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OUTLINE

What is Special Lagrangian (SLG) geom-
etry, and why study it?

What are the motivating questions, and
why are cones important for them?

SLG T2-cones via integrable systems meth-
ods. '

How to derive differential-geometric infor-
mation from the integrable systems data.




Calibrations — Definitions

A calibrated geometry is a distinguished class
of minimal submanifolds associated with a dif-

If time permits I will also try to explain the ferential form

following.
e A calibrated form is a closed differential

e How to make sense of “Some cones are p-form ¢ on a Riemannian manifold (M, g)
more common that others.” (generic sin- satisfying
gularities in almost Calabi-Yaus). ¢ < volg (%)

e Answers to “What are the most common e For m € M associate with ¢ the subset
cones?” (cones with smaller Legendrian in- Gm/(¢) of oriented p-planes for which equal-
dex). ity holds in (x) — the calibrated planes.

e A submanifold calibrated by ¢ is an ori-
ented p-dim submanifold whose tangent plane
at each point m lies in the subset Gm(¢)
of distinguished p-planes.

Lemma: (Harvey—Lawson) Calibrated subman-
ifolds minimize volume in their homology class.




Special Lagrangian Calibration on C"

On C™ with standard complex coordinates, let
a = Re(2), where Q =dz! A ... Ad2".
e (x iS a calibrated form.

e An «-calibrated submanifold is Lagrangian
w.r.t. standard Kahler form w = 3 dz? A dyt.

e An o-calibrated plane may be obtained from
standard “real” R"™ C C™" by action of A €
SU(n). Thus the name special Lagrangian
calibration.

e An alternative characterization of an SLG
plane is:

A real n-plane P in C" is SLG for some
choice of orientation iff w and 8 = Im($2)
both restrict to zero on P.

Examples of Special Lagrangian
submanifolds in C"

SLG level sets (Harvey — Lawson 1982)
(explicit examples with symmetries)

F:C3 5 R3
F = (Jz1]? = 222, |21]? — |23]?, IM(212223))

F~1(c) is a (possibly singular) SLG 3-fold in-
variant under a T2 action.

e For a generic ¢, F~1(¢) is nonsingular and
diffeomorphic to T2 x R.

e For 1-dimensional set of critical values of
¢, F~1(¢) is diffeomorphic to S x R2.

e F~1(0) is a singular cone.




SL.G geometry in Calabi-Yau and almost
Calabi-Yaus

Need manifolds with an analogue of the con-
stant coeff (n,0)-form Q2 =dz! A ... Adz™.

Constant coeff — parallel for V, Levi-Civita
connection.

Existence of nonzero parallel (n,0)-form on M
implies M is a Kahler manifold with vanishing
Ricci tensor. i.e., a Calabi-Yau manifold. Then
Re(Q) is a calibrated form.

An almost Calabi-Yau manifold is a Kahler man-
ifold with a nowhere zero holomorphic (n,0)-
form €2 which is not necessarily a parallel form.
Implies metric not in general Ricci flat.

Def™: L is Special Lagrangian if w and Im(£2)
both restrict to zero and Re(£2) >0 on L.

SLG geometry in almost Calabi-Yaus

L is usually neither calibrated nor minimal
w.r.t. the chosen Kdhler metric g !

L is calibrated for a conformally equivalent
metric g.

Many nice features of SLG on CY manifolds,
still hold on almost CY manifolds. e.g. lots of
local solutions, unobstructed deformation the-
ory for compact smooth SLG submanifolds.

Deformation theory (McLean 94,Joyce 00):
L compact nonsingular SLG submanifold in CY
or almost CY manifold. Then deformation the-
ory is always unobstructed and dimension is
purely topological, equal to b(L).

Nicer answer than in complex geometry!

Basic reason: for L Lagrangian NL and T'L are
isomorphic. Allows us to convert extrinsic into
instrinsic data. Infinitesimal SLLG deformations
~—— harmonic 1-forms on L.




