Compactness

Msq IS noncompact due to conformal invari-
ance of *x (and so the asd equations) in dimen-
sion 4.

On R* can rescale to peak instantons about
one point; in the limit get Dirac delta concen-
tration of ZYF A Fy. E.g. for c; =1 on §*
moduli space is open ball B>; radial direction
parameterising ‘“‘concentratedness’ .

Natural compactification B® allows “ideal” con-
nections with Dirac delta singularities — “bub-
bles” — mopping up integer units of charge
cy, > 0.
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Theorem 11 [Uhlenbeck]
Passing to a subsequence of asd connections
A; on E — M, we have the following

_1
472
smooth 4-form plus k Dirac deltas Z";zl Op;y k <

c5(E). (Allow points with multiplicity.)

tr(F4. N F,. ) converges as a current to a
(2 ?

On M\{p;} we can choose gauge transforma-
tions g; such that g’(A;) converge to an asd
connection which extends uniquely to an asd
connection on a new bundle E' — M with
c»(E") = co(E) — k.

So we can compactify M, inside M U(Mj_q1 X
MU (Mp_5 x S2M) U.... The topological L?
bound on curvature is crucial, forcing ¢, (E’) >
O, so that there can be at most k£ bubbles.
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Example — negative definite 4-manifolds

If b= = 0 we can’'t avoid reducibles, but other-
wise can get a smooth compact moduli space.
Donaldson’s first result came from considering
M7, of dimension 8-3=5.

Reducibles <& L@ L~ with ¢;(L)%2 = —1. Har-
monic representative for 2mwic; is asd so gives
solution. So we get a cone on P? for every
class e € H2(X,Z) with €2 = —1:

Cones on P2 ﬂ

a7



M provides a cobordism between X and []P2.
Invariance of signature under cobordism proves
that H2(X,Z) is generated over Z by classes of
square —1. Thus its intersection form is stan-
dard. (C.f. topological C° 4-manifolds; by Freedman
these can have nonstandard negative definite forms.)

Donaldson’s polynomial invariants

There need not be a universal bundle E (with
universal connection A) over M x M due to
the stabilisers C(SU(2)) = {£1}. But there is
a universal projective bundle P(E) and adjoint
bundle Endg E, both with universal connections
A. AisaPSU(2) =SU(2)/+£1=S0(3) con-
nection, and so we can still make sense of c,
and tr(Fy A Fy).
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Definition 12 Donaldson’s u-map
p: Hy(M,Z) — H*(M,Z), p(a) = a\cy(E).
Le. pu(a)(b) = {cy(E),a x b) for a € Ho(M), b € Ho(M).

Together with the corresponding 4-dimensional
class v € H*(M,Z) these generate the coho-
mology of the space B* of isomorphism classes
of irreducible connections. They also extend
over the Uhlenbeck compactification.

We can now define the Donaldson polynomials
of M as integrals of these u-classes over M.
For b+ > 1 we can choose a generic metric
to make the Mj_, x S*M smooth of the right
dimension except for the trivial connection 1 =
k. SO we work in the stable range

k=cy(E) > %(36"‘ +5) < d(k) > 4cy(E) 42,

so that the dimension of the lowest stratum
SFM, k = c,(E) is codimension > 2 in M.
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Then given an element of S¥k)/2H,(M,7Z) we
can apply x and wedge to get a class in H4k) (A1},)
which we integrate over its fundamental class.
For bt > 1 the result is invariant of the (generic)
metric: different moduli spaces are cobordant
and so homologous in B. So we get invariants
of the differential topology of M,

SUK) /2 (M,7) — 7,
i.e. polynomials on H>(M,Z).
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Connected sums

Theorem 13 [Donaldson]
The invariants vanish for a connect sum M =
M1# Mo with bT(M;) > O.

The idea of the proof is that, roughly (i.e. over
a big open set), the moduli space is a union of
pieces

MMl#Msz — U MMLMXMMz,kzXSU(Q)'
ki +ko=Fk

H?2(M) = H?(M1) @ H?(M,) comes from the
M; only, so the pu-classes do not see the ho-
mology in the SU(2) so the integral is zero.

