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We are now ready to consider the exceptional cases, starting
with the one in dimension 7.

n h ⊆ so(n) K(h) as an h-module

n so(n) R ⊕ S2
0(Rn) ⊕ Wn(Rn)

n = 2m > 2 u(m) R ⊕ S1,1
0 (Cm)R ⊕ S2,2

0 (Cm)R

n = 2m > 2 su(m) S2,2
0 (Cm)R

n = 4m > 4 sp(m)⊕ sp(1) R ⊕ S4(C2m)R

n = 4m > 4 sp(m) S4(C2m)R

n = 7 g2 V0,2 � R77

n = 8 spin(7) V0,2,0 � R168
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5. The exceptional holonomy G2. As usual, we’ll start with
linear algebra. Consider the 3-form φ0 defined on R7 by the formula

φ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx356 − dx347

where dxijk means dxi∧dxj∧dxk. Now define

G2 =
{

A ∈ GL(7, R) A∗(φ0) = φ0

}
.

It is not obvious from this what sort of group G2 is (though it is a
closed subgroup, by definition). A few subgroups can be discerned,
though:

Writing R7 = R·e1 ⊕ e⊥1 = R·e1 ⊕ R6 = R·e1 ⊕ C3 and setting

z1 = x2 + i x3, z2 = x4 + i x5, z3 = x6 + i x7

allows us to express φ0 in the form

φ0 = dx1 ∧
i
2
(
dz1 ∧dz1+dz2 ∧dz2+dz3 ∧dz3

)
+Re

(
dz1 ∧dz2 ∧dz3

)
.

Thus, G2 ⊃ {1} × SU(3). Similarly G2 ⊃ SU(3) × {1}. (Exercise.)
As a result, G2 ·e1 ⊃ S6 ⊂ R7. In fact, G2 ·e1 = S6.
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Moreover, the subgroup of G2 that fixes e1 is {1}×SU(3). This
makes G2 into a principal SU(3)-bundle over S6 :

SU(3) → G2

↓
S6

Thus G2 is compact and of dimension 14. By the long exact seq.
in homotopy, it is 2-connected and π3(G2) = π3

(
SU(3)

)
= Z, so it

is simple. It is the first of the five exceptional compact simple Lie
groups, realized here as a subgroup of SO(7).

Define

Λ3
+(R7)∗ =

{
A∗φ0 A ∈ GL(7, R)

}
� GL(7, R)/ G2 .

This orbit has dimension 49 − 14 = 35 = dim Λ3(R7)∗, so it’s an
open subset of this vector space. More generally, if V is a vector
space of dimension 7, define the positive 3-forms on V as

Λ3
+(V ∗) =

{
A∗φ0 A : V → R

7 is an isomorphism
}
.
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Because G2 lies in SO(7), to each positive form φ = A∗φ0 on V
there are a well-defined inner product and orientation on V defined
by

gφ = A∗g0, ∗φ1 = A∗(dx1 ∧ · · · ∧dx7).
Given a 7-dimensional vector space V , a G2-structure on V is a

positive 3-form φ on V . The inner product gφ and orientation ∗φ1 ∈
Λ7(V ∗) are said to be associated to φ.

It is not difficult to prove that φ0 and its dual 4-form ∗φ0φ0

generate the ring of G2-invariant forms on R7. Harvey and Lawson
proved that they are calibrations (more on this below).

Historical Remark: This was not the orginal definition of G2, nor
the most common. Nowadays, G2 is most commonly defined as the
group of automorphisms of the octonions O, the unique normed
division algebra of dimension 8 (Cartan, 1908). The definition
given here is due to Schouten (ca. 1928), and is, in a certain sense,
optimal.
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The comass of φ0. We can use the fact that G2 stabilizes φ0 to
prove that it is a calibration and to compute G(φ0):

Use the fact that G2 acts transitively on S6 with stabilizer of e1

equal to {1}×SU(3) to see that, for any triple of orthonormal vec-
tors (v1, v2, v3) in R7, there is an element A ∈ G2 and a constant θ
such that

A(v1) = e1, A(v2) = e2, A(v3) = cos θ e3 + sin θ e4.

