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Supplement to: Calibrated Geometries

by Reese Harvey and H. Blaine Lawson, Jr.

The Cartan-Kdhler Theorem Applied to Boundaries
43!

of Minimal Surfaces in Calibrated Geometries

This supplement is included in preprint form for
those not familiar with the Cartan-Kahler Theorem. First,
a brief statement of the theorem is given and then six
examples are discussed in detail. At the time this was
written the authors were unaware of the beautiful notes of
Bryant-Chern-Griffiths [1]. The reader should consult these

notes for more information concerning differential systems.

The Cartan-Kahler Theorem

Suppose I 1is an ideal of differential forms. Let

I. =1 n Ak. The ideal I 1is said to be homogeneous if

I = %1 (i.e. a form belongs to I if and only if each com-

k
ponent of degree k belongs to 1I). The ideal I is said

to be a differential system if dI < I. We shall assume that

I 1is a homogeneous differential system which contains no

functions (i.e. I, = 0).



Let Lk denote the space of k-dimensional integral

elements W for I (at a fixed point Xo)' A k-dimensional

subspace W of TX is an integral element for I if

0 Vael

. %

iy @

Here iW:W ¢+Tx denotes inclusion. Equivalently, W 1is an
0

integral element for I if

. %
iy @ 0 VaeIk.

This equivalence follows since if(Bay) = i%(B)Ai§(Y) and I
is an ideal.
Given an integral element WeLk, let

E (W) = {uETx :W+[u] is an integral element;.
0

denote the polar space of W or the space of enlargement

possibilities. Note that W < Ek(W) since W is integral.

Consequently, dim EK(W) = k+1+rk(W) where 0 < rk(W) mea-
sures the excess of the possibilities for enlarging W by
one more dimension. The space Ek(W) can be looked at
dually as follows. Choose % = WA AWk a k-vector with

W = span &. The space Ek(W) can be computed as the annihi-

lator or polar of {Zla: ael_ .}, a subspace of TX . If
K+1 Xg
We!.k is chosen so that dim fZ]a: aeIk+1} has the maximum

possible value, then the dimension remains the maximum possible

value for nearby WaLk.



Equivalently (since k+1+rk(W) is the codimension) if rk(W)
has the minimum possible value, then rk( ) has the same
value for nearby Wel, . Let r = min {rk(W): WeLk} denote

the minimum excess.

Definition 1): If Wel, and e;(W) = e; then W 1is called

a regular integral element.

2) If WeLk, ek(W) = e and W contains a regular
integral element of dimension k-1 then W 1is called a
regular integral element.

It is easy to see that if (and only iI) WkeLk is a

regular integral element then there exists a flag of vector

spaces W; < ... ¢ Wk with Wj = gpan {wy, .. , wj} an
integral element of dimension j and rj(Wj) = rj for
=1, ... , k.

Now suppose U,V are integral elements with U a co-

dimension 1 subspace of V (such as Wj < Wj+l above). Then

E(V) < E(U). To prove this suppose wueE(V). That is V+[u].
is an integral element. Note U+[u] 1is a subspace of V+[u]
Since a subspace of an integral element is always an integral
element this proves ue¢E(U). In particular, dim E(V) s dim E(U).

If j £ dim U then dim E(V) = dim V+1 + rj+l(v) = j+2 + r (V)

J+1

is less than or equal to dim E(U) = j+1 + rj(U). Therefore

rj+l<v) < rj(U). Consequently the absolute excesses are

strictly decreasing: r; > rp; > ... r_ = -1.



The genus is the smallest g with rg = -1. Everything in
the following theorem is assumed real-analytic, and all state-

ments are local.

Theorem. (Cartan-Kihler) Suppose [ 1is a homogeneous dif-

ferential system with IO = (0. Given a k-dimensional integral

submanifold N, assume that TXON is regular. Next prescribe

a "constraining submanifold" P of codimension e (note

re = rk(TXON)) with P > N and TXO

(Then, in particular, dim EP(TKN) n TXP = k+1 for Xx near x0

-—- that is P determines an integral k+1 plane field along

N and tangent to N.) Then there exists a unique integral

submanifold M of dimension k+1 with N < M < P.