I.e. we cut down by Poincaré duals of u classes
to get to zero dimensions in M, but this pro-
cedure splits into the two parts of the above
splitting making one negative dimensional:

and so empty.
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Compare Wall’s theorem: two simply connected
4-manifolds with the same signature become
diffeomorphic after connect summing with some
(52 x S2)#k. So new invariants have to be
unstable with respect to # to distinguish 4-
manifolds.

But the invariants are not always trivial.
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Complex surfaces

Simply connected = after deformation may as-
sume projective algebraic (Kodaira).

HYM <« asd, so can describe M algebro geo-
metrically, and compactify it using moduli of
semistable coherent sheaves. Kahler metric
not generic, but theorem of Donaldson ensures
moduli space generically smooth of correct di-
mension for ¢, > 0.

—_is a Kahler form on M.

Also, pu(wys) = Wi

Theorem 14 [Donaldson]
d_/ d
 u(w = | (w—)">0.
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So complex surfaces cannot be connect sums
M,#M, with bT(M;) > 0. Compare blowing
up, which connect sums a P2, with b1 (P2) = 0.

E.g. a K3 surface (diffeomorphic to a quartic
surface in P3) has intersection form 2(—Eg) &
3H, where H is the hyperbolic intersection form
of S2 x S2. But Donaldson’s result shows that
this cannot be represented diffeomorphically:
K3 is not Y#(S? x 82) (Freedman = it
is homeomorphically). Notice we cannot con-
clude anything about K3# K3, because all in-
variants now vanish.

The same theorem is true of symplectic man-
ifolds, but to prove this the analysis was too
difficult until the introduction of the Seiberg-
Witten equations in 1994. See Lecture 4.
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Calibrated geometry and higher
dimensional gauge theory

Tian has given a link between 2-asd connec-
tions

*(Fg ANQ) = —Fy,

and calibrated geometry. Using the resulting
||FA||%2 estimates he shows that any sequence
of Q-asd connections converges (after pass-
ing to a subsequence) away from a “blow-
up locus” Z of finite Hausdorff codimension-
4 measure (c.f. finite numbers of points in
4-manifolds).

He shows Z is rectifiable (tangent cones ex-
ist and are unique at H" %-almost-all points).
Blowing up perpendicular to the tangent cones
we get a limit €2-asd connection on the tan-
gent space T, X (xz € Z such that T, Z C T, X
exists) which is the pullback of an instanton B
on TpZ+.
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From the linear algebra of the (2-asd equation
it follows that 2 calibrates 1,2 C T, X

Write Q = avoIsz +o, where U|T$Z = 0, then
the equation becomes

I'p
x(o N Fy)

—a(*FB)
0

and so ¢ = +1 and 2 calibrates T, 7.

It follows that the blow-up locus defines a cal-
ibrated current, and so a calibrated cycle — (a
multiple of) something smooth away from a
codimension-2 subset. Its mass is less than
co(F).LQ.

(Similar results for general YM eqns, giving stationary

currents — their generalised mean curvature vanishes.)
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Tian also proves a removal of singularities re-
sult; that over the top stratum of Z, after
gauge transformations, the limit connection ex-
tends smoothly. I.e. after passing to a sub-
sequence and applying gauge transformations
away from Z, the limit connection is well de-
fined and extends to a connection (on a differ-
ent bundle) smooth away from a set of H*»~*-
measure zero. c¢5.S2 can be defined for this new
connection, and it differs from the old one by
the mass of ~Z.

So we get the beginnings of a compactness
result for higher dimensional gauge theories by
introducing “ideal” connections that are 2-asd
connections plus calibrated cycles.
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There are many more analogies between cal-
iIbrated cycles and higher dimensional gauge
theories, e.g. (putative) Floer theories for cal-
ibrated cycles. Both theories need much more
solid analytical foundations. We turn finally
to one such theory where algebraic geometry
can be used to handle the technicalities and so
make a rigorous theory.