Then

φ0(v1, v2, v3) = φ0(e1, e2, cos θ e3+sin θ e4) = cos θ ≤ 1.

Moreover, v1∧v2∧v3 ∈ Gr+
3 (R7) is φ0-calibrated if and only if it is

equivalent to e1∧e2∧e3 via G2. Thus,

G(φ0) = G2 ·(e1 ∧ e2 ∧ e3) = G2 / SO(4).

These calibrated 3-planes were dubbed associative by Harvey and
Lawson because, regarding R7 as Im O, these planes generate as-
sociative subalgebras of O.
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Harvey and Lawson also showed that every 2-plane E ⊂ R7 lies
in a unique associative 3-plane E+ ∈ G(φ0).

In fact, they prove that every real analytic surface S ⊂ R7 lies
in a unique analytically irreducible φ0-calibrated 3-fold Σ ⊂ R7.

Thus, there are lots of ‘associative’ 3-manifolds in R7. These
have become the focus of intense interest by M-theorists as of late.

Of course, the Hodge dual 4-form ∗0φ0 is also a calibration,
calibrating the oriented orthogonals to the associative 3-planes:

G(∗0φ0) = G2 ·(e4 ∧ e5 ∧ e6 ∧ e7) = G2 / SO(4).

It follows that φ0 vanishes on any ‘coassociative’ 4-plane in R7.
In fact, Harvey and Lawson show that a 3-plane E ∈ Gr3(R7) lies
in a coassociative 4-plane if and only iff φ0 vanishes on E.

Correspondingly, they show that any real analytic 3-fold S ⊂
R7 to which φ0 pulls back to zero lies in a unique analytically
irreducible ∗0φ0-calibrated 4-fold Σ ⊂ R7.
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Manifolds. Let M7 be a 7-manifold. A G2-structure on M is
a 3-form φ on M such that φx is a positive 3-form on TxM for
all x ∈ M . Such a φ exists on M iff M is orientable and spinnable.

A G2-structure φ on M defines an associated Riemannian met-
ric gφ and an orientation (i.e., volume form) ∗φ1 ∈ Ω7(M).

If (M7, g) is a Riemannian manifold with holonomy conjugate
to a subgroup of G2, then M supports a g-parallel 3-form φ that is
positive and so defines a G2-structure on M . Of course, this 3-form
is both closed and co-closed.

Conversely, if M supports a g-parallel positive 3-form, then the
holonomy of g is conjugate to a subgroup of G2.

Theorem: (Fernandez–Gray) Let M be a 7-manifold and let φ be a
G2-structure on M , with associated metric gφ and orientation ∗φ1.
If φ is closed and co-closed (with respect to gφ and ∗φ1), then
φ is gφ-parallel. (In particular, gφ has holonomy conjugate to a
subgroup of G2.)
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Calibrations. If φ ∈ Ω3
+(M7) is a closed G2-structure, then it is a

calibration for M endowed with its associated metric gφ. This de-
fines a distinguished family of minimizing submanifolds of (M, gφ).

In the case that φ is closed and real analytic in local coordinates,
Harvey and Lawson’s arguments for (R7, φ0) generalize to (M7, φ),
showing that every real analytic surface S ⊂ M7 lies in a unique
analytically irreducible φ-calibrated 3-fold Σ ⊂ M7.

Similarly, if φ ∈ Ω3
+(M7) satisfies dφ = d(∗φφ) = 0, then ∗φφ is

a calibration on (M, gφ).
Again, Harvey and Lawson’s arguments generalize in this case

without change to show that any real analytic 3-fold S ⊂ M7 to
which φ pulls back to zero lies in a unique analytically irreducible
∗φφ-calibrated 4-fold Σ ⊂ M7.
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Local Existence. Now, we are ‘reduced’ to studying the equations

dφ = d
(
∗φφ

)
= 0

for positive 3-forms φ ∈ Ω3
+(M). A priori, this is 35 + 21 = 56

equations for the 35 unknown coefficients of the 3-form φ, but, in
fact, these equations overlap by 7, so it’s only 49 (quasi-linear, first
order) partial differential equations.

