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A surface group is the fundamental group of a compact surface

Γ = π1(S).

We study homomorphisms (representations)

ρ : Γ → PSL(n,R);

and more precisely representations in a preferred connected com-
ponent of the space of representations

Rep∗(Γ, PSL(n,R)) = {ρ : Γ → PSL(n,R)}/PSL(n,R).

————————

2 Examples and definitions

1) Fuchsian representations in PSL(2,R). Riemann uniformisa-
tion theorem:

complex structure J on S ; ρ : Γ → PSL(2,R)
s.t. (S, J) is conformal to H2/ρ(Γ) .

Such a representation is said to be Fuchsian, it is the monodromy
of a hyperbolic structure.

2) Fuchsian representations in PSL(n,R). By definition these
are compositions

Γ Fuchsian−→ PSL(2,R) irreducible−→ PSL(n,R).

————————
2) Hitchin representations in PSL(n,R) : a representation which

can be deformed to a Fuchsian representation.
3) Hitchin component H(n) is (one of) the connected compo-

nent(s) of

{Hitchin representations}/PSL(n,R).

Theorem [Hitchin]The Hitchin component is homeomorphic to
a ball of dimension −χ(S)(n2 − 1).

Question: Do Hitchin representations have nice properties (faith-
ful, discrete) ? Are they ”monodromies of geometric structure” in
some sense ?

Answer: Yes, and furthermore there seem to be a ”Higher Te-
ichmüller” theory interpreting these components in other mathe-
matical dialects.

————————
————————
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3 A Conjecture about Uniformisation

• Let’s fix a complex structure J on S, Hitchin constructed a
homeomorphism

φJ : H0(K2
J)⊕ . . .⊕H0(Kn

J ) → H(n)= Hitchin component.

• We want to get rid of the choice of J . Let T (S) be Te-
ichmüller space. Let E → T (S) be the vector bundle with
fibre

EJ = H0(K3
J)⊕ . . .⊕H0(Kn

J ).

Let

Φ :
{

E 7→ H(n)
(J, ω) → φJ(ω)

Notice that Φ is equivariant under the action of the Mapping
Class Group M(S) = Out(Γ).

————————
Conjecture The map Φ is a homeomorphism

• It is true for n = 2 (trivial), and for n = 3 (using results
about affine spheres).

• Φ is surjective.

• This conjecture has a translation as the stability of a minimal
surface in a symmetric space.

• This would imply H(n)/M(S) is naturally a complex mani-
fold.

————————

4 Corollary of the Main Result

Theorem Every Hitchin representation is discrete, faithful, and
”purely loxodromic”. Finally the Mapping Class Group M(S) acts
properly on H(n)

• ρ purely loxodromic =

∀γ ∈ Γ, γ 6= id, ρ(γ)has only real eigenvalues with multiplicity 1.

• A priori inaccessible by Hitchin’s techniques.

• The above ”uniformisation” conjecture describes the topol-
ogy on H(n)/M(S).

• What about geometric structures ?

————————
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5 What happens in low dimensions ?

1) For n=2 : The Hitchin component is Teichmüller space, which
corresponds to hyperbolic structures on S.

2) For n=3 :
Theorem [Choi.S.Y-W.Goldman] Every Hitchin represen-

tation in PSL(3,R) preserves a convex open set Ω in P(R3), such
that Ω/ρ(Γ) is homeomorphic to S. A Hitchin representation is the
monodromy of a convex real projective structure on S.

————————

• So far, this is over, no available 2-dimensional homeogeneous
space for SL(4,R). No classical geometric structure underlies
H(4).

• But, there is a notion of ”dynamical geometric structures” on
US (with coordinate charts) whose monodromies are Hitchin
representations. But, they are long to define, and I prefer
to describe some geometric consequences, and relate Hitchin
representations to

(1) curves in the projective space

(2) generalised crossratios on S1

————————

6 The boundary at infinity of Γ

The boundary at infinity ∂∞Γ of Γ is a topological circle on which
Γ acts. It is is defined as the ”horizon” of the group Γ viewed as a
geometric object. It has some natural geometric realisations.

• Hyperbolic structure If S is equipped with a hyperbolic struc-
ture. ∂∞Γ is identified with ∂∞H2, the boundary at infinity
of the hyperbolic plane,

• For a Hitchin representation ρ in PSL(2,R), we have a ρ-
equivariant injective map from ∂∞Γ to P(R2) = ∂∞H2

• Convex real projective structure If Ω ⊂ P(R3) is such that
Ω/ρ(Γ) = S. Then ∂∞Γ is identified with the convex curve
∂Ω

• For a Hitchin representation ρ in PSL(3,R), we have a ρ-
equivariant convex map from ∂∞Γ to P(R3)

————————

7 Hyperconvex curves

A continuous curve ξ from S1 to P(Rn) is hyperconvex if for any
distinct points (x1, . . . , xn) in S1 the following sum is direct

ξ(x1)⊕ . . .⊕ ξ(xn).

• for n = 2 hyperconvex means injective,
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• for n = 3 hyperconvex means convex,

• The Veronese embedding is hyperconvex.

• By Cauchy-Crofton formula, hyperconvex curves are rectifi-
able with universally bounded length :

length(c) =
∫

hyperplanes P

](c ∩ P )︸ ︷︷ ︸
≤n−1

dP.

————————
————————
Theorem If ρ is a Hitchin representation, then there exists a

(unique) ρ-equivariant hyperconvex curve ξ, the limit curve, from
∂∞Γ to P(Rn). Furthermore, these (generally only C1) curves ad-
mits continuous osculating flags in general position

• for Fuchsian representations, we get the Veronese embedding,

• Hitchin representations are symmetries of hyperconvex curves.

