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§1. Background

Definition: A real n dimensional submanifold M of a
symplectic manifold (N2n, ω) is called Lagrangian if ω|M = 0.

If N is Kähler with the complex structure J , then M is
Lagrangian iff J(TM) = νM . Therefore one immediately
sees an interplay between intrinsic and extrinsic geometries
of such submanifolds. For example, the flatness of the
metric is equivalent to the flatness of the normal bundle in
the case N = C

n.
“Flat” means the Riemann curvature tensor of the induced

metric on M is 0. Since Riemann proved that a flat
Riemannian manifold is locally isometric to the Euclidean
space, these flat submanifolds can also be viewed as
Lagrangian isometric immersion of a domain in the
Euclidean space.
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Moore and Morvan applied Cartan-Kähler theory in [MM01]
to prove that the system of equations for local isometric
Lagrangian immersions of a Riemannian manifold in C

n is
over-determined when n ≥ 3 and most Riemannian
manifolds could not admit such immersions even locally.
However they show that there is a plentiful supply of flat
Lagrangian submanifolds:
Theorem [MM01]: Let p be a point in E

n. The isometric
Lagrangian immersions from an open neighborhood U of p
into C

n depend upon n(n + 1)/2 functions of a single
variable.
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On the other hand, inspired by Tenenblat and Terng’s
generalization of the classical Bäcklund transformation
([TT80, Ten85]), Dajczer and Tojeiro generalized sphere
congruence and Ribaucour transformation to higher
dimensions. They have successfully constructed Ribaucour
transformations for flat n-submanifolds of S2n−1 in [DT95],
and later for flat Lagrangian submanifolds of C

n and CPn−1

in [DT00].

We’ll identify these transformations as dressing actions, as
Terng and Uhlenbeck did for classical Bäcklund
transformations in [TU00].
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§2. The n-dim’l system associated to symmetric space
Let τ be a conjugate linear involution of any complex
semi-simple Lie algebra G, σ a complex linear involution of
G such that τσ = στ , U the fixed point set of τ , and U0 the
subalgebra of U fixed by σ. Let U = U0 + U1 denote the
Cartan decomposition of the symmetric space U/U0. Let A
be a maximal abelian linear subspace of U1, and a1, · · · , an

a basis of A. Let A⊥ denote the orthogonal complement of
A with respect to the Killing form of U .
The U/U0-system is the following system for v : R

n → A⊥ ∩ U1:

[ai, vxj
] − [aj , vxi

] = [[ai, v], [aj , v]], i 6= j.
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Or equivalently, the following connection 1-form is flat for all
λ ∈ C:

θλ =
n
∑

i=1

(aiλ + [ai, v]) dxi,

which satisfies the U/U0-reality condition:

τ(θλ) = θλ̄, σ(θλ) = θ−λ.

We call θλ a Lax pair if n = 2, and a Lax n-tuple for general
n.
As proved in [Te02], the U/U0-system is independent of the
choice of basis of A, and is essentially given by the first
commuting n-flows in the U/U0-hierarchy.
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Let U/U0 be the symmetric space U(n)/O(n). Then
U = u(n), U0 = o(n), and

U1 = {−iF | F = (fij) ∈ gl(n, R), fij = fji} .

The linear subspace A spanned by

{aj = iejj | 1 ≤ j ≤ n}

is a maximal abelian subspace in U1, and

U1 ∩ A⊥ = {−iF | F = (fij) ∈ gl(n, R), fij = fji, fii = 0}.
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The corresponding U/U0-system written in terms of F
(v = −iF ), i.e., the U(n)/O(n)-system is

{

(fij)xi
+ (fij)xj

+
∑

k fikfjk = 0, if i 6= j,

(fij)xk
= fikfkj , if i, j, k are distinct.

Or equivalently, Lax n-tuple iλδ + [δ, F ] is flat for all λ ∈ C,
where δ = diag( dx1, · · · , dxn).
It is important to note that the above system implies
(
∑

k
∂

∂xk
)fij = 0.
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§3. Geometry of the U(n)/ O(n)-system

Let 〈 , 〉 and w be the standard inner product and
symplectic form on C

n = R
2n respectively, i.e.,

〈X,Y 〉 = Re(X̄tY ), w(X,Y ) = Im(X̄tY ), X, Y ∈ C
n.

