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Now, I want to move down the list a bit, using what we know
about the Calabi-Yau case. I’ll skip the sp(m) ⊕ sp(1) case and
come back to it.

n h ⊆ so(n) K(h) as an h-module

n so(n) R ⊕ S2
0(Rn) ⊕ Wn(Rn)

n = 2m > 2 u(m) R ⊕ S1,1
0 (Cm)R ⊕ S2,2

0 (Cm)R

n = 2m > 2 su(m) S2,2
0 (Cm)R

n = 4m > 4 sp(m)⊕ sp(1) R ⊕ S4(C2m)R

n = 4m > 4 sp(m) S4(C2m)R

n = 7 g2 V0,2 � R77

n = 8 spin(7) V0,2,0 � R168
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3. Symplectic Unitary Holonomy. The subgroup Sp(m) ⊂
SO(4m) is defined as the subgroup of GL(4m, R) that preserves
the pair of forms on C2m = R4m defined as

ω0 = 1
2

i
(
dz1 ∧ dz1 + · · ·+ dz2m ∧dz2m

)
Ω0 = dz1 ∧ dz2 + dz3 ∧dz4 + · · ·+ dz2m−1 ∧dz2m.

Since
Ω0

m = m! dz1 ∧ · · ·dz2n = m! Υ0 ,

and since SU(2m) is the subgroup of GL(4m, R) that preserves the
pair (ω0, Υ0) on C2m = R4m, Sp(m) is a subgroup of SU(2m).

Though Sp(1) = SU(2), the group Sp(m) is a proper subgroup
of SU(2m) when m > 1. In fact, Sp(m) is a compact simple Lie
group and a maximal compact subgroup of Sp(m, C), the subgroup
of GL(4m, R) consisting of the linear transformations that fix Ω0.

The rank of Sp(m) is m and its dimension is 2m2 + m. It acts
irreducibly on R4m = C2m and, moreover, transitively on the unit
sphere S4m−1 .
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Quaternionic StructuresThere is another interpretation (or def-
inition) of Sp(m) that may be more enlightening. For indicial sym-
metry, write

ω1 = ω, ω2 = Re(Ω), ω3 = Im(Ω),

and note that each ωi is a nondegenerate 2-form on R4m. This
implies that there are maps Ji : R4m → R4m for i = 1, 2, 3 so that

ω1(J2x, y) = ω3(x, y),

ω2(J3x, y) = ω1(x, y),

ω3(J1x, y) = ω2(x, y).

You can check that Ji
2 = −1 and JiJj = −JjJi = −Jk whenever

(i, j, k) is an even permutation of (1, 2, 3). (Also, Ji ∈ SO(4m).)
Moreover, the associated inner product g satisfies

g(x, y) = ωi(x, Jiy) for i = 1, 2, 3.

So, thinking of R4m as Hm, we see that Sp(m) is the set of H-linear
orthogonal transformations of Hm.
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Definition: A triple of nondegenerate 3-forms (η1, η2, η3) on a real
vector space V will be said to be a hyper-unitary structure on V if
the equations

η1(J2x, y) = η3(x, y),

η2(J3x, y) = η1(x, y),

η3(J1x, y) = η2(x, y).

define linear maps Ji : V → V that satisfy Ji
2 = −1 and that

JiJj = −JjJi = −Jk whenever (i, j, k) is an even permutation
of (1, 2, 3) and, if, moreover, the expressions

η1(x, J1y) = η2(x, J2y) = η3(x, J3y)

all agree and define a positive definite inner product 〈, 〉 on V .

Proposition: V has a hyper-unitary structure if and only if dimV
is divisible by 4. Moreover, all hyper-unitary structures on a vector
space V are isomorphic.
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Hyper-Kähler structures. Suppose that (M4m, g) is a Rie-
mannian manifold whose holonomy is conjugate to a subgroup
of Sp(m).

By the holonomy principle, there will be three nondegenerate 2-
forms, say (ω1, ω2, ω3) on M that are parallel with respect to g such
that, at each point x ∈ M , they define a hyper-unitary structure
on TxM .

Of course, these 2-forms are closed and, in fact, (M, g, Ji, ωi) is
Kähler for i = 1, 2, and 3!

In fact, even more is true: For any constants (λ1, λ2, λ3) such
that λ1

2+λ2
2+λ3

2=1, the data (M, g, Jλ, ωλ) is Kähler, where

Jλ = λ1J1+λ2J2+λ3J3 and ωλ = λ1ω1+λ2ω2+λ3ω3 .

(We often say that g is hyper-Kähler.)
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By now, the following ‘converse’ should not be surprising:
Theorem: Suppose that a manifold M has a triple of closed
2-forms (ω1, ω2, ω3) such that, at each point x ∈ M , they define
a hyper-unitary structure on TxM . Then these three forms are
parallel with respect to the associated metric g. (Whose holonomy
is therefore conjugate to a subgroup of Sp(m) where dimM = 4m.)
(As usual, the proof will indicate how to construct such examples,
at least locally.)
Sketch of proof: By the algebraic properties of hyper-unitary triples,
we know that dimM = 4m for some integer m.