The Casson invariant and its holomorphic
analogue

(Taubes’ version of) the Casson invariant of
M3 counts SU(2) flat connections on a fixed
vector bundle £ — M. Formally the curvature
F 4 defines a closed one-form

1

1
ar—>4—7r2/Mtr(a/\FA), a € Ql(suR),

on A. This is gauge invariant, and so descends
to B=A/gG.
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Fixing a basepoint Ag € A this one-form is
dCS for a locally defined function, the Chern-
Simons functional:

1 1 1
CS(Apg+a) = 4—7r2/Mtr (EdAoa’/\ a + ga/\ a N\ a,)

which is independent of gauge transformations
connected to the identity, and well defined mod-
ulo Z on B.

(Bound M by a 4-manifold N and extend (F, A) to (E, A)
over N. Then CS(A) = ;= [ytrFy A F, which is well
defined up to integrals of —c¢o> over closed 4-mfds, i.e.
up to an integer.)

In particular, at a zero of the one form, i.e. a
flat connection, the deformation complex of a
flat connection is self-dual — i.e. the Hessian of
CS is symmetric — as then are its cohomology
groups

HYy(su(E)) & H3 "(su(E))*

(Poincaré duality).
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Therefore the virtual dimension of the moduli
space of flat connections

3
d= Y (-1)""ldim HY(su(E)) =0

i=0
vanishes, and we could hope to count them.
Formally then the Casson invariant counts flat
connections, i.e. critical points of CS, so can
be thought of as x(B). More generally one
could try to use C'S as a Morse function on
B and do Morse homology; this yields Floer
homology of M.

(Original definition of Casson invariant is via a Heegard
splitting

M = M; Ug M,

along a (symplectic) surface S. Restriction defines La-
grangian subspaces M, — Mg of the symplectic space
M. Intersect them.)
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Now we formally complexify onto a Calabi-
Yau 3-fold X (smooth, compact, Kahler with
a trivialisation 8 € H3:0 of the canonical bundle
Kx = Ay 2 0y).

Naively, replace z by z, d by 8, Poincaré duality
by Serre duality, and [,,or becomes [y - A0.

So consider the space A = AQ:L of O-operators
on a fixed C°°-bundle £ — X, and the closed

one-form given by Fg’z:

1 0,2
a|_>4—7r2/Xtr(a/\FA )/\9,
for a € QYL(Endg(E)). Again this is gauge

invariant and descends to B.
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Fixing Ag € A this one-form is d of the locally
defined holomorphic Chern-Simons functional:

CS(Ag + a)
=i tr(lgAa/\a—l—la/\a/\a)/\O
472 Jx 2 0 3 ’
independent of gauge transformations connected
to the identity.

(Suppose X is a smooth effective anticanonical divisor
in a 4-fold Y defined by s € HO(K'). If (E,J4) extends
to (E,A) on Y, then, modulo periods,

1
CS(A) = 4_7r2/ tr F92 A FP2 A s™L)
Y

Periods dense, but the zeroes of the one-form,
i.e. the critical points of CS, are well defined:
they are integrable holomorphic structures on

the bundle F,

53 = Fa° = 0.
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For the same reasons the deformation complex
of a holomorphic connection is self-dual as are
its cohomology groups

HY'(Endo(E)) = HY? Y(Endo(E))*,

(Serre duality and the trivialisation 6 of the
canonical bundle Kx). So the virtual dimen-
sion of the moduli space of holomorphic bun-
dles

3 . .
d= Y (-1)"t1dim H%(su(E); A) = 0
i=0
vanishes, and we could hope to count the bun-
dles to formally compute e(T*B).

(There is an analogue, due to Donaldson and Tyurin, of
the original definition of Casson invariant via a Heegard
splitting. Suppose

X =X, Ug X,

is a normal crossing CY, two Fanos X; glued along a
common anticanonical divisor —a holomorphic-symplectic
surface S (K3 or T%). Restriction generically defines
complex Lagrangians

My, = Mg
of the symplectic space Mg. Now intersect them.)
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To make the moduli space compact (to get
a finite number) restrict to stable bundles or
count HYM connections. Could try to use
Tian's compactification (with bubbles along
curves) but no transversality — moduli space
usually high dimensional and singular.