A = B + iC ∈ gl(n, C) can be identified as ( B −C
C B ) in

gl(2n, R). This identifies u(n) as the following subalgebra of
o(2n):

u(n) =

{

( B −C
C B ) ∈ o(2n)

∣

∣

∣

∣

B ∈ o(n), C ∈ gl(n, R) symmetric

}

.

The standard complex structure on R
2n is J = ( 0 −I

I 0 ). The
group U(n) can be identified as the elements of O(2n) that
commute with J , i.e., also take the above special form.
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Lemma: Let X : U → R
2n be a Lagrangian submanifold,

and (e1, · · · , en) a local orthonormal tangent frame. Then
(Je1, · · · , Jen) is an orthonormal normal frame. Moreover,
let g = (e1, · · · , en, Je1, · · · , Jen). Then g−1 dg is a
u(n)-valued 1-form, i.e., it is of the form ( ξ −η

η ξ ) where ξ is an
o(n)-valued 1-form and η is 1-form with value in the space of
symmetric matrices. Conversely, if Mn has a local
orthonormal frame g = (e1, · · · , en, en+1, · · · , e2n) such that
e1, · · · , en are tangent to M and g−1 dg is u(n)-valued 1-form,
then M is Lagrangian for some constant complex structure
J ′ of R

2n.
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Definition: An Egorov metric is a flat metric on a domain
O ⊂ R

n taking the following form

ds2 =

n
∑

i=1

φxi
dx2

i

for some smooth function φ : O → R. If in addition
∑

i φxi
= 1, we will call it spherical Egorov metric. The

function φ will be called the potential of the metric.

These special classes of orthogonal coordinate systems
were extensively studied by Darboux, Bianchi and Egorov.
Also see [TU98] for relations with Frobenius manifolds and
WDVV equation.
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Lemma: Given a solution F of the U(n)
O(n)-system, and b10, · · · ,

bn0 smooth positive functions of one variable, one can solve
{

(bi)xj
= fijbj i 6= j,

bi(0, · · · , 0, xi, 0, · · · , 0) = bi0(xi).

Then
∑n

i=1 b2
i dx2

i will be an Egorov metric. Its potential φ

can be solved from the system φxi
= b2

i .
Conversely, given the potential φ of an Egorov metric,

define fij =
φxixj

2
√

φxi
φxj

if i 6= j, and fii = 0. Then the

Levi-Civita connection 1-form for the metric is given by
wij = −fij( dxi − dxj), and the flatness of the metric gives
exactly the U(n)

O(n)-system for F = (fij).
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Fundamental Theorem [DT00, Te02]: Let Mn be a flat
Lagrangian submanifold of C

n with non-degenerate normal
bundle. Then there exist global line of curvature
coordinates x1, · · · , xn, parallel normal frame en+1, · · · , e2n,
an O(n)-valued map A = (aij), and a map b = (b1, · · · , bn)

such that the fundamental forms of M are I =
∑n

i=1 b2
i dx2

i

(Egorov metric), II =
∑n

i,j=1 biaji dx2
i en+j . Moreover, let

fij = (bi)xj
/bj , fii = 0. Then F = (fij) is a solution of the

U(n)
O(n)-system. Conversely, given (F, b10, · · · , bn0) as in
previous lemma, there exists a (unique up to U(n) n C

n) flat
Lagrangian submanifold of R

2n with non-degenerate normal
bundle so that the corresponding solution of the
U(n)
O(n)-system is F and the first fundamental form is the

Egorov metric I =
∑n

i=1 b2
i dx2

i in the lemma. Furthermore,
these submanifolds lie in S2n−1 if and only if

∑

i φxi
= 1, i.e.,

the first fundamental form is a spherical Egorov metric.
Flat Lagrangian submanifolds in C

n and CP
n – p.15/33



Sketch of proof: Let W =
(

E X
0 1

)

, and

θλ =
(

iλδ+[δ,F ] δb
0 0

)

where b =

(

b1

...
bn

)

.

