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Plan for the talk

• The classical Dirac operator,

Example: Riemann surfaces

• The conformally invariant functional, definition

and results

• Application to spectral theory

• Application to surface theory

• Sketch of proofs

• The estimate (+) in various cases (work in Progress

with E. Humbert and B. Morel)

• Example: torus T2



The classical Dirac operator

Let (Mn, g) be a closed oriented compact Rieman-

nian manifold that carries a spin structure χ. A

spin structure is a pair χ = (PM, ϑ) where PM is a

principal Spin(n) bundle such that

PM × Spin(n) → PM
↘

↓ ϑ×Θ ↓ ϑ M
↗

SO(M)× SO(n) → SO(M)

commutes.

There is a faithful representation

σ : Spin(n)→ End(Ck), k = 2[n/2]

and a bilinear map cl : Rn⊗Ck → Ck, X ⊗ϕ 7→ X ·ϕ
such that

(Cl) X · Y · ϕ+ Y ·X · ϕ = −2g(X,Y )ϕ.



Let S := PM ×σ Ck be the associated bundle. It

carries a hermitian metric, a metric connection (in-

duced by the Levi-Civita connection). For any

p ∈M , the map cl induces a parallel multiplication

TM ⊗ S → S, X ⊗ ϕ 7→ X · ϕ

satisfying the Clifford relations (Cl).

The (classical) Dirac operator D : Γ(S) → Γ(S) is

then defined as as the first order operator that is

locally given by the formula

Dϕ = ei · ∇eiϕ

where e1, . . . , en is a local frame.

D has a self-adjoint extension and is elliptic. Hence

its spectrum is real and discrete.



Example: Compact Riemann surfaces

For n = 2: Spin(2) = SO(2) = S1, Θ(z) = z2.

σ(z) =

(
z 0

0 z̄

)

e1· =
(

0 1

−1 0

)
e2· =

(
0 i

i 0

)

Choosing a spin structure is the same as choosing

a square root of TM , viewed as a complex line

bundle.

S+M ⊗C S
+M = TM S−M := S+M = (S+)∗.

S := S+ ⊕ S−

D =

(
0 ∂

∂ 0

)
.

On a compact Riemann surface of genus γ there

are 22γ spin structures.



Conformal change of metric

Hitchin, Hijazi

n ≥ 2. Let g̃ = f2g. Then there is a map

S(M, g, χ) → S(M, g̃, χ)

ψ 7→

such that

|ψ̃|= f−
n−1
2 |ψ| and D̃ψ̃ = f−1D̃ψ.



The conformally invariant

functional

Fq : Γ(SM) \ kerD → R

Fq(ϕ) :=
‖Dϕ‖2

Lq(M,g)∫ 〈Dϕ,ϕ〉
With the above identification of spinors this func-

tional is conformally invariant iff

q = 2n/(n+ 1).

µq(M,g, χ) := inf
{
Fq(ϕ)

∣∣∣ ϕ ∈ Γ(S) \ kerD,
∫
〈Dϕ,ϕ〉 > 0

}
.

For q ≥ 2n
n+1 we have a Sobolev embedding

L
q
1 ↪→ L2

1/2.

This implies that µq(M, g, χ) > 0 for q ≥ 2n
n+1.



Lemma 1. If q > 2n
n+1, then there is a ϕ ∈ ΓC1,α(S)

with

µq(M, g, χ) = Fq(ϕ).

Theorem 2 (A. 2003). If q = 2n
n+1 and

(+) µq(M, g, χ) < µq(S
n)

(
=
n

2
ω

1/n
n

)
,

then there is ϕ ∈ Γ(S) with

µq(M, g, χ) = Fq(ϕ).

Furthermore, ϕ is C1,α and ϕ is smooth on M \
ϕ−1(0).

If n = 2, then ϕ is smooth on M .



Application to

Spectral theory

Spectrum of D

. . . ≤ λ−2 ≤ λ
−
1 < 0 = 0 . . . = 0︸ ︷︷ ︸

dimkerD

< λ+
1 ≤ λ

+
2 ≤ . . .

λ+
1 depends on M, g, χ.

Goal

λ+
1 ≥ nice geometric data



Examples

Friedrich (1980):

Any eigenvalue λ satifies

λ2 ≥ n

4(n− 1)
min scal.