Advantages of SLG geometry in almost
CY manifolds

e Calabi-Yau mfds come in finite dimensional
families (dim = ALl 4+ r21 4+ 1 in 3d).
Almost Calabi-Yau manifolds come in infi-
nite dimensional families.

e Choice of a generic almost Calabi-Yau struc-
ture is a much more powerful assumption
than generic Calabi-Yau structure.

¢ Much easier to construct explicit exam
of almost Calabi-Yau manifolds.
Compact Calabi-Yau manifolds are known
by analytic existence results, not explicit

construction.

Question: Does studying SLG submanifolds
tell us anything about the ambient manifold?

A global problem in SLG geometry

Counting SLG homology spheres:

A rational homology sphere S has b1(S) = 0.
Deformation theory implies that an SLG ho-
mology sphere is infinitesimally rigid.

Can we count the # of SLG homology
spheres in a given homology class?

SLG analogue of Gromov-Witten invariants —
which count the number of J-holo curves in a
given homology class.

Main issues:

A. Compactness: Are SLG homology spheres
isolated?

B. Deformation invariance: Does count give
a number which is invariant of underlying CY
structure? (Is it symplectic invariant?)

Need to understand behaviour in l1-parameter
families of CYs, in which S can become singu-
lar.




Giobal problems in SLG geometry II

2. Strominger-Yau-Zaslow (1996) conjecture:

Physical reasoning strongly suggested SLG torus
fibrations could provide differential-geometric
explanation of mirror symmetry.

Given a pair of mirror Calabi-Yau manifolds M
and M, M should have a (singular) SLG torus
fibration f : M — B which should determine M
by “dualizing” the fibration f.

Main issues:

A. Probably should only hold in some limiting
regimes of CY moduli space.

B. Still no rigorous mathematical version of
conjecture.

C. Understanding how to deal with the singular
fibres.

SLG Cones and Their Links

Def": A cone C c CVN is a subset invariant
under all dilations.

For ¥ c S2N-1 - CN, let C(X) denote the
cone on 2_:

C(Z) = {tz: t >0,z € X}

Def": A cone is reqular if C = C(X) where X
is compact, connected, embedded and oriented
submanifold of §2N-1,

Call  the link of the regular cone C.

Prop™: C is SLG in CV (up to a phase) <
¥ is minimal and Legendrian in §2N¥-1,

Legendrian is the odd-dimensional analogue of
Lagrangian.




Known Singularities 1

n = 2. just have unions of 2-planes (link is a
1d minimal submanifold of S3 i.e., a union of
geodesics = corresponding cones are planes)

n = 3: (Harvey & Lawson, 1982)
(21,20, 23) € C3 s.t.
2112 = |22/
2112 = |23]?
and Im(z1z2z3) = 0.

Cone over union of 2 Clifford tori, > +.
C = C+ uc. = C(Z+) UC(zZ.)

2.+ unique flat minimal Legendrian torus in
g5 up to unitary equivalence. (invariant un-
der T2 C SU(3)).

1982 — late 90s, no other examples known.

Known Singularities II

2000 (Haskins): 3 countably infinite families
of distinct SLG cones with:

1. S ~T2,

2. ¥ is invariant under some S1 C SU(3).

Have explicit descriptions in terms of eiliptic
functions and elliptic integrals. Can give very
detailed description of the geometry using these
explicit descriptions (e.g. curvature, conformal
structures, area).

These include ‘almost flat' examples and ex-
amples of arbitrarily large area A(X).




SL.G cones and Integrable Systems I

2002 (Mclntosh): Minimal Lagrangian tori in
CP2 (up to congruence) are in one-to-one cor-
respondence with certain algebro-geometric
“spectral data”, (X, )\ L, un).

e X is a compact Riemann surface of genus
g = 2p, and L is a holo line bundle on X.

e Condition that spectral data gives rise to
torus puts strong restrictions on the spec-
tral curve — a kind of *“rationality condi-
tion".

e p = 0 = must get Clifford torus.
p = 1= get Sl-invariant tori (Haskins).
p = 2 = have examples of Joyce.

e Not obvious that for p > 2 there are any
spectral curves giving rise to tori.