Now one can solve W from W−1 dW = θλ uniquely up to
rigid motions. Then it is directly verified that X will give a
flat Lagrangian submanifold in C

n.
We have obtained the following:

Space of Egorov metrics
∼= Space of (F, b10, · · · , bn0)
∼= Space of local flat Lagrangian submanifolds in C

n with
non-degenerate normal bundle modulo U(n) n C

n
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Élie Cartan proved that a flat n-dimensional submanifold
can not be locally isometrically immersed in Sn+k if
k < n − 1, but can be locally isometrically immersed into
S2n−1.
Fact: Let Mn be a flat submanifold of S2n−1 which is
Lagrangian in R

2n, and π : S2n−1 → CPn−1 be the Hopf
fibration. Then M = π−1(π(M)) and π(M) is a flat
Lagrangian submanifold of CP n−1. (See [Te02] for a simple
geometric proof.)
Thus, we have the following:
Space of spherical Egorov metrics

∼= Space of flat submanifolds of S2n−1 that is Lagrangian in
R

2n modulo U(n)
∼= Space of local flat Lagrangian submanifolds in CP n−1

modulo U(n)
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§4. Dressing action, loop group factorization

Let G = GL(n, C). For ε > 0, let Oε = {λ ∈ C | |λ| < ε},
O1/ε = {λ ∈ C ∪ {∞} | |λ| > 1/ε}. Henceforth we will use the
following loop groups:
Λ(G) = { holomorphic map from C ∩ O1/ε to G },
Λ+(G) = { holomorphic map from C to G },
Λ−(G) = { holomorphic map f from O1/ε to G with f(∞) = e }.
Birkhoff Factorization Theorem The multiplication maps
from Λ+G × Λ−G and Λ−G × Λ+G to Λ(G) are 1 − 1 and the
images are open and dense. In particular, there exists an
open dense subset Λ(G)0 of Λ(G) such that given
g ∈ Λ(G)0, g can be factored uniquely as g = g+g− = h−h+

with g+, h+ ∈ Λ+(G) and g−, h− ∈ Λ−(G).
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Using the involutions τ, σ associated to the symmetric
space U(n)/O(n) as before, we will denote

Λτ (G) = {f ∈ Λ(G) | τ(f(λ)) = f(λ̄)},
Λτ,σ(G) = {f ∈ Λτ (G) | σ(f(λ)) = f(−λ)},
Λτ
±(G) = Λτ (G) ∩ Λ±(G),

Λτ,σ
± (G) = Λτ,σ(G) ∩ Λ±(G).

Corollary Suppose g ∈ Λ(G) is factored as g = g+g− with
g+ ∈ Λ+(G) and g− ∈ Λ−(G). If τσ = στ , then

(i) g ∈ Λτ (G) implies that g± ∈ Λτ
±(G),

(ii) g ∈ Λτ,σ(G) implies that g± ∈ Λτ,σ
± (G).
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We need the dressing action of Zakharov and Shabat
[ZS79]. Suppose G+, G− are subgroups of a Lie group G
and the multiplication map from G+ × G− to G is a bijection.
Then every g ∈ G can be factored uniquely as g = g+g− with
g+ ∈ G+ and g− ∈ G−. Moreover, the space of right cosets
G/G− can be identified with G+, so the canonical action of
G− on G/G− by left multiplication, g− · (gG−) = g−gG−,
induces an action ∗ of G− on G+. The action ∗ is called the
dressing action. The dressing action can be computed by
factorization. In fact, g− ∗ g+ = g̃+, where g−g+ = g̃+g̃− with
g̃+ ∈ G+ and g̃− ∈ G−.
If the multiplication map from G+ × G− to G is one-to-one
but only onto an open, dense subset of G, then the dressing
actions are defined on an open neighborhood of the identity
e in G±.
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Terng and Uhlenbeck developed Bäcklund theory of the
U(n)/O(n)-system in [TU00] by applying the dressing
action of simple rational elements.
Let π be the Hermitian projection of C

n onto V and
z ∈ C \ R. Then the set consisting of

gz,π(λ) = π +
λ − z

λ − z̄
π⊥

generates RΛτ
−(G) by Uhlenbeck’s Theorem [Uh89]. One

can then verify giα,π ∈ Λτ,σ
− (G).

By Birkhoff Factorization Theorem, the dressing action of

Λ−(G) on Λ+(G) is only defined locally.
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However, Terng and Uhlenbeck have shown that the
U(n)-reality condition implies that the simple elements act
on Λτ

+(G) globally and explicitly. Since simple elements
generate RΛτ

−(G), the group RΛτ
−(G) acts globally on

Λτ
+(G).