So use algebraic geometry, and compactify to a
projective M using semistable coherent sheaves
(Gieseker, Maruyama, Simpson). We then want
a virtual moduli cycle in M of dimension 0 —
the “right” moduli space representing the zero
locus of a transverse perturbation of the equa-
tions.
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Virtual moduli cycles

Suppose a manifold M (later M) sits inside a
smooth ambient n-fold Z, cut out by a section
s of a rank r vector bundle £ — Z. Virtual
dimension (M) = (n —r).

Suppose s transverse only to a subbundle E’ C
E, then the “correct” (n — r)-cycle is

e(B/E') € Hy_p(M)

as this is homologous to the zero set of any
transverse perturbation of s.

(E.g. perturb to s@ec N (E'® E/E").)

So in this smooth case we take the Euler class
of the obstruction bundle (fibre H? of the de-
formation complex; in our case this is (H1)* =
T* M.)
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In general Fulton-MacPherson intersection the-
ory gives a class in H,_,.(M) (whose push-
foward to H,_,(Z) is e(F)).

(s induces a cone limy_,, As in E|,,. Intersect this with
the zero set M C E|,,.)

Worked entirely on M (not in Z) so method
extends to moduli problems where the ambi-
ent space Z does not exist. Instead need the
deformation theory of the moduli problem to
give the infinitesimal version of (Z, E, s) on M,
namely

0= TM — TZ|y %5 E|y; — ob — 0,

for some cokernel ob which in the moduli prob-
lem becomes the obstruction sheaf H?Z2.

Actually require a global version: a two term
locally free resolution

O—~7T1 > FE1 — E>—T>—0,

of the tangent-obstruction functors [Li-Tian].
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Here E1 and E5 play the roles of TZ|,, and E|,,
In the above (Z smooth, E a bundle = ranks constant
= locally free) and are required to have difference
in ranks equal to the virtual dimension of the
moduli problem. [Li-Tian], [Behrend-Fantechi]
show that such data on M gives a virtual mod-
uli cycle with the correct properties.

Theorem 15 Stable sheaves on Calabi-Yau 3-
folds admit such a 2-term locally free resolu-
tion of virtual dimension O.

So if we consider only moduli of sheaves where
semistable = stable (e.g. sheaves E with ce(FE)
satisfying various numerical conditions) then
can define a projective 0O-dimensional virtual
moduli cycle in M whose length we define to
be the holomorphic Casson invariant. This has
good properties such as deformation invariance
under deformations of polarised manifolds.
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Example
We describe a pretty example of Donaldson.

Fix a smooth quadric Qg in P®, in a fixed P2-
family of quadrics spanned by Qqg, @1 and @Q»,
say. T he singular quadrics in the family lie on
the sextic curve

C={[o:A1:A] EP?:

det(AoQo + A1Q1 + A2Q2) = 0} C P?

where the quadratic form defining the quadric
becomes singular.

Each smooth quadric £ Gr(2,C*%) so has two
tautological rank 2 bundles A and B over it.
(Dual of the subspace bundle and universal quotient
bundle, i.e. 0 > A* - C*—= B —=0.)

So each point of P2\C = 2 bundles over the
K3 surface

S=QoNQ1NAQ>.
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In fact (Mukai) this makes Mg the double cover
of P2 branched along C — also a (complex sym-
plectic) K3 surface.

Similarly the Fano X1 = Qg N Q1 lies in the P1
pencil (Qg,Q1). The restriction of the double
cover M — P2 to this P* is My . Similarly
for Xo = Qo N Qo and the cover of the line

(Qo, Q2) C P2,

Their intersection, namely the double cover of
the intersection point {Qg} of the lines in P2,
corresponds to the two stable bundles AQo and
Bg, on the singular Calabi-Yau X; Ug X5
Deforming this singular quartic in Qg to a smooth
Calabi-Yau motivates the following.
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Theorem 16 Let Qg be a smooth quadric in
P>, and let X be a generic smooth quartic hy-
persurface in Qqg. Then the bundles A and B
on Qo restrict to stable, isolated bundles of the
same topological type on X, and they are the
only semistable sheaves in the moduli space.
Thus the corresponding holomorphic Casson
invariant is 2.

By deformation invariance of the invariant, then,
it is also 2 for all smooth such X, even though
M may not be so simple.
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