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1. Some G, linear algebra. Recall that Gs is the subgroup of GL(7,R) that
preserves the 3-form

¢)0 _ deIle + d$145 + d:L‘167 + d$246 _ d$257 _ dx356 _ d$347,

where dz?7* means dziadz? adz".

The group Gy is a compact, 1-connected subgroup of SO(7) that acts transitively
on 8% ¢ R7, with isotropy group isomorphic to SU(3) (in its standard representation
on RS).

Since R7 is odd dimensional, a maximal torus in Gy must leave a vector in R”
fixed and is therefore conjugate to a torus in an isotropy subgroup, i.e., SU(3).
Since SU(3) has rank 2, it follows that G2 also has rank 2 and that a maximal torus
for SU(3) is also a maximal torus for Ga. Though SU(3) has a center isomorphic
to Zs, these central elements fix a vector in R7 and are therefore not central in Ga.

Thus, G has trivial center, so that all of its nontrivial representations are faith-
ful.

Representations: The representation ring of Gz is generated by its two funda-
mental representations:

The first is Vo = R7. The second is Vo,1 = gy, which has dimension 14.

The first few remaining representations are given in the following table, where the
subscript is the highest weight vector and the superscript is the (real) dimension.

For p > 0, the representation Vp is isomorphic to SE(R), the harmonic poly-
nomials on R7 of degree p and K(g,) =~ Vo 0.

Exterior Algebra. The Gg-irreducible decompositions of the vector spaces A” (R7)

will be important.
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Of course A'(R7) and AS(R7) are isomorphic to R and so are irreducible. How-
ever, AP(R") for 1 < p < 6 are reducible.

By duality, it suffices to describe the decompositions of A%(R”) and A*(R7).

The decomposition of A%2(R7) follows from the embedding of G, into SO(7):

A2(R7) = s0(7) = gy Bgy* = g, R,

so we write A2(R7) ~ A3, (R7) ® A2(R7).
These summands can be described explicitly as

AZ(R") = {#o(an %o o) | a € AYRT) }
={aeA’R") [ango=2%0a }
AR ={aer*R") |andgo=~*oa }

Similarly, there is an irreducible decomposition
APRT) = AL (RT) @ ASRT) @ AL (R),
where these summands have the explicit descriptions
MR ={r¢o|reR}
ASRT) = {xo(ando) | @ € ALRT) }
ALR) = {ae A} R") | ando=an *odo =0} = S5(R)
Explicitly, define i : S*(R7) — A3(R7) by
i{aoB) = an xg (Ba *o¢o) + LA *o (@n *o o).
Then i(S3(R")) = A3-(R7). Defining j : A*(R") — S*(R") by
i (v, w) = *((v o) A (w— o) A7),
for v &€ A*(R7) and v, w € R7, one finds that
i(i(h)) = -8k
for all b € SE(R7).

2. G, Structures. Let M7 be a smooth 7-manifold. Recall that a Ga-structure
on M is a 3-form ¢ on M such that, for each point z € M, there exists an isomor-
phism w : T, M — R” such that u*(¢o) = ¢».

M possesses a Gg-structure iff M is orientable and spinnable. The set of Go-
structures on M will be denoted Q3 (M) C 9°(M). These 3-forms are the sections
of an open subbundle A3 (T* M) of A*(T*M).

Each ¢ € Q3 (M) has an associated Riemannian metric g4 and orientation 41 €
Q" (M).

Civen a Gy-structure ¢ € 3 (M), the Ga-equivariant decompositions of AP(R")
induce corresponding decompositions of Q(M). For example,

QM ¢) = {BEQ*(M) | Brd=2%40}
Q2,(M, ) = {BeQXM) | Bro=—x40}.

Recall the theorem of Fernandez and Gray:
Theorem: Let o be a Ga-structure on M. Then o is parallel with respect to its
associated metric g, if and only if do = d(*,0) = 0.