Example I. (Foliations) Suppose [ 1is algebraically

generated by a Pfaffian system, i.e., I 1is generated by

I, (1-forms). Then E = {ueTK : [u] 1is integral, or a(u) =
‘ <0

0 Vael;} 1is just the polar of I,. Note that WeLk is an

integral element if and only if W < E;. Moreover, Ek(W) = Ep.

Hence if o = dim E; and W 1is an integral element then

rk(W) = p-k. In particular T does not depend on WELk and
rk(W) is locally a minimum (equivalently locally constant)

if and only if the rank o 1is locally a minimum (equivalently,
locally constant). Therefore, we must assume that the rank o
of E, 1is constant or equivalently, the rank n-¢ of I, 1is
constant. Then each WeLk is regular and r, = o-k = 1.

Consequently the genus 1is 0. There are no integral elements

P transverse to Ek(TXON).



of dim p+1 but there are regular integral elements of dim p.)
If Nk, an integral submanifold, is prescribed then since

r, = p-k-1 a "constraining submanifold" P of codimension

p-k-1 transverse to the p-plane field E; must be prescribed

to insure uniqueness. Of course if N is of dimension k = p-1

then no choice of P is required, we must take P equal to

the ambient manifold. The Cartan-Kihler theorem concludes that

there exists a unique integral submanifold M of dimension k+1

with N c M < P, If M is of maximal dimension oo, then M

is called a leaf of the foliation. Repeated application shows

that each k-dimensional integral submanifold N 1is contained

in a leaf, say N. Moreover N is unigque. Since E(Wk) =

E, = If is the same for all k, each extension M given by

(repeated) application of the Cartan-Kihler theorem must coin-

cide with P a N by the uniqueness part of the Cartan-Kihler

Theorem. Thus each M must be contained in ﬁ, and hence

-~

at the last stage M = N, proving that N is unique. The

.

Cartan-Kahler Theorem implies that:

Each integral submanifold N 1is contained in a unigue

— et —n  —

leaf of the foliation.

Conversely, this result implies the Cartan-Kdhler Theorem

generated by l-forms; take M = P a N!

Remark: This Example I is, of course, simply meant to be
instructive in understanding the Cartan-Kahler Theorem. Using

results about solving ordinary differential equations, (in the



S.

real-analytic category) the above result is obtained more
easily. Moreover, the standard ¢® version is also seen

to be valid.

Example II. (Complex Geometry) Suppose we are given

a complex manifold of dimension n.

Consider the ideal I generated by

{RedzI, ImdzI:|I| = p+1}. The complexification

KQRC of I consists of all forms of bidegree r,s with
either r > p or s > p,.

Before discussing the integral elements of I, we
briefly mention some standard concepts concerning real
k-dimensional linear subspaces Wk of a complex vector

space c? {(later to be taken as the tangent space T to

-~

<0
the ambient complex manifold with complex structure J).

First, the holomorphic vart of W, denoted H(W) is

defined by
H(W) = W n JW.

Note the H(W) 1s the largest real linear subspace of W
which is also complex linear; or equivalently H(W) is the
union of all the complex lines in W. The complex dimension

of H(W) is called holomorphic dimension of W and will be

denoted h or h(W). A real linear subspace W 1is said

to be totally real if H(W) = {0}, or h = 0. Let R

denote any complementary subspace to H(W) in W. Then R

5



S.6

is totally real. The dimension of R will be referred to as

the totally real dimension of W and denoted by p or p(W).

Thus by a complex linear coordinate change

h

W= xR°, with H(W) = CB

and R =z R°.

In particular,
k = 2h(W) = p(W).
The complex subspace of En,

E(W) = W + JW,

is called the complex envelope of W. Note that E(W) is
the smallest real linear subspace of ¢t containing W
which is also complex linear. The complex dimension of ﬁ(W)

is called the complex envelope dimension of W and denoted

£ or 's(W). Note that

E(W)

H(W) @ R @ JR.