Equality is attained iff M carries a Killing spinor,

e.g. M = Sn.

Kirchberg (1986 and 1988):

n = 4k − 2, Hol ⊂ U(2k − 1) or

n = 4k, Hol ⊂ U(2k)

λ2 ≥ 1

4

2k

2k − 1
min scal

Equality e.g. for M = CP2k−1 and M = CP2k−1 ×
T2.

Kramer, Semmelmann, Weingart (1997):

n = 4k, Hol ⊂ Sp(k) · Sp(1)

λ2 ≥ 1

4

m+ 3

m+ 2
scal.



Hijazi (1986):

If n ≥ 3, then

λ2 vol(M, g)2/n ≥ Y (M, [g])

where Y (M, [g]) is the Yamabe invariant.

Equality holds for Sn.

Bär (1992):

For any metric g on S2

λ2 area(S2, g) ≥ 4π

and equality is attained for the round sphere.



New estimates

For finding new estimates one has to find condi-

tions such that λ+
1 is bounded away from 0.

Corollary 3 (of Theorem 1).

Any metric g̃ ∈ [g] satisfies

λ+
1 (M, g̃, χ)vol(M, g̃)

1
n ≥ µ2n/(n+1)(M,g, χ) > 0

and equality is attained for a metric (possibly with

singularities).

This corollary is due to Lott (1986) for kerD = {0},
and due to Amm. (2000) in general.



Application to cmc surfaces

Euler-Lagrange equation of Fq

⇔ Dϕ = const |ϕ|p−2ϕ

where 1/q + 1/p = 1.

Now n = 2, Dϕ = H |ϕ|2ϕ.
We write ϕ = (ϕ+, ϕ−) and define

α :=




Re(ϕ+ ⊗ ϕ+ − ϕ− ⊗ ϕ−)
Im(ϕ+ ⊗ ϕ+ − ϕ− ⊗ ϕ−)

2Re(ϕ+ ⊗ ϕ−)


 .

One obtains:

(1) dα = 0. Hence there is F : M̃ → R3 such that

α = dF and there is a periodicity map P : π1(M)→
R3 such that

F (p · γ) = F (p) + P (γ) ∀p ∈M, γ ∈ π1(M)

(2) F is a conformal map with odd order branching

points

|dF | = |α|= |ϕ|2



(3) F (M) has mean curvature H.





Solutions to

Dϕ = const |ϕ|2ϕ
on M





1:1←→




Odd-branched conformal

periodic cmc immersions

of M̃ into R3 (S3, H3)







The estimate (+) in particular

cases

Work in progress, Collaboration with E. Humbert,

Nancy and B. Morel, Nancy

Now always q = 2n
n+1.

Question: Which Riemannian spin manifolds sat-

isfy

(+) µq(M, g, χ) < µq(S
n)?

Proposition 4.

µq(M, g, χ) ≤ µq(Sn)

for any Riemannian spin manifold (M, g, χ).

For proving the strict inequality (+) one needs a

test spinor ϕ ∈ Γ(S) such that

Fq(ϕ) <<< µq(S
n).



Relations to the Yamabe problem

Note, that if (+) holds, then

Y (M,g)
Hijazi
≤ µq(M, g, χ)2 < µq(S

n)2 = Y (Sn).

Theorem 5 (Yamabe, Trudinger, Aubin, Schoen,

Yau 1968–1990).

For any compact (M, g) Riemannian manifold not

conformal to Sn the inequality

Y (M,g) < Y (Sn)

holds.

The theorem solves the famous Yamabe problem:

any metric on a compact manifold is conformal to

a metric of constant scalar curvature.



The proof in the general case is quite involved

(see Lee-Parker). For spin manifolds Witten found

a simpler proof, written up in detail in Parker-

Taubes, using weighted Sobolev-space theory on

asymtotically euclidean spaces. In A.-Humbert, we

simplified this proof considerably using only stan-

dard analysis on compact manifolds.



Non conformally flat manifolds

Theorem 6 (AHM 2003). If M is not conformally

flat, and if the dimension of M is ≥ 7, then (+)

holds.

The proofs combines

• ideas of the Aubin’s proof of Theorem 5 for

these cases,

• some results by Bourguignon-Gauduchon,

• new material and

• many calculations in which many terms vanish

in the limit.