SLG cones and Integrable Systems II

Aug 2003 McIntosh-Carberry proved the fol-
lowing (announced in Nov 02). Go to Emma’s
talk on Wednesday for details.

For each p > 2, there exist countably many
spectral curves of genus 2p, each of which
gives rise to continuous families of minimal La-
grangian tori.

e Implies there is a whole zoo of SLG T2-
cones in C3. Unrealistic to expect a com-
plete classification.

e Very difficult to derive differential geomet-
ric information, e.g. area, from spectral
curve information.




Differential geometric information from
integrable systems data

Similar spectral curve constructions exist for
harmonic tori into compact Lie groups and
other rank 1 symmetric spaces. Other geo-
metrically interesting examples include:

e constant mean curvature tori in R3 (Gauss
map is non-conformal harmonic map to S2)

e minimal tori in S3

s Willmore tori in $3 and $% (work in progress
of TU-Berlin school)

Evidence from computer experiments with CMC
tori that:

large spectral curve genus
= geometrically complicated torus

= e.g. large area or energy, v. unstable.

Differential geometric information from
integrable systems data II

Suggests spectral curve genus g gives a lower
bound for the geometric complexity of a SLG
‘I?-cone (Sl—invariant examples show no upper
bound for geometric complexity is possible in
terms of g). \

For instance, would like to prove

Area(T?) > c(g),

for some positive increasing function ¢ of the
spectral curve genus g.

Ferus, Leschke, Pedit, Pinkall (2001) proved
such a formula holds for minimal tori in S3 us-
ing Quaternionic Holomorphic methods (long
paper almost 90 pages).

e Would like to prove analogous results in
minimal Lagrangian case.

e BUT, no obvious way to use quaternionic
holomorphic methods.




Differential geometric information from
integrable systems data I

Nevertheless, we can prove a SLG analogue of
the results of FLPP.

Thm (Haskins 2003) Let C be a regular SLG
T2-cone in C3 with link . Let g = 2d denote
the spectral curve genus of the associated min-
imal Lagn torus in CP2. Then for any d > 3

‘ 1
Area(X) > §d7r.
Instead of quat holo methods we use meth-

ods from spectral geometry of A on compact
surfaces.

Outline of proof of Thm

Relate second variation of area of link X of
cone C to Ay

Relate spectral curve genus to properties
of second variation operator

Combine previous parts to obtain informa-
tion about Spec(Ay).

Use information about Spec(Ay) to get
lower bound for Area(X).




Second Variation of Area on ¥ and Ay —
Legendrian Variations

Legendrian Neighborhood Th'™: A neigh-
bourhood of a Legendrian submanifold L of
a contact manifold M is contact diffeomor-
phic to a neighbourhood of the zero section
in J1(L) — the first Jet space of L — with its
canonical contact structure.

Moreover, a section of J1(L) is Legendrian iff
it is the 1-Jet associated to a function on L.

JUL) ~R x T*L
The contact form on JIL is
dt — *a,
where t is the coordinate on R and « Liouville
1-form on T*L.

Legendrian section of JY(L) ~ (f(z),z,df(z))
some f:L—R

Note: function is global unlike Lagrangian case.

Second variation of a minimal Legendrian
submanifold

Second variation operator of a minimal Leg-
endrian submanifold ¥ c S2N-1 restricted to
Legendrian variations.

Using the Legendrian Neighbourhood Th™, we
can express it as operator on function on 3.
Nice answer . ..

Js = Ay — 2N

(A w.r.t. metric induced on ¥ by embedding
in sphere)

Infinitesimal Deformations as a minimal Leg-
endrian submanifold < f s.t. Af =2N{.

Af = Af, A < 2N = Volume Decreasing in-
finitesimal deformations as Legn submanifold.