In particular,

(W) = h(W) + o(W),

and H(W)@R@®JIR 1is independent of the choice of the totally

real complement R to H(W) in W. Also note that Wk is

generic or minimally complex in E(W).

: n .
We may choose a complex basis e;, ,.. , e, for €C° (i.e.,

0]
et

by s Bp Jey, ... , Jen is a real basis for @n) so thart



€1, .. ; €y is a complex basis for H(W), and e,, ... , ey
deq, ..., Jeh,eh+1, e By is a real basis for W. Then e;, ... , e,
is a complex basis for E(W) and R can be taken to be the
real span of Cpt1’ e eh+p. Consider the real k-vector

£ =ejndep A ... A epadene g Al A By

corresponding to the real k-dimensional linear subspace W.

Let Er S denote the component of & of bidimension r,s.

The totally real dimension p(W) can be characterized as the
smallest integer o such that:
g = 1 g

lr-si<p
r+s=k

r,s

The complex envelope dimension (W) can be characterized as
the smallest integer ¢ such that:
L frs
r,sse
+s=kK
Both can be seen as follows. As is standard,

let

3/3z. = % . —iJe, and 3/%z. = % A+iJe . i =1, ...,
/ zJ z(eJ i J) n / j _(eJ i eJ) 3

Then ej = 3/3Zj + B/BZJ, Jej = i(a/Szj - 3/323), and

e.AJe. =

2
SAR B

B/SZJAS/EZJ. Consequently,

2h NN NN re~ " ~ :‘/r\_
CED 3/%z, B/BZIA___Ao/thAa/thA(a/OZh+l + 8/czh+1)/\.../\(8/ozE + o/czs)
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is the sum of non-zero terms Er S of bidimension 1r,s with

3
r =h+i, s = h+p-i and O £ i < p. Hence

s-r = 2p - i wvaries from p to -p as desired.

Now we can describe the integral elements of 1I. Suppose
Wk is a k dimensional subspace of TZ and let &(W) denote
0
a corresponding k vector. Then W 1is an integral element of

I if and only if

E= ) £
T,S<p r,s
(That is & = 0 1f either r > p or s > p.)

r,s

Comparing this with the above decomposition

;g = L &
r,s<g
r+s=k

r s’ Ve have that:

W 1is an integral element if and only if the complex

envelope dimension ¢€(W) 1is less than or equal to p.

Next we discuss regular integral elements. Since each

subspace of dimension <p 1is integral we have:

Case 1 (k < p): Each subspace Wk is a regular integral ele-
ment, and Ek(Wk), the space of enlargment possibilities, is

all of C%. 1In particular r, = 2h-k-1.

k

Case 2 (kK 2 p): A subspace Wk is a regular integral element 

if and only if the complex envelope dimension ﬁ(Wk) is eqgual



S.9

to p, and Ek(Wk), the space of enlargement possibilities
for a regular integral element Wk, is the complex envelope

E(Wk) of Wk' In particular, the minimum value of rk(W) is

Case 1 is immediate since each Wk is integral for k <p. In
order to prove the statement in Case 2 we compute Ek(Wk) the

space of enlargement possibilities. If e(Wk) < p then

n .
However, if

e(W + [v]) £ p for all v and hence Ek(W) =T
(W) = p them (W + [v]) = p if and only if veE(W) the
complex envelope of W.

In summary, for an integral element W,

n

C if e(W) < p, and

E, (W)

E(W) if (W) = p.

Ek(W)

The conclusions listed under Case 2 now follow.

Note ry = 2n-2, Ty = 2n-3, ... , Toe1 = 2n-p; Ty = p-1,
rp+l = p—zl p) r2p_1 = O, rzp = "1, SO that the

genus 1is g = 2p.

A submanifold N 1is said to be a C.-R. submanifold if

the dimension of the holomorphic part of the tangent space to

is locally constant, or equivalently, if the dimension of the_

complex envelope of the tangent space o N 1is locally constant.



The Cartan-Kihler Theorem applied to the differential
ideal I defined above, now reduces to the following.