Moreover, setting Ω = ω2 + i ω3, we see that the complex-
valued 2m-form Υ = 1

m!Ω
m is decomposable as a complex valued

form, satisfies Υ∧Υ 	= 0 and is closed.
By a previous argument, we know that Υ is a holomorphic vol-

ume form on M for a unique (integrable) complex structure J
(which happens to equal J1).



27

Next, Ω itself is of type (2, 0) with respect to this complex struc-
ture J and closed, so it is holomorphic with respect to the under-
lying complex structure.

We can now apply the holomorphic Darboux theorem to see
that each point of M lies in a neighborhood U on which there exist
coordinates z : U → C2m such that

ΩU = dz1 ∧dzm+1 + dz2 ∧dzm+2 + · · ·+ dzm ∧ dz2m.

We’ve also seen that (M, g, J1, ω1) is Kähler, so locally, there is
a function f on U so that

U∗(ω1) =
i
2

∂2f

∂zj∂zk
dzj ∧dzk and U∗(g) =

∂2f

∂zj∂zk
dzj◦dzk

where

Hf =
(

∂2f

∂zj∂zk

)
> 0.

is the complex Hessian matrix of the function f .
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Finally, the condition that (ω1, ω2, ω3) define a hyper-unitary
structure at each point imposes many more equations on f than
just the Monge-Ampere equation. In fact, this becomes the system
of equations:

tHf

(
0m Im
−Im 0m

)
Hf =

(
0m Im
−Im 0m

)
.

This turns out to be 2m2 − m second order nonlinear equations
on f . (Taking determinants of both sides of this equation gives the
Monge-Ampere equation that defines SU(2m)-holonomy metrics.)

Conversely, if f on U ⊂ C2m satisfies this system of equations
and has positive definite Hessian Hf , then the metric g defined
on U by

g =
∂2f

∂zj∂zk
dzj◦dzk

will have ω1, and Ω = ω2 + i ω3 as parallel 2-forms on U , so its
holonomy will be a subgroup of Sp(m).
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Local Properties of HyperKähler: (M4m, ω1, ω2, ω3).
(1) Involutive PDE analysis implies that the general solution of

the Hessian equation depends on 2m ‘arbitrary’ functions
of 2m + 1 (real) variables.

(2) The ‘generic’ solution has holonomy equal to Sp(m).
(3) The associated Riemannian manifold (M, g) is Ricci-flat.
(4) The associated Riemannian manifold (M, g) supports many

different calibrations, e.g., φp(λ) = 1
p!

ωλ
p and the real

part of Υλ, and all of these calibrate many submanifolds
of (M, g).

(5) The structure (M, Ω) = (M, ω2+i ω3) is a holomorphic
symplectic manifold.
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Global Examples:
Calabi’s Example: Looking for a rotationally invariant example
on C2m won’t work (we already know that you’ll get SU(2m)-
holonomy anyway).

However, there is a natural holomorphic symplectic manifold
that does have a high degree of symmetry: X = T ∗(CPm).

The group SU(m+1) acts on T ∗(CPm) and (because CPm is
a rank one symmetric space), its general orbit is a (real) hyper-
surface in T ∗(CP

m) the level sets of the Hermitian norm func-
tion ρ : T ∗(CPm) → R.

Calabi’s Idea: Look for a hyperKähler structure on T ∗(CPm) of
the form (ω1, ω2, ω3) where Ω = ω2 +i ω3 is the canonical holomor-
phic symplectic structure on T ∗(CPm) and where

ω1 = i∂∂̄
(
f(ρ)

)
for some function f of one variable (defined by some ODE).

Result: This works. There is such a function f and the resulting
structure is complete on T ∗(CPm).
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Compact examples. A hyperKähler structure (M, ω1, ω2, ω3) is a
Kähler manifold (M, g, J1, ω1) that has a parallel holomorphic sym-
plectic form Ω = ω2 + i ω3.

It is not difficult to show that if φ is any holomorphic p-form
on M and M is compact, then φ is also g-parallel:

∇∗∇φ = ∂̄∗∂̄φ + Ric · φ,

but Ric(g) = 0 since g has holonomy in Sp(m) ⊂ SU(m).
If the holonomy of g is to be all of Sp(m), then the only holo-

morphic differential forms on M are the powers of Ω.
Proposition: Let M4m be a simply-connected, compact complex
manifold that admits a Kähler metric and whose algebra of holo-
morphic forms is generated by a holomorphic symplectic form Ω =
ω2 + i ω3. Then M supports a Kähler structure (g, J1, ω1) such
that (M, ω1, ω2, ω3) is hyperKähler and g has holonomy Sp(m).
Proof: Apply Yau’s theorem to M with the holomorphic volume
form Υ = 1

m!Ω
m and some Kähler form ω0 ∈ Ω1,1

+ (M).
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Thus, let (ω1, Υ) be the Calabi-Yau structure on M where

ω1 = λω0 + i∂∂̄f.

