauge transformations

not connected to the identity ([M,U(1)] =
HY(M,7Z)") makes this the torus

~, HY(M,R)

M= HY(M,Z)
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Linearisation

More generally the linearisation of YM equa-
tions about a solution A have the same proper-
ties. For illustration we concentrate on the asd equa-
tion on simply-connected M#, for unitary connections
with fixed determinant and rk E = 2, i.e. SU(2) con-
nections. Then G = SU(FE) is connected.

If F¥ =0 then F,le_+a =d}a+ (a/\a)"‘ is zero,
to first order in small a, iff d"' 0. We
wish to divide by (small) gauge transforma-
tions: exp(g)*(A) = A+ d4g, so we are led to
the linearisation

_|_
QO(su(E)) M 0l(su(E)) s 0t (su(E)).
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This is an elliptic (the symbol sequence is ex-
act) complex (as djx_dA — 0) describing the in-
finitesimal equation and gauge action; its first
cohomology can be considered to be the "Zariski
tangent space”

__ ker dr

T — — gl E)).
AM mds A(su(FE))

(Ellipticity = finite dimensional and, often, Sobolev so-
lutions smooth. For what follows should work with L2-
Sobolev connections, £ > 1, for completeness; Sobolev
multiplication then allows us to form a Aa € L7 in 4

dimensions.)

Similarly HY(su(E)) is the infinitesimal auto-
morphisms (stabiliser) of A, and Hj(su(E)) is
the “obstruction space” — the nonlinear piece
(a A a)T of the equations maps to here giv-
ing the obstruction to extending a (linearised)
first order deformation in H}(su(E)) to second
order.
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By Hodge theory theory HY(su(E)) ker d} nker d*;
by the following theorem we can work locally
about A we work with connections A + a in
Coulomb gauge: dja = 0.

Theorem 7 [Uhlenbeck]
M is locally homeomorphic about A € M to

{a: Ff ,=0, dja=0}/T,
and we have the estimate |lal|,, < cl||all
Lk—i—l

(Ellipticity of da @ d*.)

Here I 4 is the stabiliser of A
{g€G :9"(A)=A}={g€ G :dyg=0}
of parallel automorphisms, with Lie algebra
kerds C QO(su(E)).

As we perturb A these may no longer stabilise
A-+a, so we need to divide by them in our local

model.
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Usually try to avoid connections with [ 4 larger
than C(SU(2)) = {£1}, then the Theorem
gives local model of M: in the good case of
H;{'(Endo E) = 0, M is smooth of dimension
hzlél(Endo E)

[ 4 is centraliser of the holonomy group of A
in SU(2):

U(l) = <g‘ /\91> or {1} or {£1}

with T4 = U(1), SU(2), SU(2) respectively.
Correspond to (F, A) splitting as

LoL™ ! or LoL (2L 1) or C2

and so are called reducible connections. (Re-
serve reducible for first case; other two are flat and

won't feature.)
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If (E,A) is reducible and HI(EndgE) = O,
then A% (Endg E) = 1 but vanishes for nearby
A, so hL(Endg E) also jumps by 1 at the re-
ducible connection. We will use a case below
where generically hl = 5, jumping to 6 at the
reducible; locally M looks then like

R /U(1) = C3/8! 22 cone on P?.

Reducibles in the asd moduli space correspond
to line bundles with abelian asd connections,
i.e. to asd harmonic 2-forms in

H?(M;2miZ) N H~ C H?(M,R)

(as c1(L) is integral). For b+ =dim Ht(M) >
O could hope that generically this is empty and
there are no reducibles.

Theorem 8 If b+ > 0 then H~ C H?(M,R)
misses the lattice H?(M;2xiZ) for the generic
choice of Riemannian metric on M.
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If bT > 1 then the same is true for the generic
1-parameter family of metrics.

Proof. The metric defines harmonic forms and
SO a point in
Gr(H?(M,R),b7).

The conformal structure of the metric is equiv-
alent to the splitting of A2, and so is a section
of the

Gr(A2,3)

bundle. Moving this section by a section ¢ €
Hom(A—,AT) we find that the projection of
o € H™ to the new HT is, to first order,

Ty 0 p(0) € ?—[+,

[DK Lemma 4.3.24]. Since ¢ can be arbitrary
this map is onto and we can move any integral
class away from H~ if T # 0. O
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Transversality

We can now deal with reducibles and so the
quotient by the gauge group ¢G. Turn now to
controlling the set of asd connections.

Zero set of map of Banach spaces

FA": A — Q"‘(su(E)).

(Or, gauge fixing locally, Ff @ dy: A - QT @ Q°. Or,
dividing by gauge and working on (the irreducibles in)
B := A/G, a section of QT (su(E))-Banach-bundle over
B.)

If this has surjective derivative at 0 € Q1 (su(E))
then by the Banach space Implicit Function
Theorem M will be (away from reducibles) a
smooth manifold of dimension hl (su(E)).

42



Definition 9 The virtual dimension of M is
the index of the Q% (Endg ) complex

d=—(h®—h'4+hT)=8c(E)—3(1=b; +bT)
by the Atiyah-Singer index theorem.

(A irreducible < hO = O: surjective derivative
s ht =0)

To achieve this vanishing of H;{"(su(E)) we
have to again allow perturbations of the met-
ric on M. We consider the above map to be
defined on a bigger space

Fj{: A x Conf — QT (su(E));

Conf= { conformal classes of metrics on M }.

By the Smale-Sard theorem all we need is the
surjectivity of the derivative of this map at 0 &€
QT (su(E)) to conclude that for a dense set of
nearby metrics M is smooth.
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Theorem 10 The derivative of the above map
is onto. So, for a generic metric, Hj{(su(E)) =
0 for all non-flat asd connections A. Ifbt (M) >
O then M smooth.

If bY (M) > 1 then any two such generic met-
rics can be joined by a path over which the
universal moduli space is smooth.

Last statement gives a cobordism between mod-
uli spaces for different metrics, so the cobor-
dism class of M is well defined in terms of only
the C° structure of M if b+ (M) > 1.

M is also oriented, but not necessarily com-
pact.
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