These equations aren’t elliptic because they are invariant under
the diffeomorphism group.

Remember (from the table), that K(g2) � R77 and is irreducible
as a G2-module. It follows that if φ solves these equations, then gφ

is Ricci-flat (Bonan) and hence real analytic in gφ-harmonic coordi-
nates (DeTurck-Kazdan). In particular, φ will also be real analytic
in gφ-harmonic coordinates.

This suggests the augmented (coordinate-dependent) system

dφ = d
(
∗φφ

)
= d

(
∗φdxi

)
= 0

for φ ∈ Ω3
+(R7). This system is (overdetermined and) elliptic.
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I can now state the ‘local generality’ analogs for G2 of the results
that we found for the various complex cases:

Theorem: (B—) The system dφ = d
(
∗φφ

)
= 0 for φ ∈ Ω3

+(M) is
involutive. Modulo diffeomorphism, the general solution depends
on six arbitrary functions of 6 variables.

Moreover, for the ‘generic’ solution φ, the values of the curvature
form at a ‘generic’ point generate the entire holonomy algebra g2.
Thus, for the ‘generic’ solution, the holonomy of gφ is all of G2.

It is useful to have a test for reduced holonomy in the G2 case:

Proposition: If M7 is simply connected g is a metric on M that
has holonomy a subgroup of G2, then the holonomy is a proper
subgroup of G2 iff M supports a nonzero g-parallel 1-form.

Proof: By Berger’s classification and the de Rham splitting theo-
rem, the only connected proper subgroups of G2 that can be holo-
nomy groups in dimension 7 are 11×SU(3), 13×SU(2), and 17.
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Explicit examples: Once we knew they were there, finding
explicit examples wasn’t so hard:

A conical example: The first known example was the cone metric
on the flag manifold SU(3)/T 2, endowed with its natural metric.
In fact, write the left-invariant form on SU(3) in the form

g−1 dg =


−i θ3 −ω1 i ω2

ω1 −i θ2 −ω3

i ω2 ω3 −i θ2




Then the quadratic form dσ2 = ω1◦ω1 + ω2◦ω2 + ω3◦ω3 defines a
Riemannian metric on SU(3)/T 2, where T 2 is the maximal torus
in SU(3) consisting of diagonal matrices. Setting

Ω =
i
2
(
ω1 ∧ω1 + ω2 ∧ω2 + ω3 ∧ω3

)
, Ψ = ω1 ∧ω2 ∧ω3 ,

these two forms also drop to SU(3)/T 2 and satisfy

dΩ = 3 Re(Ψ), dΨ = −2i Ω2.
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Now, on M = (0,∞) × SU(3)/T 2, consider the (obviously closed)
3-form

φ = 1
3 d

(
t3Ω

)
= t2 dt ∧Ω + t3 Re(Ψ).

This is a positive 3-form. One computes that its associated metric
is the ‘cone’ metric

gφ = dt2 + t2 dσ2.

Moreover, the gφ-dual of φ is found to be

∗φφ = −1
4 d

(
t4Im(Ψ)

)
and this is obviously closed as well. Thus, the holonomy of gφ is
conjugate to a subgroup of G2.

One can now compute that there are no gφ-parallel 1-forms, so
the holonomy must be all of G2.

Later, Bryant and Salamon constructed complete G2-holonomy
metrics on Λ2

+(CP2) and on S3 × R4.
These G2-metrics have cohomogeneity 1 and Gukov, et al and

Page, et al have now constructed many more examples of such.
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Compact examples? On the other hand, a compact example cannot
have any continuous symmetries (because it’s Ricci-flat), so it’s
truly a 7-dimensional problem.

