On a nonlinear Dirac equation and constant mean curvature surfaces

> Bernd Ammann, MSRI Berkeley, August 2003

http://www.berndammann.de/publications

Plan for the talk

- The classical Dirac operator, Example: Riemann surfaces
- The conformally invariant functional, definition and results
- Application to spectral theory
- Application to surface theory
- Sketch of proofs
- The estimate $(+)$ in various cases (work in Progress with E. Humbert and B. Morel)
- Example: torus T^2

The classical Dirac operator

Let (M^n, g) be a closed oriented compact Riemannian manifold that carries a spin structure χ . A spin structure is a pair $\chi = (PM, \vartheta)$ where PM is a principal $Spin(n)$ bundle such that

commutes.

There is a faithful representation

$$
\sigma : \mathsf{Spin}(n) \to \mathsf{End}(\mathbb{C}^k), \quad k = 2^{[n/2]}
$$

and a bilinear map cl : $\mathbb{R}^n\hspace{-0.05cm}\otimes\hspace{-0.05cm} \mathbb{C}^k \to \mathbb{C}^k$, $X\otimes \varphi \mapsto X\cdot \varphi$ such that

$$
(Cl) \qquad X \cdot Y \cdot \varphi + Y \cdot X \cdot \varphi = -2g(X, Y)\varphi.
$$

Let $S := PM \times_{\sigma} \mathbb{C}^k$ be the associated bundle. It carries a hermitian metric, a metric connection (induced by the Levi-Civita connection). For any $p \in M$, the map cl induces a parallel multiplication

 $TM \otimes S \to S$, $X \otimes \varphi \mapsto X \cdot \varphi$

satisfying the Clifford relations (Cl) .

The (classical) Dirac operator $D : \Gamma(S) \to \Gamma(S)$ is then defined as as the first order operator that is locally given by the formula

$$
D\varphi = e_i \cdot \nabla_{e_i} \varphi
$$

where e_1, \ldots, e_n is a local frame.

 D has a self-adjoint extension and is elliptic. Hence its spectrum is real and discrete.

Example: Compact Riemann surfaces For $n = 2$: Spin(2) = SO(2) = S^1 , $\Theta(z) = z^2$.

$$
\sigma(z) = \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}
$$

$$
e_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}
$$

Choosing a spin structure is the same as choosing a square root of TM , viewed as a complex line bundle.

 $S^+M \otimes_{\mathbb{C}} S^+M = TM$ $S^-M := S^+M = (S^+)^*.$ $S := S^+ \oplus S^ D =$ $\begin{pmatrix} 0 & \partial \end{pmatrix}$ ∂ 0 \setminus .

On a compact Riemann surface of genus γ there are $2^{2\gamma}$ spin structures.

Conformal change of metric

Hitchin, Hijazi

 $n\geq 2$. Let $\tilde{g}=f^2g$. Then there is a map

 $S(M, g, \chi) \rightarrow S(M, \tilde{g}, \chi)$ $\psi \mapsto$

such that

$$
|\tilde{\psi}| = f^{-\frac{n-1}{2}} |\psi| \quad \text{and} \quad \widetilde{D}\tilde{\psi} = f^{-1} \widetilde{D\psi}.
$$

The conformally invariant functional

 $\mathcal{F}_q : \Gamma(SM) \setminus \ker D \to \mathbb{R}$ $\mathcal{F}_q(\varphi) \vcentcolon=$ $||D\varphi||_L^2$ $L^q(M,g)$ $\int \langle D\varphi,\varphi\rangle$

With the above identification of spinors this functional is conformally invariant iff $q = 2n/(n + 1).$

$$
\mu_q(M, g, \chi) := \inf \Bigl\{ \mathcal{F}_q(\varphi) \mid \varphi \in \Gamma(S) \setminus \ker D, \\ \int \langle D\varphi, \varphi \rangle > 0 \Bigr\}.
$$

For $q \geq \frac{2n}{n+1}$ we have a Sobolev embedding

$$
L^q_1\hookrightarrow L^2_{1/2}.
$$

This implies that $\mu_q(M,g,\chi) > 0$ for $q \geq \frac{2n}{n+1}$.