• By definition osculating flag η = (η1, . . . , ηn−1) is such that

ηp(x) = lim
(x1,...,xp)→x

ξ(x1)⊕ . . .⊕ ξ(xp).

• Universal Hitchin component (when genus goes to infinity)={hyperconvex curves}

————————
Idea of the proof 1) Openness After a small deformation the

limit curve persists to exist. This is a consequence of the stability
of hyperbolic dynamical systems. It is a general fact. Compare
with the case of quasi-Fuchsian representations in SL(2,C).

Difficult part : to prove the ( a priori C0) perturbed curve is
still hyperconvex.

2) Closeness After a large perturbation, the limit curve con-
tinues to exist. Here use the rectifiability of the curve. Again,
compare with the quasi-Fuchsian case in SL(2,C).

————————

8 Crossratios and Periods

A crossratio on a set ∂∞Γ is a Hölder function b : S4 \ ∆ → R∗,
invariant under the action of Γ satisfying

b(x, y, z, t) = b(x, y, z, w)b(x,w, z, t)
b(x, y, z, t) = b(x, y, w, t)b(w, y, z, t)
b(x, y, z, t) = b(x, t, z, y)−1

b(x, y, z, t) = b(z, t, x, y)

Let γ ∈ Γ. The period of γ is

lb(γ) = log |b(γ+, y, γ−, γy)|.

Where γ+ (resp. γ−) the attracting (resp. repelling) fixed point of
γ on ∂∞π1(S), y any element.

————————
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9 Examples

• The classical crossratio on P(R2),

ρ ∈ H(2) ; crossratio on ∂∞Γ ' P(R2).

satisfying an extra rational functional relation F(2).

• if ξ and ξ∗ are curves from S1 to P(E) and P(E∗) respectively,

b(x, y, z, t) =
〈ξ̂(x), ξ̂∗(y)〉〈〈ξ̂(z), ξ̂∗(t)〉
〈ξ̂(z), ξ̂∗(y)〉〈ξ̂(x), ξ̂∗(t)〉

.

(Generalisation to flag manifolds)

• Geodesic flows of negatively curved metric on S ; crossratios
Periods = length of closed geodesics. (In general, Anosov
flows ! Crossratios)

————————
Theorem There is a *bijection* between H(n) and the set of

crossratios satisfying functional relations F (n). Under this corre-
spondance

lb(γ) = log(
λmax(ρ(γ))
λmin(ρ(γ))

).

Let n tends to infinity

H(n) ↪→ {crossratio on ∂∞Γ}” ↪→ ”Rep(Γ, Symp(T ∗S1)) ?= H(∞)

————————
F(2)

b(e, f, g, h) =
(b(e, u, v, w)− b(f, u, v, w))(b(g, u, v, w)− b(h, u, v, w))
(b(e, u, v, w)− b(h, u, v, w))(b(g, u, v, w)− b(f, u, v, w))

.

F(n) involves quotient of determinants of matrices whose coef-
ficients are crossratios

————————

10 Dynamical geometric structures

Before proceeding to the definition, we recall the definition of a
contracting (or dilating) bundle over a dynamical system.

Let X be a topological space equipped with a flow φt. Let E be
a topological vector bundle over X such that the action of φt lifts
to an action of a flow ψt by bundle automorphisms. Assume E is
equipped a metric g. The bundle E is contracting (resp. dilating),
if there exist positive constants A and B, such that for every u in
E, for every t such that t > 0 (resp. t < 0)

‖ψt(u)‖ ≤ Ae−B|t|.

————————
It is useful and classical to remark that if X is compact,
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1. the metric g plays no role;

2. the parametrisation of the flow plays no role either, that is
if we change the parametrisation of the flow the bundle will
stay to be contracting for this new flow.

Therefore to be contracting or dilating over a compact topological
space X is a property of the orbit lamination L, the bundle E and
the ”parallel transport” on E along leaves of L.

————————

11 (M, G)-Anosov structure

Let M be a manifold equipped with a pair of continuous foliations
E±, whose tangential distributions are E±, and such that

TM = E+ ⊕ E−.

Let G be a Lie group of diffeomorphisms preserving these foliations.
Let V be a manifold equipped with an Anosov flow ψt. Let L

be the orbit foliation. Let Ṽ be a Galois covering with covering
group Γ.

We shall say V is A-modelled on M , if there exists a representa-
tion ρ of Γ in G, the holonomy representation, a continuous map F
from Ṽ to M , the developing map enjoying the following properties

————————

• Γ-equivariance:

∀γ ∈ Γ, F ◦ γ = ρ(γ) ◦ F,

• Flow invariance:
F ◦ ψt(x) = F (x),

• Hyperbolicity: We consider the induced bundle F± = F ∗E±.
By the flow invariance, these bundles are equipped with a par-
allel transport along the orbit of ψt, and by Γ-equivariance
this parallel transport is invariant under Γ. Our last hypoth-
esis is that the corresponding lift of the action of ψt on F+

(resp. on F−) is contracting (resp. dilating).

We also say (V,L) admits a (M,G)-Anosov structure.
————————

12 The case of Hitchin representations

• G = PSL(n,R)

• M = PSL(n,R)/{diagonal matrices}, a point in M is a fam-
ily of n lines L = {Li}i∈{1,...,n} in direct sum.

• Foliations come from the product structure

M ⊂ Flag × Flag.

• V = US ' ∂∞Γ3 \ ∆ with the geodesic flow lamination,
defined only using ∂∞Γ.
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