Here are a few of the known easy necessary conditions if a com-
pact M is to support a metric g with holonomy G2:

(1) M must be orientable and spinnable.
(2) b1(M) = 0. (Ricci flat ⇒ harmonic 1-forms parallel.)
(3) π1(M) must be finite. (Cheeger-Gromoll)
(4) b3(M) = b4(M) > 0. (φ, ∗φφ are parallel forms)
(5) p1(M) �= 0. (

∫
M

φ∧p1 = c
∫

M
||R||2 ∗ 1, where c �= 0.)

(6) M cannot be a nontrivial product. (Donaldson)
There is also a relatively easy ‘Torelli theorem’:
Theorem: Suppose that (M7, g) is a compact Riemannian man-
ifold with holonomy G2. Then the marked moduli space of G2-
holonomy metrics near g modulo the diffeomorphisms of M near
the identity is a smooth manifold near g whose tangent space is
canonically isomorphic to H3

dR(M, R).
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In the early 1990’s Dominic Joyce produced the first examples
of compact Riemannian manifolds with holonomy G2. There were
two aspects to his methods:
Analytic: Joyce proved that, if one has a compact M7 that supports
a closed positive 3-form φ with the property that its associated
metric gφ satisfies a combination of

(1) a upper bound on its curvature and volume,
(2) a lower bound on its injectivity radius, and
(3) a upper bound on the size of ‖d ∗φ φ‖,

then one can perturb φ by adding a small exact 3-form so as to get
a new φ̂ that is positive, closed, and co-closed with respect to its
associated metric.
Geometric: Joyce constructed examples of (M7, φ) that satisfy the
above hypotheses by starting with a flat metric on the 7-torus
T 7 = R7/Z7, dividing by a discrete group to get a manifold with
singularities, resolving those singularities to get the manifold M7

and a φ on M7 satisfying the above conditions.
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Finally, we are ready to consider the last case, which only occurs
in dimension 8.

n h ⊆ so(n) K(h) as an h-module

n so(n) R ⊕ S2
0(Rn) ⊕ Wn(Rn)

n = 2m > 2 u(m) R ⊕ S1,1
0 (Cm)R ⊕ S2,2

0 (Cm)R

n = 2m > 2 su(m) S2,2
0 (Cm)R

n = 4m > 4 sp(m)⊕ sp(1) R ⊕ S4(C2m)R

n = 4m > 4 sp(m) S4(C2m)R

n = 7 g2 V0,2 � R77

n = 8 spin(7) V0,2,0 � R168
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6. The exceptional holonomy Spin(7). As usual, we begin with
linear algebra. Let R8 = R·e0 ⊕ R7 and consider the 4-form

Φ0 = dx0 ∧φ0 + ∗0φ0 .

Now ‘define’

Spin(7) = { A ∈ GL(8, R) A∗Φ0 = Φ0 }.
The definition and previous discussion ⇒ Spin(7) ⊃ {1}×G2.
Moreover, if we identify R8 with C4 by setting

z0 = x0 + i x1, z1 = x2 + i x3, z2 = x4 + i x5, z3 = x6 + i x7,

then you can check that

Φ0 =
1
2

(
i
2
(
dz0 ∧dz0 + dz1 ∧dz1 + dz2 ∧dz2 + dz3 ∧ dz3

))2

+ Re
(
dz0 ∧dz1 ∧dz2 ∧dz3

)
,

so Spin(7) ⊃ SU(4). Finally, can show that Spin(7) ⊂ SO(8) and
that the subgroup of Spin(7) that fixes e0 is exactly {1}×G2.
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This makes Spin(7) into a principal G2-bundle over S7:

G2 → Spin(7)
↓
S7

Thus Spin(7) is compact and of dimension 21. By the long exact
seq. in homotopy, it is 2-connected and π3

(
Spin(7)

)
= π3(G2) = Z,

so it is simple. By the classification, there are only two possibilities:
Spin(7) is Sp(3) or the universal cover of SO(7). The former has
no 8-dimensional irreducible representation, so Spin(7) must be the
universal cover of SO(7). Define

Λ4
+(R8)∗ =

{
A∗Φ0 A ∈ GL(7, R)

}
� GL(8, R)/ Spin(7).

