Seiberg-Witten theory
Spin°¢ structures

Given a 2m-dimensional real inner product space

V' we can form its Clifford algebra C(V) as the

free tensor algebra T°V modulo the relation

v ®v = —||v||2, or, as a vector space,
C(V)=NYV,

of dimension 22™, with product

VW I=m=UvANANW—vIw.

Co(V) := C(V) ®r C has itself as a Clifford
module, but it is highly reducible. We produce
an irreducible module in the following (non-
canonical) way.

71



dmV = 2m = pick compatible complex
structure on it = complex m-dimensional her-
mitian vector space. Then

AoV
(dime = 2™, dimg = 2™*t1 so much smaller)
is a C(V)-module, with C~(V)-action p given
by
p(V)w = vAw—viw.
Picking an orthonormal basis {W,...} of V

can see this satisfies the Clifford relations p(v)? =
—||v]|? so extends to C(V) (by the same for-
mula).

(Using injectivity and a dimension count) this
exhibits C~(V') as a matrix algebra

C@(V) = End(/\(Ej V) = MQmXQm((C).

(Or can prove this inductively using C (R"t2) £ C. (R*)®
C (R?) without direct construction.)
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So given a rank 2m bundle V on a manifold,
can form its Clifford bundle C~(V), and this is a
bundle of endomorphisms, i.e. locally End W
for some complex vector bundle W. If V is
globally complex then W can be chosen glob-
ally as AgV, or

W= (A¢V)®u,

but in general W might not exist globally. Lo-
cal choices of W (i.e. defined locally only up
to tensoring with a line bundle u) = global
obstructions.

(i.e. P(W) well defined; can this P-bundle be lifted to a

vector bundle W ?)
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Definition 17 A spin€ structure onV is a choice
of complex vector bundle W such that C-(V) =
EndW.

A spin® structure on M is a choice of W such
that C’C (TM) = EndW.

So if M2™ is almost complex (and hermitian)
have a canonical spin¢ structure; TM = /\g/i,l
over C, and

W = @AY
i
All others are of the form W & wu.

(Spin°=Unitary autos of W that commute with autos
SO(V) of V. Have an additional U(1) — the centraliser
of End(W): isomorphism between irreps is a scalar —
i.e.

1—-U(1) - Spiny(V) - SO(V) — 1.

A Spin¢ structure is a lift of structure group from SO(2m)
to Spin¢(2m). U(m) — SO(2m) lifts naturally to Spin¢(2m).)
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Theorem 18 An oriented Riemannian 4-manifold
M has a Spin¢ structure; the set of them is an
affine space modelled on H?(M: 7).

Proof. We can pick an almost complex struc-
ture J on M away from finitely many points
p;. J is equivalent to a self-dual 2-form w =
g(-,J-), and e(AT) = 0.

So we get a Spin€ structure on M\{p;}. Pick
any spin¢ structure on B, (¢). These differ over
8B, = S° by a U(1) line bundle, but line bun-
dles on S3 are trivial: [S2,U(1)] = m»(S1) = 0.

Any other spin€ structure differs by twisting by
a line bundle wu. []
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imm+1) yol e AV @ C ~ Cc(V) anticommutes
with V. C C(V') and has square —1, so it splits

W=WwWTew"

such that p|;, maps W* — WT.

In the almost complex case, W = A0 @u, W+ =
NOeven o, W= =A0°0dd &, and v A - — v -
swaps these.

The line bundle L associated associated to a
Spin¢ structure W on M#% is the determinant of
Wt. Under W W u, L+— L u®2.
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Connections and Dirac operators

The Levi-Civita connection on M determines a
projective connection on W, i.e. a connection
on P(W).

To induce a connection B on W then, it is
enough to give a connection A on L.

Definition 19 The Dirac operator D 4 associ-
ated to a connection A on L is given by the
composition

rw) 28 (T x o W) % r(Tx o w) & r(w).

Since p‘TX switches W+, so does D4 : T(W*) —
r(w+).

D 4 is self adjoint.
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Theorem 20 For M Kahler, W /\M Qu, and
connection A in L = Kj; ® u?,

Dy =2 (dp+ 0p).

Proof. (u = O for simplicity.) Chasing the
identifications of /\1 0 o~ =T*M = TM > v, the
Clifford action of v on /\M IS

w i V2 710% (v Aw — vaw).
So the Dirac operator is given by
V2 79* (A — )o V.