Suppose N 1is a k-dimensional C.-R. submanifold of a
complex manifold with complex envelope dimension equal to p
(note p £ k so we are in Case 2 above). Prescribe a con-
straining submanifold P of codimension Ty = 2p-k-1 =p - 1
containing N and transverse to the complex envelope of the
tangent space to N. Then there exists a unique C.-R. sub-
manifold M of dimension k+1 with N < M ¢ P and the com-
plex envelope of TzM is the same as the complex envelope of

T_N.
z

.10

By repeating the application of the Cartan-Kihler Theorem

to M etc. we obtain a complex p-dimensional submanifold N

containing N. Since, at each stage, the space of enlargement

possibilities is the same, namely the complex envelope of TZN,

arguing exactly as in the case of Foliations to get unigueness

we have the following consequence of the Cartan-Kihler Theorem.

Theorem. Suppose N 1is a k-dimensional C.-R. submanifold with

the dimension of the complex envelope E(TZN) of the tangent

space equal to p. There exists a unique complex submanifold

~

N of complex dimension p with N < N.

Conversely, this result implies the previous result.

Simply take M 2 P n N.



Remark 1: The anaiogous results are false will real-analytic
replaced by c”. However, if one weakens the conclusion to
read that "N 1is complex to infinite order along N'" the

result is still valid.

Remark 2: There is a brief elementary proof of this Theorem
which avoids the Cartan-Kihler Theorem. (This will not be

true for our later examples.) Consider 0 € U c Rk where U
is open and let £:U - N < c® be a local real analytic coordi-

nate chart. There exists r » 0 such that for [x| < r, f

is represented by a power series f(x1, e, xk) = L aIxI
with complex vector coefficients. Set F(zl, e ZZk) = I aIzI
where z. = x. + iy. and |z| < r. The hypothesis on N implies

J J J ‘
that the rank of the complex Jacobian of F 1is exactly p for

lz! < r and =z real (i.e. at points of N}. Hence, this is
true for all =z near zero. It follows that the image under F
is an p-dimensional complex submanifold N = N. The uniqueness
is obvious.

A C.R. submanifold S is said to be generic or minimally
complex if the complex envelope of the tangent space to N is
the ambient tangent space. The above Theorem can be reformulated
by considering N and N to be graphed over their tangent

space.

Theorem. Suppose S 1is a generic C.-R. submanifold of TP

and < is a C.-R. function on S. Then there exists a unigue




holomorphic function F on €P with Flg = £.

Proof: Let N = graph f over S. It is easy to see that

the following are equivalent:

1) N has complex envelope dimension p.

2) N has the same holomorphic dimension as S.

3) The differential of f restricted to the holomorphic part
of the tangent space is complex linear (i.e., f is a
C.-R. function).

Similarly, let N = graph F and note that N is a complex

submanifold if and only if F 1is holomorphic. Now it is easy

to see the above two Theorems are equivalent.

. o SN SRE T e
Example 111. (Symplectic Geometry)

Suppose we are given a symplectic manifold with symplectic
form w. Let I denote the ideal generated by w. The integral

elements are the subspaces Wk of the tangent space which satisfy:
.ok _
1) lyw = 0.

where 1iy:W =T, denotes the natural inclusion of W in the
<0

tangent space. Given tangent vectors u,v 1if w(uav) =0

then we say u,v are skew-orthogonal, denoted u _ v. Also

P
let W denote the subspace of tangent vectors skew orthogonal
to W, the condition 1) that W be an integral element can

be reformulated as

®
=
Il
=
~

1) u _ v for all wu,veW (1.



The space of enlargment possibilities for an integral W 1is

just
E,_(W -
k()"w
since, for a given vector u,

u _ (W + [u]) if and only if u W

It is easy to see that, given an integral element Wk’ there
exists a symplectic basis el, e e en, el, cee s €y with
€4 v e 2 basis fo? W and
-~ -~ 3 'F -[ — W
el, e en, ek+1, see s €y a basis for W = Ek( ).