This orbit has dimension 64 − 21 = 43 < dimΛ4(R8)∗, so it’s not
an open subset of this vector space. More generally, if V is a vector
space of dimension 8, define the Cayley forms on V to be

Λ4
+(V ∗) =

{
A∗Φ0 A : V → R

8 is an isomorphism
}
.
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Because Spin(7) lies in SO(8), to each Cayley form Φ = A∗Φ0

on V there are a well-defined inner product and orientation on V
defined by

gΦ = A∗g0, ∗Φ1 = A∗(dx0 ∧ · · · ∧dx7).

Given an 8-dimensional vector space V , a Spin(7)-structure on V
is a Cayley form Φ ∈ Λ4

+(V ∗). The inner product gΦ and orienta-
tion ∗Φ1 ∈ Λ8(V ∗) are said to be associated to Φ.

It is not difficult to prove that Φ0 = ∗Φ0Φ0 generates the ring
of Spin(7)-invariant forms on R8. Harvey and Lawson proved that
it is a calibration (more on this below).

Historical Remark: This is a very idiosyncratic definition of Spin(7).
Usually, Spin(7) is defined abstractly as the universal cover of SO(7).
Its embedding into SO(8) is derived via Clifford constructions or by
using the octonions, e.g., Spin(7) is the subgroup of the rotations
in O that is generated by right multiplications by unit imaginary
octonions.
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Manifolds. Let M8 be an 8-manifold. A Spin(7)-structure on M
is a 4-form Φ on M such that Φx is a Cayley form on TxM for
all x ∈ M .

A Spin(7)-structure on M defines an associated Riemannian
metric gΦ and orientation (i.e., volume form) ∗Φ1 ∈ Ω8(M) with
respect to which Φ is self-dual, i.e., ∗ΦΦ = Φ.

If (M8, g) is a Riemannian manifold with holonomy conjugate to
a subgroup of Spin(7), then M supports a g-parallel Cayley form Φ
and this defines a Spin(7)-structure on M . This 4-form is closed
(and co-closed, of course).

Conversely, if M supports a g-parallel Cayley form, then the
holonomy of g is conjugate to a subgroup of Spin(7).

Theorem: (Fernandez–Gray) Let M be a 8-manifold and let Φ be
a Spin(7)-structure on M , with associated metric gΦ and orienta-
tion ∗Φ1. If Φ is closed, then Φ is gΦ-parallel. (In particular, gΦ

has holonomy conjugate to a subgroup of Spin(7).)
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Thus, we are ‘reduced’ to studying the equations

dΦ = 0

for Cayley forms Φ ∈ Ω4
+(M). This is 56 (quasi-linear, first order)

partial differential equations for the 43 unknown coefficients of the
form Φ.

These equations aren’t elliptic because they are invariant under
the diffeomorphism group.

Remember (from the table), that K(spin(7)) � R168 and is ir-
reducible as a Spin(7)-module. It follows that if Φ solves these
equations, then gΦ is Ricci-flat (Bonan) and hence real analytic in
gΦ-harmonic coordinates (DeTurck-Kazdan). In particular, Φ will
also be real analytic in gΦ-harmonic coordinates.

This suggests the augmented (coordinate-dependent) system

dΦ = d
(
∗Φdxi

)
= 0

for Φ ∈ Ω4
+(R8). This system of 56 + 8 = 64 equations is (over-

determined and) elliptic.
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I can now state the ‘local generality’ analogs for Spin(7):

Theorem: (B—) The system dΦ = 0 for Φ ∈ Ω4
+(M) is involu-

tive and, modulo diffeomorphism, the general solution depends on
twelve arbitrary functions of 7 variables.

Moreover, for the ‘generic’ solution Φ, the values of the curva-
ture form at a ‘generic’ point generate the entire holonomy alge-
bra spin(7). Thus, for the ‘generic’ solution, the holonomy of gΦ is
all of Spin(7).