Legendrian index of a SLG cone C = C(X)

I-ind(C) := # of e-values, counting multiplic-
ity, in range (0,2N) of Ay (acting on func-
tions).

Geometric Significance: Gives the Morse In-
dex of X as a critical point of volume, but
restricted to Legendrian variations.

Prop": (Haskins, Joyce) If C is a SLG cone
with isolated singularity then I-ind(C) > 2N.

Proof: “N-1 minimal submanifold in R2V
= coordinate functions zq,...,zoN give
e-functions of A with e-value N — 1.

Then prove that isolated SLG singularity
= ¥ N=1 is linearly full
= z1,...,ZpN are independent
= l-ind > 2N.

(Not linearly full
= (' has some translation invariance
= (C doesn’t have isolated singularity.)

Remarks about [-index and 2nd variation

Remarks:
1. Round spheres/planes contribute exactly N
to I-ind(C).

2. SU(N) acts on SLG cones preserving the
SLG condition.

= Certain quadratic functions on CH restrict
to give e-functions Af =2Nf.

e.g., |z|? — |z|% Re(z%), Im(zz;)

(they are all Hamiltonian functions for SU(N
vector fields).

3. For any SLG T2-cone C can prove (Haskins
2002) that I-ind(C) = 6 iff C is the cone over
the Clifford torus. (Higher diml analogue is
false).

Def™: C is rigid if the only infinitesimal defor-
mations arise from the action of SU(N).




Spectral curve genus and second variation
operator

Fundamental fact: any minimal Lagrangian
2-torus in CP?2 with spectral curve of genus
g = 2d comes in at least a real d—2-dimensional
family of non-congruent minimal Lagrangian
tori.

(d-diml family arises by moving line bundle £
inside the Prym variety of the spectral curve.

—2 occurs by factoring choice of basepoint in
T2).

Fundamental fact = a SLG T2-cone of spectral
curve genus g = 2d has A\ = 6 as a eigenvalue
of Ay with multiplicity m

m > dim(SU(3)) + (d - 2) = 6 + d.

Legendrian index and spectral curve
genus

Thm (Haskins 2003): Let C be a special La-
grangian T2-cone in C3 of spectral curve genus
2d. Then for any d > 3,

I-ind(C) > max({ B—d] , 7}

Corollary: There exist special Lagrangian T2-
cones with arbitrarily large l-index.

Proof use following result from spectral geom-
etry of A on 2-tori. (have analogues for higher
genus but not higher dimensions).

Thm (Nadirashvili 1987) Let (X, h) be an Rie-
mannian 2-torus, and let m; be the multiplicity
of the i-th eigenvalue of Ay acting on func-
tions. Then

mi§2i+4.




The heat kernel and minimal
submanifolds of 7!

On Riemannian mfd (M, g) the heat kernel H(z,y,t)
is the fundamental solution to the heat equa-
tion on M. M cpt implies trace of the heat
kernel can be written in terms of eigenvalues

co
H(z,z,t) = —Ait,
/M (z,z,t) = > e

i=0

Cheng-Li-Yau proved heat kernel comparison
results for minimal submanifolds of space forms.

Thm (C-L-Y 1984) Let M be a cpt n-mfd with
no bdy minimally immersed in S™ti Let )
denote evals of A on M and on S™ respectively.
Then

o o
> e Mt < (M) > e Hit
i=0 i=0
holds for all t > 0, where ©@(M) = Vol(M)/Vol(S™).

The heat kerne! and minimal
submanifolds of snt!

Apply this result to the link = of a SLG T?-
cone C

S emM > 14 (Hind(C) 4 l-nullity(C))e ™
=0

> 1+ (5+6+D) e 0

Also eigenvalues p; of S2 and their multiplici-
ties are known. i-th distinct eigenvaiue is i(i+
1) with multiplicity 2i4 1. This easily gives an
upper bound for ¥ e Hit,

1
Area(x) > gdqr

follows by combining these two inequalities with
the Cheng-Li-Yau heat kernel inequality and
choosing a value of t to give reasonable con-
stants.