Lemma: [TU00] Let z ∈ C, π a Hermitian projection of C
n

onto V , gz,π a simple element of RΛτ
−(G) and f ∈ Λτ

+(G).
Then gz,πf can always be factored uniquely as

gz,πf = f̃gz,π̃ ∈ Λτ
+(G) × RΛτ

−(G),

where π̃ is the Hermitian projection onto f(z̄)−1(V ).

Flat Lagrangian submanifolds in C
n and CP

n – p.22/33



Theorem: [TU00] The group R
∗

n RΛτ,σ
− (G) acts on the

space M of solutions of the U(n)/O(n)-system.
Here (r ∗ v)(x) = r−1v(r−1x) for r ∈ R∗,
and giα,π ∗ F = F + 2α(π̃)∗,
where π̃(x) is the Hermitian projection onto the linear
subspace E(x, iα)∗(V ), and V is the image of the projection
π. The multiplication in R

∗
n Λτ,σ

− (G) is defined by

(r1, g1) · (r2, g2) = (r1r2, g1(ρ(r1)(g2))),

where ρ(r)(g)(λ) = g(rλ).
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Example: When π is a Hermitian projection onto
1-dimensional subspace C · `. Then γ = E(iα)∗` can be
solved uniquely from:











(γi)xj
= fijγj , i 6= j,

(γi)xi
= −αγi −

∑

j fijγj ,

γi(0, · · · , 0) = `i.

Then F̃ = giα,π ∗ F is given by

f̃ij = fij +
2αγiγj
∑

k γ2
k

.
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To extend the theory to flat Lagrangian submanifolds in C
n,

one has to enlarge the system to contain the Egorov metric.
Extension: The extended Lax n-tuple is naturally the
following: θλ = ( iλδ+[δ,F ] δb

0 0
).

The corresponding loop group is Λ(G) for
G =

{

W = ( E v
0 s ) | v ∈ C

n, s ∈ C
∗
}

.

Let h = π̂ + λ−iα
λ+iα(I − π̂) = (

giα,π 0

0 λ−iα
λ+iα

) where π̂ denotes the

Hermitian projection of C
n+1 onto ˆ̀=

(

`
0

)

. Denote

h̃ = h−iα,iα,˜̂π = (
giα,π̃ ξ

0 λ−iα
λ+iα

).
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Main Theorem 1: Given a flat Lagrangian submanifold X in
C

n with frame W and the potential φ for its Egorov metric,
the dressing action of h−iα,iα,π̂ on W can be solved explicitly
as follows: h(λ)W (x, λ) = W̃ (x, λ)h̃(x, λ) where
h̃ = ˜̂π + λ−iα

λ+iα(I − ˜̂π) and ˜̂π is the projection with respect to
the following decomposition:
C

n+1 = W (x,−iα)−1 ˆ̀ ⊕ W (x, iα)−1 ˆ̀⊥.

ξ = 2iαϕ
λ+iα · γ

|γ|2 , where ϕ = `tX(x, iα);

φ̃ = φ + 2αϕ2

|γ|2 ;

A new flat Lagrangian submanifold by
X̂ := g−1

iα,πX̃ = X(x, λ) − 2iαϕ
λ+iα · E(x,λ)γ

|γ|2 .
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Dajczer and Tojeiro generalized Ribaucour transformations
in [DT00, 02] by geometric methods. In their formulas one
has to solve ϕxi

= biγi to obtain ϕ. Thus there are two
advantages of our formula.
Main Theorem 2: The dressing action of h−iα,iα,π̂ on any
given flat Lagrangian submanifold in S2n−1 ⊂ C

n can be
solved explicitly as follows ( γ = E(x, iα)∗`):

A new flat Lagrangian submanifold is given by
X̂ := g−1

iα,πX̃ = X(x, λ) + 2iγtb
(λ+iα)|γ|2 · E(x, λ)γ;

The Egorov metric for X̂ (or X̃) is given by
ds2 =

∑

i b̃
2
i dx2

i =
∑

i φ̃xi
dx2

i , where φ̃ = φ + 2(γtb)2

α|γ|2 .
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Example: “Vacuum” flat Lagrangian submanifold in C
n:

F ≡ 0 or fij ≡ 0, and E = exp(
∑

j iλxjejj);
the immersion X0 can be represented as direct products of
n plane curves:

X0 = z1 × · · · × zn : I1 × · · · × In → C × · · · × C = C
n,

with each Ii being an open interval in R. Every plane curve
zi has nowhere vanishing curvature ki(xi) = λ/bi(xi), thus
normal bundle is non-degenerate. Here
zj(xj) =

∫

bj(xj)e
iλxj dxj . The potential of the Egorov metric

is φ0 =
∑

j

∫

bj(xj)
2 dxj .