Lemma 1. If $q > \frac{2n}{n+1}$, then there is a $\varphi \in \Gamma_{C^{1,\alpha}}(S)$ with

$$
\mu_q(M,g,\chi)=\mathcal{F}_q(\varphi).
$$

Theorem 2 (A. 2003). If $q = \frac{2n}{n+1}$ and

$$
(+) \qquad \mu_q(M,g,\chi) < \mu_q(S^n)\left(=\frac{n}{2}\,\omega_n^{1/n}\right),
$$

then there is $\varphi \in \Gamma(S)$ with

$$
\mu_q(M,g,\chi)=\mathcal{F}_q(\varphi).
$$

Furthermore, φ is $C^{1,\alpha}$ and φ is smooth on $M \setminus$ $\varphi^{-1}(0)$.

If $n = 2$, then φ is smooth on M.

Application to Spectral theory

Spectrum of D

 $\dots \leq \lambda_2^- \leq \lambda_1^- < \underbrace{0 = 0}_{\text{dim}}$ $\frac{z=0...=0}{\dim \ker D}$ $<\lambda_1^+ \leq \lambda_2^+ \leq \ldots$

 λ_1^+ $_1^+$ depends on $M, g, \chi.$

Goal

 $\lambda_1^+ \geq$ nice geometric data

Examples

Friedrich (1980): Any eigenvalue λ satifies

$$
\lambda^2 \ge \frac{n}{4(n-1)}
$$
min scal.

Equality is attained iff M carries a Killing spinor, e.g. $M = S^n$.

Kirchberg (1986 and 1988): $n = 4k - 2$, $Hol \subset U(2k - 1)$ or $n = 4k$, $Hol \subset U(2k)$

$$
\lambda^2 \ge \frac{1}{4} \frac{2k}{2k-1}
$$
 min scal

Equality e.g. for $M = \mathbb{C}P^{2k-1}$ and $M = \mathbb{C}P^{2k-1} \times$ T^2 .

Kramer, Semmelmann, Weingart (1997): $n = 4k$, $Hol \subset Sp(k) \cdot Sp(1)$

$$
\lambda^2 \ge \frac{1}{4} \frac{m+3}{m+2}
$$
scal.

Hijazi (1986): If $n \geq 3$, then

$$
\lambda^2 \operatorname{vol}(M,g)^{2/n} \ge Y(M,[g])
$$

where $Y(M,[g])$ is the Yamabe invariant. Equality holds for S^n .

Bär (1992): For any metric g on S^2 λ^2 area $(S^2,g)\geq 4\pi$

and equality is attained for the round sphere.

New estimates

For finding new estimates one has to find conditions such that λ_1^+ $_1^+$ is bounded away from 0.

Corollary 3 (of Theorem 1).

Any metric $\tilde{g} \in [g]$ satisfies

$$
\lambda_1^+(M, \tilde{g}, \chi) \text{vol}(M, \tilde{g})^{\frac{1}{n}} \ge \mu_{2n/(n+1)}(M, g, \chi) > 0
$$

and equality is attained for a metric (possibly with singularities).

This corollary is due to Lott (1986) for ker $D = \{0\},\$ and due to Amm. (2000) in general.

Application to cmc surfaces

Euler-Lagrange equation of \mathcal{F}_q

$$
\Leftrightarrow \qquad D\varphi = const \ |\varphi|^{p-2}\varphi
$$

where $1/q + 1/p = 1$.

Now $n = 2$, $D\varphi = H |\varphi|^2 \varphi$. We write $\varphi = (\varphi_+, \varphi_-)$ and define

$$
\alpha := \begin{pmatrix} \text{Re}(\varphi_+ \otimes \varphi_+ - \varphi_- \otimes \varphi_-) \\ \text{Im}(\varphi_+ \otimes \varphi_+ - \varphi_- \otimes \varphi_-) \\ 2\text{Re}(\varphi_+ \otimes \overline{\varphi_-}) \end{pmatrix}.
$$

One obtains:

(1) $d\alpha = 0$. Hence there is $F : \widetilde{M} \to \mathbb{R}^3$ such that $\alpha = dF$ and there is a periodicity map $P : \pi_1(M) \to$ \mathbb{R}^3 such that

$$
F(p \cdot \gamma) = F(p) + P(\gamma) \quad \forall p \in M, \ \gamma \in \pi_1(M)
$$