Since Vo is torsion-free, 79*(A) o Vo
70*od = 8.

Similarly, 79*(J2) o Vo = 7#9*(% A )V
¥t (AN )V ox = *¥7v* dx = ¥0% = —0*.

O
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Since F4 is a section of A2(iR) C C (T},), we
have p(F4) € End(W). Under this identifica-
tion, AT@C 2 EndgWT.

The Seiberg-Witten equations

The equations, for a section @ € (W) and
a unitary connection A on L, are

Dy
p(F)

O,
(PD™)p.

Being only mildly nonlinear, with abelian gauge
group, these equations behave well analytically.
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The moduli space M

The equations minimise a functional, giving
L2-estimates as before. By the Lichnerowicz
formula

1 1
DY Dsd =0 = ViV, P + 515‘;{(c1>) + 5P,

Using the 2nd SW equation,

1 1
(VAVA®, @) < ——|@[* =~ min(s)|®|°.

Now (VA V 4, d) =< V4P, V4 P)+IA|D|?, so
AlD[? < ~[@]* — > min(s)|[?.
At the maximum of || the LHS > 0, so
max || < —%min(s).

This gives a similar pointwise bound on F"',
and compactness follows easily. (And for s > 0
the only solutions are ® = 0, Ff = 0, with conse-
quences for M's topology.)
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Similarly, perturbing the equations by p(F;ll_ —+
in) = (Pd*)g for any n € QT, we can make
them transverse and M compact, of dimension

d= (e (L) = 2x(M) = 37(M)).

Recall we always take b; = 0.

The gauge group G =T (U(1) x M) actson W
by multiplication and so on L with weight two:

® i+ g.P, B~ B—g tdg, A— A—2g dg,

leaving the equations unaltered. The only fixed
points ( “reducibles” ) occur when & = 0 and so
FT =0 = asd elements of H%(M,Z) again.
So as before, for bt > 0 we can avoid re-
ducibles for the generic metric, and for b+ > 1
any two such Ms are cobordant.
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Definition 21 For bt (M) > 1, we define the
SW invariants of a Spin¢ structure on M with
associated line bundle L such that

c1(L)? = 2x(M) + 37(M)
to be the (signed) count of points in M.
Conjecture 22 (Seiberg-Witten) The Don-
aldson polynomials of (simple type) M are de-

termined by an explicit formula in the SW in-
variants.
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The complex case

On a Kahler surface write @ = («, 8) € QO(u)®
Q%2(y) = r(wt). Then the equations be-
come

EBO‘_I'EEB — O,

Fa? = ap,

11 1
iw.Fy = —Z(laf* = 1?).

Theorem 23
If deg L <0 then =0 and

Opa = O,
Fo? = 0,
iw. Fpt = —%|a|2.
If deg L > 0 then a =0 and
opB = 0,
Fo? = 0,
iw. Fpl = 152

2
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(In each case Fp® = 1Fp? = 0 since L = Kj; ® p?
and Kj,; is holomorphic. So both are holomorphic line
bundles and again we have a holomorphic interpretation

of a gauge theory equation.)

Proof. Applying dp to dga + 958 = 0 and
using Fg,z = %&B gives
1 _
j@%+ﬂg§ﬂ=a
B) = aB =0=0x8. Thus one of a, 3

ha(20) =
s =0, ndaBa:O.

v 1.1 1 2 2
deLz—/ F’z——/ -
g ool LR o (o= = 18|%)

determines which of «, 8 vanishes from the
sign of deg L. [l
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The dim M = Z(cq(L)? —2x(M) +37(M)) =0
simple type condition says that L = K]]—L/_,l — the
standard Spin¢ structures. We take the case
where p is trivial and L = Kj,, the other is
related by Serre duality. For bt > 1 we re-
quire h29 = KO(K;;) > 0 and so (—degL) =
deg Ks > 0.

So f = 0 and « is a holomorphic function,
i.e. a constant determined by deg K3j, by the

iw.Fjl’l = —% a|? equation. This is easily solved
uniquely and

Theorem 24 The Seiberg-Witten invariant of
a Kahler surface is +1.

In fact Taubes has proved

Theorem 25 [Taubes]

The Seiberg-Witten invariant of the canonical

Spin¢ structure on a symplectic surface is +1.
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Taubes also relates SW invariants to Gromov-
Witten invariants (via the curve cut out by «).
Other applications include the Thom conjec-
ture and very many generalisations of it (in-
cluding to curves in symplectic manifolds).