In particular, if Wk is an integral element then k < n. The

integral elements Wk are called isotropic subspaces and if

Xk = n Lagrangian subspaces. The space Wk"= Ek(Wk) has

dimension 2n-k. In particular, the rk(Wk) = 2n-2k-1 does

not dépend on the integral element Wk’ or the point on the
manifold, so that all integral elements are regular.

Note that ry = 2n-3, ... , T =1, r_ = -1,

with the genus g = n.

Even in the case of an integral (isotropic) submanifold
N of dimension n-1 a constraining hypersurface P must be
prescribed since the dimension of possibilities for enlarging

the tangent space to N 1is 1+rn—l = 2,
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(47}

‘Theorem. Suppose N is an isotropic submanifold of dimension

n-1. Given a hypersurface P containing N and transverse to

=z
the n+l1l plane field TZ(N) , there exists a uniquely deter-

mined Lagrangian submanifold M with N < M < P.

This follows immediatelv from the Cartan-Kihler Theorem.

Remark: Of course there is the standard proof of this result.
Suppose P 1is defined implicitly by the "Hamiltonian function'
p. Let Xp denote the associated Hamiltonian vector field
defined by dp = Xp_J w. Then M consists of the union of
all the iantegral curves of Xp passing through N. The vector
field Xp is transverse to N if and only if P 1is transverse
< . "Z‘T\Iz

to TZ(N) , Since Xp € TZ(P) < Z(L) .

The above Theorem can be reformulated by considering N
and M to be graphed over their tangent spaces. More generally,

suppose that N c:mzn = T*RY projects non-degenerately onto a

hypersurface S in r" and let f:S » R® denote the graphing

function for N. The following are equivalent: ’

1) N 1is isotropic.

2) f 1is a compatible 1l-jet on S.

Q>
<

3) There exist '"Cauchy data" ¢, on S (for a second

Q
o

order equation) with f = V¢ on 3.
Moreover, the condition M < P and the transversality
determine %% in 3) along S.
Consequently, the above Theorem is equivalent to the

following special case cf the Cauchy-Kowalewski Thecrem.



Theorem. Given a hypersurface S in R® and a function $ on
S, 1if %% (x,£) # 0 along S then there exists a unique exten-

sion ¢ of ¢ satisfying p(x,Vd(x)) = 0.

Example IV. (Special Lagrangian Geometry)

i
2

The integral elements

Let I denote the ideal generated by w =

He o1 B

dz .Adz .
J J
and Y = Imdz = Imdzl A LLoL. A dzn on °.

Wk of dimension k < n are exactly as in the previous example,

i.e. there are the isotropic subspaces. The n-dimensional inte-
gral elements are the special Lagrangian subspaces, since

|dz(&)| < |&| (with equality if and only if the n-vector £ is
Lagrangian) and |dz(&)|? = ¢(&)* + ¥(&)? where ¢ = Redz. Con-
sequently, as noted in the previous example, if Wk is an inte-
gral element of dimension k < n-2 then E(Wk) = Wk_ and

rk(Wk) = 2n-2k-1 1s independent of Wk and the point in 2

If Wn—l is an integral element (i.e. isotropic) then there
exists a unique special Lagrangian n-plane Wn containing W -1
To see this we may assume Wn_l is spanned by €1, ¢ 1 €1

11 e e, is the standard basis for Cn. Then

Wn_1 is spanned by el, R LY Jen. Let Ug =

cos @ e, + sin © Jen. Then the Lagrangian n-plane W(€) spanned

where e

by €1, ..., €5 1 Yy is special Lagrangian if and only if
Imdz(el AN e g ua) = Imdz(ue) = gsin 8 = 0. Thus
SL(Wn_l) Z span €y, v e, is the unique special Lagrangian

n-plane containing Wn—l' Therefore

- 1 =
E(W, ) = SL(¥W,_ ;) and r(W _;) =0.



1)

Thus rn—l

this proves that all integral elements are regular and since

=0, T, < -1 and the genus is n. In particular,

r.1 = 0 no constraining submanifold P is necessary. The

Cartan-Kihler Theorem, in this case, says the following.