(2) F is a conformal map with odd order branching points

$$
|dF| = |\alpha| = |\varphi|^2
$$

(3) $F(M)$ has mean curvature H .

$$
\begin{Bmatrix}\n\text{Solutions to} \\
D\varphi = \text{const } |\varphi|^2 \varphi \\
\text{on } M\n\end{Bmatrix}
$$

1:1 ←→

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ Odd-branched conformal periodic cmc immersions of \widetilde{M} into \mathbb{R}^3 (S^3, H^3) \mathbf{A} \overline{a} \int

The estimate $(+)$ in particular cases

Work in progress, Collaboration with E. Humbert, Nancy and B. Morel, Nancy Now always $q = \frac{2n}{n+1}$. Question: Which Riemannian spin manifolds satisfy

$$
(+) \qquad \mu_q(M,g,\chi) < \mu_q(S^n)?
$$

Proposition 4.

$$
\mu_q(M,g,\chi)\leq \mu_q(S^n)
$$

for any Riemannian spin manifold (M, g, χ) .

For proving the strict inequality $(+)$ one needs a test spinor $\varphi \in \Gamma(S)$ such that

$$
\mathcal{F}_q(\varphi) \langle \mu_q(S^n) \rangle
$$

Relations to the Yamabe problem

Note, that if $(+)$ holds, then

 $Y(M,g)$ Hijazi $\leq \mu_q(M, g, \chi)^2 < \mu_q(S^n)^2 = Y(S^n).$

Theorem 5 (Yamabe, Trudinger, Aubin, Schoen, Yau 1968–1990).

For any compact (M, g) Riemannian manifold not conformal to $Sⁿ$ the inequality

 $Y(M,g) < Y(S^n)$

holds.

The theorem solves the famous Yamabe problem: any metric on a compact manifold is conformal to a metric of constant scalar curvature.

The proof in the general case is quite involved (see Lee-Parker). For spin manifolds Witten found a simpler proof, written up in detail in Parker-Taubes, using weighted Sobolev-space theory on asymtotically euclidean spaces. In A.-Humbert, we simplified this proof considerably using only standard analysis on compact manifolds.

Non conformally flat manifolds

Theorem 6 (AHM 2003). If M is not conformally flat, and if the dimension of M is > 7 , then $(+)$ holds.

The proofs combines

- ideas of the Aubin's proof of Theorem 5 for these cases,
- some results by Bourguignon-Gauduchon,
- new material and
- many calculations in which many terms vanish in the limit.

Conformally flat manifolds

Now, let (M, g) be conformally flat, χ a spin structure.

For $p \in M$ choose a metric $\tilde{g} \in [g]$ that is flat in a neighborhood of p , take normal coordinates, defined on an open set U .

Let G be the Green function for D, i.e. $G(x, y) \in$ Hom (S_yM, S_xM) is defined for $x, y \in M$, $x \neq y$ depends smoothly on x and y, for any $\varphi \in S_yM$

$$
D(\underbrace{G(\cdot, y)\varphi}_{\in \Gamma(S)}) = \delta(x, y)\varphi
$$

$$
G(\cdot, y)\varphi \perp \ker D
$$

Expansion in above coordinates yields

$$
G(x,y)\varphi = \frac{1}{(n-1)\omega_{n-1}} \frac{x-y}{|x-y|^n} \cdot \varphi + \beta(x,y)\varphi
$$

where $\beta(x, y) \in \text{Hom}(S_yM, S_xM)$ is smooth on $U \times$ U .

Definition. The *mass endomorphism* is defined as

$$
m_x := \beta(x, x).
$$

 m_x is selfadjoint, smooth in x. If $n = \dim M$ is even, then the spectrum of m_x is symmetric.

Examples: $m_x \neq 0$ on $\mathbb{R}P^{4k+3}$, $m_x = 0$ on flat tori T^n .

Theorem 7 (AHM 2003). If n is even and if

 $m \not\equiv 0$ or ker $D \not\equiv \{0\},\$

then $(+)$ holds.

Remark. Until now all statements for λ_1^+ $\frac{+}{1}$ also hold for $|\lambda_1^ \frac{1}{1}$.