Proposition: If M8 is simply connected and g is a metric on M
that has holonomy a subgroup of Spin(7), then the holonomy is
a proper subgroup of Spin(7) iff M supports a nonzero g-parallel
1-form or 2-form.

Proof: By Berger’s classification and the de Rham splitting theo-
rem, the only connected proper subgroups of Spin(7) that can be
holonomy groups in dimension 7 are subgroups of either 11×G2

or SU(4).
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Explicit examples: Again, constructing cohomogeneity 1 ex-
amples isn’t hard:

A conical example: The first known example was the cone metric
on the homogeneous space Y 7 = SO(5)/H5, where H5 ⊂ SO(5) is a
subgroup isomorphic to SO(3) and acting irreducibly on R5. Up to
constant multiples, there is a unique SO(5)-invariant metric on Y 7.

I won’t give the full details, but the basic point is that Y 7 is
a rational homology 7-sphere that has a unique (up to constant
multiples) SO(5) invariant 3-form φ. (This follows from the repre-
sentation theory of SO(3).)

Now, this form φ is actually a positive 3-form, so it defines a
G2-structure on Y , with associated metric gφ and orientation ∗φ1.

Now, it is not difficult to show that dφ = λ ∗φ φ for some
constant λ �= 0. By scaling φ, we can assume that

dφ = 4 ∗φ φ.
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Now, on M8 = (0,∞)×Y 7, consider the (obviously closed) 4-form

Φ = 1
4 d

(
t4φ

)
= t3 dt ∧φ + t4 ∗φ φ.

This is clearly a Cayley form. One computes that its associated
metric is the ‘cone’ metric

gΦ = dt2 + t2 gφ.

Thus, the holonomy of gΦ is conjugate to a subgroup of Spin(7).
One can now compute that there are no gΦ-parallel 1-forms or

2-forms so the holonomy must be all of Spin(7).
Later, Bryant and Salamon constructed a complete Spin(7)-

holonomy metric on S+(S4), the semi-spinor bundle over S4.
These Spin(7)-metrics have cohomogeneity 1 and Gukov, et al

and Page, et al have now constructed many more examples of such.
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Compact examples? On the other hand, a compact example cannot
have any continuous symmetries (because it’s Ricci-flat), so it’s
truly an 8-dimensional problem.

Here are a few of the known easy necessary conditions if a com-
pact M8 is to support a metric g with holonomy Spin(7):

(1) M must be orientable and spinnable.
(2) The Euler class of a spinor bundle of M must be zero.
(3) The Â-genus of M must be 1.
(4) b1(M) = 0. (Ricci flat ⇒ harmonic 1-forms parallel.)
(5) π1(M) must be finite. (Cheeger-Gromoll)
(6) b4(M) > 0. (Φ is g-parallel)
(7) p1(M) �= 0. (

∫
M Φ∧p1 = c

∫
M ||R||2 ∗ 1, where c �= 0.)

Theorem: Suppose that (M8, g) is a compact Riemannian man-
ifold with holonomy Spin(7). Then the marked moduli space of
Spin(7)-holonomy metrics near g modulo the diffeomorphism of M
near the identity is a smooth manifold near g whose tangent space
is canonically isomorphic to H4

+(M, R).
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It may seem that Spin(7) metrics are hopelessly hard to come
by. However, here’s a sample of the kind of minimal conditions
that can produce such a metric:

Proposition: Let M8 be a compact oriented spin manifold with
Â(M) = 1. Suppose that g is a metric on M with Scal(g) ≥ 0.
Then Scal(g) ≡ 0 and the holonomy of g is Spin(7).

In the early 1990’s Dominic Joyce produced the first examples
of compact Riemannian manifolds with holonomy Spin(7). Again,
there were two aspects to his methods, an analytic aspect and a
geometric aspect.

It would take me too long to describe these here, so I’ll just
refer you to his beautiful book, “Compact manifolds with special
holonomy” for further details.