Theorem. Given an isotropic n-1 dimensional submanifold N

n 3 2 ; . ; ) 5
of T there exists a unigue special Lagrangian submanifold M

containing N.

Of course, each n-1 dimensional submanifold N, of a

special Lagrangian submanifold, is isotropic.

Remark: Note that the above discussion goes through if we
replace ¢ by we = Im(eiedzi A Loo A dzn) for any 8 ¢ R.
For a given isotropic (n-1)-manifold N < c?  we thereby pro-
duce a l-parameter family Me of minimal submanifolds all
intersecting transversely in the manifold XN.

.This Theorem may be reformulated by considering N and
M to be graphed over R® < ¢® (say over the tangent spacé
to M at some point). Recall the discussion and notation of
Example III above. In particular, prescribing Nn"l to be
isotropic in t? is equivalent to prescribing the Cauchy data
D, %% on the hypersurface S in Bn; while M 1is Lagran-
gian if and only 1if the graphing function is @ for some

scalar function ®. M is special Lagrangian if and only 1if

the special Lagrangian differential equation



I (-1 oy, (Hess @) = 0

is satisfied by this scalar potential ¢.

30

Theorem. Suppose S 1is a hypersurface in R® and %, T

is given Cauchy data on S. Assume that the unique special

Lagrangian n-plane containing the isotropic =n-1 plane ob-

taining by graphing V¥(x,) over Tx S projects non-degenerately
0

onto R®. Then there exists a unique solution ¢ to the special

Lagrangian differential egquation with the prescribed Cauchy

data on S.

Remark: The assumption that the unique specidl Lagrangian n-plane
containing TZO = graph V¢ (x;) can be graphed over R® can be
seen to be equivalent to S Dbeing non-characteristic for the
special Lagrangian differential equation at the point x5, Vo¥(xg).
In pérticular, the above (equivalent) Theorems are a special

case of the Cauchy-Kowalewski Theorem for second order equations.

Example V (Associative Submanifolds)

Recall the associator 1inequality:

p(xayaz)S + 1| [x,y,2]]2 = |xayaz|? for all x,y,z ¢ Im O,

where i(xayaz) = <x,yz> defines the 3-form ¢ on Im ®. Let

1 denote the differential system generated by the forms
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wl s e w7 e A (Im @)*, obtained by taking components of
the Im ©® valued alternating 3-form ([x,y,z]. Since I is
generated by 3-forms, each element Wl, w of dimension 1 or 2

2
is an integral element. By definition, W3 is an integral

element if W, is associative (i.e. L span {x,y,z} with
[x,y,z] = 0).

E(Wl) = Im ® and r(Wl) = 5 since each W2 is an inte-
gral element. Hence each Wl is regular. Given any two plane
W2 in Im @ there exists a unique associative 3-plane W3

containing W To prove this fact suppose y,z 1is an ortho-

o
normal basis for W2' Then W3 = span {yxz, y,z} defines an

assoclative 3-plane containing W2. Note that ¢(yxz, y,z2) = +1

and hence by the associator inequality [yxz, y,z] = 0, so W3
is associative. If [x,y,z] = O for any other orthonormal triple
with W, = span {y.z} then ¢(xAyaz) = +t1 and hence x = tyxz

proving that W, 1is unique. Thus E(span {yv,z}) = span {yxz, y,z}
and hence ry = rz(Wz) = 0., Therefore ry = -1 and the genus

is 3. 'In particular, each integral element is regular, and

the Cartan-Kiahler Theorem applies. Since ry = 0 no constrain-
ing submanifold P 1is required.

Theorem. Eacihih two dimensional submaniiold N of Im @ is

3

contained in a unique associative submanifiocld M of Im O,




Example VI. (Coassociative Submanifolds)

Here we give a local characterization of the boundaries
of coassociative submanifolds of Im D . If W4 is coassocia-
tive with orthonormal basis x,y,z,w then yY(XAyArzaw) = <X ,yXzZXwW>
must equal +1. In particular, x = & yxzxw ¢ Im ® so that
¢(yrzaw) = Re yxzxw = 0. A 3-plane W, in which ¢ e A(Im 0)F

vanishes will be called an ® generating 3-plane, since under

an automorphism of ® such a 3-plane is spanned by 1i,j,e ¢ Im Q.
Thus we have found a necessary condition for a 3-plane W3 to
be contained in a coassociative 4-plane W4, namely W3 must

be a O-generating 3-plane. We define an Q0-generating 3-manifold

to be a 3~-dimensional submanifold of Im ® whose tangent space

at each point is © generating.