There is a general formula for the derivatives of a G-structure:
Proposition: For any Go-structure o € Q3 (M), there exist unique differential
forms 1o € Q°(M), 11 € QUM), = € Q2,(M,0), and 73 € Q3,(M, 0) so that the
following equations hold:

do =Ty %60 +3TL A0 + %573,
d*,0 = 4T\ A %0 + T2 AT .

Remarks: Except for the appearance of 7 in two places, this follows directly from
the o-decomposition of exterior forms.

For any G C SO(n), the torsion of a G-structure on M™ takes values in a bundle
modeled on (so{n)/g) ® R™. In our case:

(50(7)/ g2) ®RT V1 g @ V19 = Voo ®V10@ Vo1 @ V2o

essentially by dimension count.

Recall that K(gy) = Vo2 = R77, which implies Bonan’s result that a metric with
holonomy in Gs must be Ricci-flat.

It follows that, for the general Gy-structure, it must be possible to express the
Ricci tensor in terms of the torsion forms 79, 71, 72 and 75. The result (got by
routine calculation) is:

Proposition For any Gg-structure o € Q3(M), the following hold:
Scal(go) = 126,7 + L 12 + 30| |* — § 2| — 3 Im[*.
and

Ric(gs) = *(%57‘1 - %T02 +15|m )% - 3“; 2] + % |7'3|2) 9o

H 5 1 1
+J( -3 d(*g(ﬁ A *UO')) - ZdTQ + 1 *adT;;
5 1 1
+%T1 A#g (TLA ¥50) — gT0T3 + 3 TIAT2

+ % *o (T1 AT3) + % *, (T2 AT2) + Eli Q(rs, 73) ) .

3. Closed G5 Structures. From now on, I will only be considering Gz-structures
o € Q3 (M) that are closed, i.e., do = 0.
By the previous formulae, it follows that, for such a structure, one has 7o = 71 =
T3 = 0 and
dsg0 = To A O
where 75 lies in Q%,(M, o). In particular,

Ty A %0 =0 and TRNG = ~%5Ty.
The Ricei and scalar curvature formulae simplify to
)2
Scal(go) = — 3 |72

and
Ric(go) = L2 g0 — §i(dm2 — § %o (2 A T2) ).

In particular, note that the scalar curvature is pointwise non-positive and van-
ishes identically if and only if o is also coclosed.
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These formulae show that g, is Einstein if and only if
drp = & Iro? o + 3% (T2 AT2)

Using this, Cleyton and Ivanov (math.DG/0306362) have recently shown that any
closed Go-structure on a compact manifold whose associated metric is Einstein must
actually be co-closed as well.

Hitchin’s volume functional and flow. Suppose that M7 is compact and let § €
H3g (M, R) be a cohomology class. Define

Ze(S) ={oe®(M)|do=0, [o]=5}

as the set of closed Ga-structures whose de Rham cohomology class is S. Note
that Z, (S) is an open subset of S (which is an affine subspace of Z3(M), the space
of closed 3-forms on M).

Hitchin defined a function f : Z,(S) — R* by

flo) :./M *g 1 =/Mcr/\*ao.

Proposition: (Hitchin) o € Z.(5) is a critical point of f if and only if d ;6 = 0.
All the critical points of f are nondegenerate, modulo the action of the diffeomor-
phism group. The gradient flow of the functional f is given by

d
E(a) = Ay0 =d(d,0)

Steve Altschuler and I had considered this (transversely) parabolic flow in 1992
with an eye towards trying to comstruct compact manifolds with holonomy Gs.
Here are some of the results that we derived about it.

From now on, write 7 instead of 73, for simplicity. We have

do =0, and d*e0 =TAC
where #, (7A0) = —7. One can now easily compute that
2
= ¢lrlPo+

for some v € Q3,(M, o).

The evolution equation (Hitchin's flow) becomes
(—{t((f) = dr.
The formulae from the previous page then imply
d
dt
Note that the volume form is increasing pointwise, and not just on average (as
would be expected for the f-gradient flow). Thus,

4 )
1
= /H*

Computing a further derivative and integrating by parts yields the formula

@) = 35 [ 1= [ (Bt = 3harls) o1

(%s1) = %l'rl2 #5 1.