Theorem 8 (AHM 2003). If n is odd and if

 $m \not\equiv 0$ or ker $D \not\equiv \{0\},\$

then $(+)$ or $(-)$ holds.

Here $(-)$ is $(+)$ with λ_1^+ $_1^+$ replaced by $\lambda_1^ \frac{1}{1}$.

Any compact Riemann surface of genus > 1 has a spin structure with non-vanishing α -genus ($n \equiv$ 2 mod 8 generalization of $\widehat{A}(M)$). Hence, for this spin structure ker $D \neq \{0\}.$

Corollary 9. Any compact Riemann surface M of genus > 1 has a spin structure such that $(+)$ holds. As a consequence we obtain a periodic odd-branched conformal cmc immersion of \widetilde{M} into \mathbb{R}^3 with

$$
H^2 \operatorname{area}(F(\widetilde{M})/P(\pi_1)) < 4\pi.
$$

Example: The torus T^2

Let T^2 carry an arbitrary conformal structure. It has 3 spin structures with $\alpha(T^2,\chi)=0$, and one with $\alpha(T^2,\chi) \,\neq\, 0$ (this is the trivial covering of $SO(T^2)$).

One obtains solution to $D\varphi = \mu |\varphi|^2 \varphi$ and conformal cmc immersion of \mathbb{R}^2 such that

$$
\int_{T^2} H^2 = \int \mu^2 |\varphi|^4 = \mu_q(T^2)^2 < 4\pi.
$$

Lemma 10. There are no branching points, i.e. $\varphi(x) \neq 0 \,\forall x \in T^2.$

Proof. Applying Gauss-Bonnet to $(T^2\setminus\varphi^{-1}(0),|\varphi|^4g_{eucl})$ yields $4\pi \cdot \#$ {branch points} \leq $K =$ Z $\kappa_1\kappa_2$ \leq \int $\kappa_1 + \kappa_2$ 2 $\sqrt{2}$ = $\int H^2 < 4\pi$

Conclusions for T^2

Let χ be the trivial spin structure on T^2 (\Leftrightarrow ker $D \neq$ $\{0\}$). Fix a conformal class [g]. We assume g is flat, i.e. (T^2,g) is isometric to \mathbb{R}^2/Γ .

• Then the infimum

$$
\mu = \inf_{\tilde{g} \in [g]} \lambda_1^+(T^2, \tilde{g}, \chi) \sqrt{\text{area}(T^2, \tilde{g})}
$$

is positive and smaller than $\sqrt{4\pi}$. The infimum is attained by a smooth metric without singularities.

- For many conformal structures (e.g. the square torus) the infimum is not attained by a flat metric.
- There is a conformal map $F : \mathbb{R}^2 \to \mathbb{R}^3$ and a homomorphism $P: \Gamma \to \mathbb{R}^3$ such that

$$
F(x + \gamma) = F(x) + P(\gamma),
$$

such that $F(\mathbb{R}^2)$ has constant mean curvature μ , and the area of a fundamental domain is 1.

• Similar immersions exist into S^3 and H^3 .

Addtional Information On this page we want to add some references for readers of the internet version of these slides:

The proof of Lemma 1 and Theorem 2 is contained in [1] and [2]. There you will also find further references, in particular to the spinorial Weierstrass representation, which underlies the application to cmc surfaces.

For a good overview article over the Yamabe problem, we refer to [3], the simplification for spin manifolds is explained in [4].

Theorem 6 is proved in [5]. The results about conformally flat manifolds will appear in [6].

References

[1] Bernd Ammann, A variational problem in conformal spin geometry, Habilitationsschrift Universitaet Hamburg, 2003

[2] Bernd Ammann, The smallest Dirac eigenvalue in a spinconformal class and cmc-immersions, Preprint

[3] Lee, Parker, The Yamabe problem, Bull AMS, New series 17 (1987) 37–91

[4] Ammann, Humbert, On a nonlinear Dirac equation of Yamabe type, Preprint math.DG/0304043

[5] Ammann, Humbert, Morel, On a nonlinear Dirac equation of Yamabe type, Preprint math.DG/0308107

[6] Ammann, Humbert, Morel, preprint in preparation. All my publications are available under http://www.berndammann.de/publications.