“Vacuum” solution in CP n−1: is the Clifford torus with radii
ri. The potential is φ̃0 =

∑

j r2
jxj .
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Reduction:
An important observation in [TU00]: Let V0 = V1 ⊕ V2

and V1⊥V2. Let πi denote the Hermitian projection to Vi.
Then:

gz,π0
=

λ − z̄

λ − z
gz,π1

gz,π2
.

So we only need to take care of projections into one
dimensional subspace when computing the dressing
actions of simple elements.

We classify the rational elements in Λτ,σ
− (G) with two

simple poles by Uhlenbeck’s Theorem. The dressing
action of the rational element g with two simple poles
reduces to the dressing action of a rational element with
one simple pole.
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Example: “one-soliton” flat Lagrangian submanifold in C
n:

X1 = X0 − 2α(α+iλ)ϕ
(λ2+α2)|γ|2 · (eiλx1γ1, · · · , eiλxnγn)t,

ds2
1 =

∑

j(φ1)xj
dx2

j , φ1 = φ0 + 2αϕ2

|γ|2 . where

ϕ =
∑

j

∫

`jbje
−αxj dxj and |γ|2 =

∑

j `2
je

−2αxj .
“one-soliton” flat Lagrangian submanifold in CP n−1:

X̃1 = X0 +
2(α+iλ)

P

j
`jrje

−αxj

(λ2+α2)|γ|2 (eiλx1γ1, · · · , eiλxnγn)t,

ds̃2
1 =

∑

j(φ̃1)xj
dx2

j , φ̃1 =
∑

j r2
jxj +

2(
P

j
`jrje

−αxj )2

α
P

j
`2je

−2αxj
.
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§5. A program for submanifold geometries

Main interest: Find special submanifolds which admit
many deformations and explicit solutions
Classical examples: Surfaces with constant negative
Gaussian curvature or constant mean curvature (including
minimal surface)
The Gauss-Codazzi equations for these surfaces are
integrable systems !
Moreover, the classical geometrical transformations of
Bäcklund, Darboux and Ribaucour can be constructed by
dressing actions through loop group factorization [TU00].
Question: How to generalize and find interesting
submanifolds in other space?
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ZS-AKNS construction Systematic construction from a
complex semi-simple Lie algebra and finite order
automorphisms. Famous examples includes:

KdV equation,

Sine-Gordon equation,

non-linear Schrödinger equation,

n-wave equation,

the equation for harmonic maps from the plane to a
compact Lie group.
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Example: G = sl(3, C). (Type A2)

Tzitzéica equation: ωxy = eω − e−2ω (Indefinite affine
spheres in R

3); [BS99, BE00, Wa03]

ωzz̄ = −eω − e−2ω (Definite affine spheres in R
3);

ωzz̄ = −eω + e−2ω (Special Lagrangian cones in C
3);

[Ha00, Ma-Ma01, Mc03, HTU, etc.]

structure equations for minimal surfaces in CP 2;

structure equations for Hamiltonian stationary
Lagrangian surfaces in CP 2. [He-Ro00]

...
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Direct approach: Can we identify geometric objects
corresponding to the various integrable systems associated
to general simple Lie algebras?
This program was first proposed by Terng in [Te97] Soliton
equations and differential geometry, and was then carried
out for the real Grassmannian system in [BDPT00]
Our discussion above is thus another example of this
program regarding the U(n)/O(n)-system and one of its
extensions.
The key link between these integrable systems and
submanifold geometries is the one parameter family of
some Lie algebra valued flat connection one-form: θλ, i.e.
Lax n-tuple.
For more examples and deeper results, please see the
survey math.DG/0212372.
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