Theorem 26 [Kronheimer-Mrowka]

Smooth complex curves have the minimal genus
of curves representing a class in Ho(P?).
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Bauer-Furuta invariants
The Pontryagin-Thom construction

If f: R" — R" is proper then its fibres are all
compact and we can count the signed number
of points in a generic fibre.

But f also extends to the one-point compacti-
fications ™ — S™, and we can instead consider
the homotopy class of this map m(S") = Z
and get the same answer — the degree of f.

Similarly, if f: RN — R*, N > n is proper, we
can consider its compact fibres up to cobor-
dism or the homotopy class nn(S™) of its one-
point compactification.

In fact the compact fibres have trivialised nor-
mal bundle (f* of the trivial normal bundle T,S™ of
a point p € S*) — we say the normal bundle is
framed — and the cobordism is also framed (as
the normal bundle to a curve in S™ is also trivial). SO
to an element of wn(S™) we can associate a
framed cobordism class.
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Conversely, given MN—" < SN with framed

normal bundle
I/MCSN g Rn X M,

we get an isomorphism between a tubular neigh-

bourhood of M c S and R" x M; projecting

this to R™® C S™ and mapping the rest of SV to

oo € S™ gives an element of 7, (S").

Stabilising this (replacing f: RY — R” by f x
idp,: RYTP — R"TP and trivial normal bundles
by stably trivial normal bundles) we get an iso-
morphism between the stably framed cobor-
dism group of (IN — n)-manifolds and

71“]9\7;_,” = rII—Ugo 7TN_|_T(Sn+T).

(w8t = Z still counts the number of points in a
framed cobordism class of dimension 0.)
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Bauer and Furuta extend this to infinite di-
mensions (so that N —n becomes a Fredholm
index), lifting our construction of a cobordism
class of moduli space to one with stably framed
normal bundle. This would be hard in the asd
case because the equations are only locally (via
gauge fixing) the zero set of a Fredholm map;
globally they are a quotient by G of such.

The SW gauge group is abelian and we can
gauge fix globally. That is, picking a base con-
nection Apg on L and setting A = Ag + a, the
Seiberg-Witten moduli space is the zero set of

rwtH) e QLGR) - r(W™) @ QTGER) @ QOGR)
(®,a) = (DyP, Ff — (@d*)g,d*a),

modulo the U(1) of covariantly constant gauge
transformations.
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Since this map (completed to Sobolev spaces with
one more derivative on the LHS) is of the form

F++c

with F Fredholm and linear and ¢ compact,
then we can take finite dimensional approxi-
mations to it

F+clp1yy: FY(v)=>svVv

with V finite dimensional and containing (im F)+
(mapping onto coker F). Bauer-Furuta show that
everything can be done Sl—equivariantly, and
the equations are proper so extend to one-
point compactifications. The upshot is an in-
variant

W) € iy, d= (e (D)2=-2x(M)~37(M)).
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Bauer-Furuta also keep track of the Sl-action
to get a refined equivariant invariant; because
of problems with equivariant transversality this
IS technical.

(bt > 1, ¢;(L)? =2x(M)+37(M) = 1l-dimensional sta-
ble cobordism class; counting S! orbits gives the usual
SW invariant.)

Connected sums

Recall that the Donaldson (and SW) invariants
of connected sums vanish. The gluing proce-
dure described for the asd equations (stretch the
neck of Mi#M>,, solutions concentrate to a product of
solutions on both pieces, M ~ M, x M, xU(1)) can
be generalised to the following.
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t
Theorem 27 [Bauer] u(Mi#M>) € 7r§1_|_d2_|_1
iIs the smash product

p = pu(My) A p(Ms)
of the invariants p(M;) € Wcsif+1'

(At the cobordism level, smash product is product of
manifolds; for stabilised maps of spheres it is composi-

tion.)

The invariant of K3 is the stable homotopy
class [n] of the Hopf map S3 — S2 (divide by S?
to recover SW =1). SO

u(K3#K3) = [n]? # 0 € 75",

But u(S2 x S2) = 0, so K3#K3 cannot be
written as a smooth connect sum Y#(S2x S2).

In fact all of the above is true for a (by = 0)
symplectic manifold with b = 3 mod 4.
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