Conformally flat manifolds

Now, let (M, g) be conformally flat, χ a spin struc-

ture.

For p ∈ M choose a metric g̃ ∈ [g] that is flat

in a neighborhood of p, take normal coordinates,

defined on an open set U .

Let G be the Green function for D, i.e. G(x, y) ∈
Hom(SyM,SxM) is defined for x, y ∈ M , x 6= y de-

pends smoothly on x and y, for any ϕ ∈ SyM

D(G( · , y)ϕ︸ ︷︷ ︸
∈Γ(S)

) = δ(x, y)ϕ

G( · , y)ϕ ⊥ kerD

Expansion in above coordinates yields

G(x, y)ϕ =
1

(n− 1)ωn−1

x− y
|x− y|n

· ϕ+ β(x, y)ϕ

where β(x, y) ∈ Hom(SyM,SxM) is smooth on U ×
U .



Definition. The mass endomorphism is defined as

mx := β(x, x).

mx is selfadjoint, smooth in x. If n = dimM is

even, then the spectrum of mx is symmetric.

Examples:

mx 6= 0 on RP4k+3,

mx = 0 on flat tori Tn.

Theorem 7 (AHM 2003). If n is even and if

m 6≡ 0 or kerD 6= {0},

then (+) holds.

Remark. Until now all statements for λ+
1 also hold

for |λ−1 |.

Theorem 8 (AHM 2003). If n is odd and if

m 6≡ 0 or kerD 6= {0},

then (+) or (−) holds.



Here (−) is (+) with λ+
1 replaced by λ−1 .

Any compact Riemann surface of genus ≥ 1 has

a spin structure with non-vanishing α-genus (n ≡
2 mod 8 generalization of Â(M)). Hence, for this

spin structure kerD 6= {0}.

Corollary 9. Any compact Riemann surface M of

genus ≥ 1 has a spin structure such that (+) holds.

As a consequence we obtain a periodic odd-branched

conformal cmc immersion of M̃ into R3 with

H2 area(F (M̃)/P (π1)) < 4π.



Example: The torus T2

Let T2 carry an arbitrary conformal structure. It

has 3 spin structures with α(T 2, χ) = 0, and one

with α(T2, χ) 6= 0 (this is the trivial covering of

SO(T2)).

One obtains solution to Dϕ = µ|ϕ|2ϕ and confor-

mal cmc immersion of R2 such that
∫

T2
H2 =

∫
µ2|ϕ|4 = µq(T

2)2 < 4π.

Lemma 10. There are no branching points, i.e.

ϕ(x) 6= 0 ∀x ∈ T2.

Proof. Applying Gauss-Bonnet to

(T2 \ ϕ−1(0), |ϕ|4geucl) yields

4π ·# {branch points} ≤
∫
K =

∫
κ1κ2

≤
∫ (

κ1 + κ2

2

)2

=

∫
H2 < 4π



Conclusions for T2

Let χ be the trivial spin structure on T 2 (⇔ kerD 6=
{0}). Fix a conformal class [g]. We assume g is

flat, i.e. (T2, g) is isometric to R2/Γ.

• Then the infimum

µ = inf
g̃∈[g]

λ+
1 (T2, g̃, χ)

√
area(T2, g̃)

is positive and smaller than
√

4π. The infimum

is attained by a smooth metric without singu-

larities.

• For many conformal structures (e.g. the square

torus) the infimum is not attained by a flat met-

ric.

• There is a conformal map F : R2 → R3 and a

homomorphism P : Γ→ R3 such that

F (x+ γ) = F (x) + P (γ),

such that F (R2) has constant mean curvature µ,

and the area of a fundamental domain is 1.

• Similar immersions exist into S3 and H3.



Addtional Information
On this page we want to add some references for readers of
the internet version of these slides:

The proof of Lemma 1 and Theorem 2 is contained in [1] and
[2]. There you will also find further references, in particular
to the spinorial Weierstrass representation, which underlies
the application to cmc surfaces.

For a good overview article over the Yamabe problem, we
refer to [3], the simplification for spin manifolds is explained
in [4].

Theorem 6 is proved in [5]. The results about conformally

flat manifolds will appear in [6].
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