for some constant λ > 0 and function f on M .
By argument above, Ω is g-parallel for the underlying metric g

of (ω1, Υ), so the holonomy of g is a subgroup of Sp(m).
If the holonomy acts irreducibly, then by Berger’s classification,

it must be Sp(m).
If the holonomy were to act reducibly, then by de Rham and

Berger, the holonomy would be of the form

Sp(m1) × Sp(m2) × · · · × Sp(mk)

for some m1 + m2 + · · ·+ mk = m. But, if k > 1, we could write

Ω = Ω1 + · · ·+ Ωk

where the Ωi are nonzero holomorphic 2-forms. By hypothesis, the
only holomorphic 2-forms on M are the multiples of Ω, so k = 1.
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Explicit examples: Finally, several methods of constructing simply-
connected, compact Kähler manifolds whose holomorphic forms are
generated by a holomorphic symplectic form are known via alge-
braic geometry.

The first and most famous example is to start with a K3 sur-
face X2, take a symmetric product

Ym = X2
(m) =

(
X2 × X2 × · · · × X2

)
/Sm

and then resolve the singularities of Ym in a nice way, getting the
desired manifold Xm.

The holomorphic volume forms on the factors pull up to the
product and add to give a symplectic 2-form Ω that survives through
the quotient and resolution to define a symplectic 2-form on Xm.
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Now need to go back to pick up the “quaternionic-Kähler” case.

Dimension Group Invariant forms (generators)

n SO(n) 1 ∈ Λ0, ∗1 ∈ Λn

n = 2m U(m) 1 ∈ Λ0, ω ∈ Λ2

n = 2m SU(m) 1 ∈ Λ0, ω ∈ Λ2, φ, ψ ∈ Λm

n = 4m Sp(m)·Sp(1) 1 ∈ Λ0, Φ ∈ Λ4

n = 4m Sp(m) 1 ∈ Λ0, ω1, ω2, ω3 ∈ Λ2

n = 7 G2 1 ∈ Λ0, φ ∈ Λ3, ∗φ ∈ Λ4

n = 8 Spin(7) 1 ∈ Λ0, Φ ∈ Λ4
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4. Quaternionic-Kähler Holonomy: Since J1, J2, J3 ∈ SO(4m)
don’t commute, they don’t belong to Sp(m) ⊂ SO(4m). Instead,
they generate a group isomorphic to Sp(1)

Sp(1) =
{
λ0I4m + λ1 J1 + λ2 J2 + λ3 J3 λ0

2+λ1
2+λ2

2+λ3
2=1

}
that commutes with Sp(m) ⊂ SO(4m).

The group jointly generated by Sp(m) and this Sp(1) is de-
noted Sp(m)·Sp(1) ⊂ SO(4m). This group does not leave the
2-forms ωi invariant, but does leave the 4-form

Φ0 =
1
6
(
ω1

2 + ω2
2 + ω3

2
)

invariant. (The 1
6

is chosen to make Φ0 have comass 1.)
Conversely, when m > 1, the group Sp(m)·Sp(1) can be defined

as the subgroup of GL(4m, R) that fixes Φ0.
If V is a vector space of dimension 4m, a form Ψ ∈ Λ4(V ∗) will

be said to be a quaternionic 4-form if it is equivalent to Φ0 under
some linear isomorphism V → R4m.
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n h ⊆ so(n) K(h) as an h-module

n so(n) R ⊕ S2
0(Rn) ⊕ Wn(Rn)

n = 2m > 2 u(m) R ⊕ S1,1
0 (Cm)R ⊕ S2,2

0 (Cm)R

n = 2m > 2 su(m) S2,2
0 (Cm)R

n = 4m > 4 sp(m)⊕ sp(1) R ⊕ S4(C2m)R

n = 4m > 4 sp(m) S4(C2m)R

n = 7 g2 V0,2 � R77

n = 8 spin(7) V0,2,0 � R168
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Local Properties of Quaternionic-Kähler manifolds: Let
(M4m, Φ) (m > 1) be a manifold endowed with a quaternionic
form Φ ∈ Ω4(M) (i.e., Φx is quaternionic on TxM for all x ∈ M).
Let g be the associated metric (assumed not locally symmetric).

(1) If Φ is g-parallel, then g is Einstein.
(2) If Scal(g) 	= 0, then holonomy of g is Sp(m)·Sp(1).
(3) If Scal(g) = 0, then holonomy of g lies in Sp(m).
(4) When m > 2, dΦ = 0 implies that Φ is g-parallel.
(5) When g has holonomy Sp(m)·Sp(1), the form Φ can be

constructed via ‘reduction’ from a hyperKähler structure
(N4m+4, ω1, ω2, ω3) with an S1-symmetry.

(6) The general (local) metric g with holonomy Sp(m)·Sp(1)
depends on 2m functions of 2m+1 (real) variables.

(7) All compact examples with Scal > 0 with m = 2 or 3 are
Riemannian symmetric spaces.

(8) No compact examples with Scal > 0 are known that are
not Riemannian symmetric spaces.