Theorem. Suppose N is an ® generating 3-manifold. Then there

exist a unique coassociative 4-manifold M containing XN.

Proof: Let I denote the differential system generated by the
3-form ¢ ¢ A’(Im 0)" and the 4-forms b, , ... , ¥, ¢ A'(Im ©)
obtained by taking the seven components of the vector valued

alternating form Im xxXyXzXw.

Each Wl,W2 is an integral element. W3 is integral if
and only if W3 is ®-generating. W4 is integral if and only if
i i ati E = I = T = 5

W4 is coassociative. Now U(Wl) Im ® and ry rl(Vl) 3.
E(span {x,y}) = [XXY]L, since W, = span {x,y,ur 1is ©® generat-

ing if and only if ¢(xaysu) = <u,x¥y> =0 (1.e. u ¢ XXy) .
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Therefore ry = rz(Wz) = 3.

Finally, if Wy = span {y,z,w} 1is integral (i.e. Wqg is
® generating) then x Z yxzxw € Im © and hence W4 = gpan {x,y,z,w}
is coassociative, By the coassociative inequality there can be ‘
no ofher coassociative 4-plane containing WB' Thus, for
W, = span {y,z,w} O-generating, E(span {y,z,w}) = span {yxzxw,y,z,w
and hence rq = rS(WS) = 0, Therefore Ty = -1 and the genus
.is 4. This proves that every integral element is regular and hence
the Cartan-Kdhler Theorem is applicable. Since ro = 0 no con-

straining submanifold P 1is required and the theorem follows.

Remark: Suppose fH - ImH. The graph is spanned by £(1) + e,

£(i) + ie, £(j) + je, f(k) + ke, TIf 8% 3

3

cH, £:3% - ImH and

u,v,w 1is a basis for TO S Then f(u) + ue, £(v) + ve,

t.
f(w) + we 1is a basis for the tangent space to the graph of f

over S. Therefore, by Lemma B1l0O

C9((£(u) *+ ue) A (£(v) + ve) a (£(w) + we))

Re[(f(u) + ue) x (f(v) + ve) x (f(w) + we)]

flu) x f(v) x f(w) + f(u)(wvxw) + £(v)(wxu) + f(w)(uxv).

Thus the differential operator on S 1induced by the coassocia-

tive differential operator can be easily calculated.

Example VII. (Caylev Submanifolds of ®)

Tetr [ denote the ideal generated by the 4-forms

Vo of A0 obtained by taking the components of

.k_:m

'AJ



Im xxyxzxw, Each Wl’WZ’WS is an integral element. A 4-plane

W4 is an integral element if and only if W4 is a Cayley
subspace of ®. Note E(Wl) = E(Wz) = ®. Recall the equality

(for all x,v,z,w ¢ 0)

‘P(XAyAzAw)2 + Im[xxyxsz|2 = {xAyAzAw!z,

where yY(xayazaw) = <x,yXzXw>,

Thus each W3 = span {y,z,w} is contained in a unique
integral W4 given by the span of x = yxzxw, y,z,w. In
-particular, E(WS) = gpan {yxzxw, y,z,w} for W3 = span {y,z,w}.

- - v - 4 3 = =
In summary, Ty rl(wl) 6, Ty rz\Wz) 5, Tq rS(WB) 0,

r, = -1 with genus 4. Therefore each integral element is

regular, and hence the Cartan-Kihler Theorem is applicable.
Since r3 = 0, no constraining submarifold is required.

Theorem. Each 3-dimensional submanifold N of ©® 1is contained
4

in a unique Cayley submanifold M of O,
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