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Plan for the talk

e [ he classical Dirac operator,
Example: Riemann surfaces

e [ he conformally invariant functional, definition
and results

e Application to spectral theory
e Application to surface theory
e Sketch of proofs

e The estimate (4 ) in various cases (work in Progress
with E. Humbert and B. Morel)

e Example: torus T2



T he classical Dirac operator

Let (M™, g) be a closed oriented compact Rieman-
nian manifold that carries a spin structure y. A
spin structure is a pair x = (PM,¥) where PM is a
principal Spin(n) bundle such that

PM x Spin(n) — PM

N
19 x© |9 M

/
SO(M) x SO(n) — SO(M)

commutes.
There is a faithful representation

o : Spin(n) — End(CF), k= 2l"/2]

and a bilinear map cl : R"®CF - CF, X@p— X - ¢
such that

(CD) XY -p4+Y X -p=-29(X,Y)o.



Let S := PM x5 Ck be the associated bundle. It
carries a hermitian metric, a metric connection (in-
duced by the Levi-Civita connection). For any
p € M, the map cl induces a parallel multiplication

TM®S —S5S XQp—X-p
satisfying the Clifford relations (CI).

The (classical) Dirac operator D : I'(S) — [(S) is
then defined as as the first order operator that is
locally given by the formula

Dy =¢;- Ve,

where eq,...,en IS a local frame.
D has a self-adjoint extension and is elliptic. Hence
its spectrum is real and discrete.



Example: Compact Riemann surfaces
For n = 2: Spin(2) = SO(2) = St, ©(z) = 22
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Choosing a spin structure is the same as choosing
a square root of T'M, viewed as a complex line
bundle.

STM @c STM =TM S™M = STM = (ST)*.
S:=8TaS~

(3 1)

On a compact Riemann surface of genus ~ there
are 227 spin structures.



Conformal change of metric
Hitchin, Hijazi
n > 2. Let § = f2g. Then there is a map
S(M,g,x) — S(M,g,x)
Y =
such that

Gl=f"2 9| and D¢ =f1Dy.



The conformally invariant
functional

Fq:T(SM)\ kerD — R

With the above identification of spinors this func-
tional is conformally invariant iff

g=2n/(n—+1).
ng(M, g,x) = inf{Fy(p) | » € (S)\kerD,
/(Dso, p) > 0}-
For g > 2_|?1 we have a Sobolev embedding
L — L1/2

This implies that pg(M,g,x) > 0 for ¢ > nz—_l?l



Lemma 1. If g > +1' then thereis a ¢ € T ~1,4(S)
with

pg(M, g,x) = Fq(p).

Theorem 2 (A. 2003). If g = % and

n o1
(+) na(M9.0 < g(S™) (= 5"
then there is ¢ € ' (S) with

Mq(MagaX) — fq(sﬁ)-

Furthermore, ¢ is C1® and ¢ is smooth on M \

¢ 1(0).
If n =2, then ¢ is smooth on M.



Application to
Spectral theory

Spectrum of D

<A <A<

\\= 7

dim‘krerD

Ai" depends on M, g, x.

Goal

Ai" > nice geometric data

0=0..=0<A <A <.



Examples
Friedrich (1980):
Any eigenvalue A\ satifies
A2 > " min scal.
4(n—1)
Equality is attained iff M carries a Killing spinor,
e.g. M = S™.

Kirchberg (1986 and 1988):
n=4k—2, Hol CU(2k — 1) or
n =4k, Hol C U(2k)

2>t 2k
— 42k -1
Equality e.g. for M = CP2F—1 and M = CP2k—1 «
T?.

min scal

Kramer, Semmelmann, Weingart (1997):
n =4k, Hol C Sp(k) - Sp(1)

W

+
+ 2

3

scal.

A2 >

N
3



Hijazi (1986):
If n > 3, then

A2 vol(M, g)?/™ > Y (M, [g])

where Y (M, [g]) is the Yamabe invariant.
Equality holds for S™.

Bir (1992):
For any metric g on S2

A2 area(S?,g) > 4r

and equality is attained for the round sphere.



New estimates
For finding new estimates one has to find condi-
tions such that Ai" IS bounded away from O.

Corollary 3 (of Theorem 1).
Any metric g € [g] satisfies
- NS
)\T(M,Q,X)VOI(M, g)n 2 HQn/(n+1)(M797X) >0

and equality is attained for a metric (possibly with
singularities).

This corollary is due to Lott (1986) for ker D = {0},
and due to Amm. (2000) in general.



Application to cmc surfaces

Euler-Lagrange equation of Fy

& Do = const |p[P™%¢p
where 1/g+1/p=1.

Now n =2, Dy = H |p|2.
We write ¢ = (¢4, 9—) and define

Re(pr @py — p-Q¢-)
o= | Im(pr @y — - ®¢p-)
2Re(py @ p-)

One obtains:
(1) da = 0. Hence there is F : M — R3 such that
o = dF' and there is a periodicity map P : 71 (M) —
R3 such that

F(p-v) =F(p)+ P(y) Vpe M, yecmni(M)

(2) F'is a conformal map with odd order branching
points

2
|[dF| = |af = |¢|



(3) F(M) has mean curvature H.

Solutions to
Dy = const |p|2¢
on M

1:1

—>

Odd-branched conformal
periodic cmc immersions
of M into R3 (S3, H3)



The estimate (4) in particular
cases

Work in progress, Collaboration with E. Humbert,
Nancy and B. Morel, Nancy

Now always g = HQ—_&

Question: Which Riemannian spin manifolds sat-
isfy

(+) pg(M, g, x) < pg(S™)?

Proposition 4.

,Uq(MagaX> < Mq(Sn)

for any Riemannian spin manifold (M, g, x).

For proving the strict inequality (4+) one needs a
test spinor ¢ € I'(S) such that

Fqlp) <pqg(S™).



Relations to the Yamabe problem
Note, that if (4) holds, then

Hijaze 5 \D o
Y(M,g9) < pg(M,g,x)° < pg(S™)c =Y(S").

Theorem 5 (Yamabe, Trudinger, Aubin, Schoen,
Yau 1968—1990).

For any compact (M, g) Riemannian manifold not
conformal to S™ the inequality

Y(M,g) <Y(S")
holds.

The theorem solves the famous Yamabe problem:
any metric on a compact manifold is conformal to
a metric of constant scalar curvature.



The proof in the general case is quite involved
(see Lee-Parker). For spin manifolds Witten found
a simpler proof, written up in detail in Parker-
Taubes, using weighted Sobolev-space theory on
asymtotically euclidean spaces. In A.-Humbert, we
simplified this proof considerably using only stan-
dard analysis on compact manifolds.



Non conformally flat manifolds

Theorem 6 (AHM 2003). If M is not conformally
flat, and if the dimension of M is > 7, then (4)
holds.

The proofs combines

e ideas of the Aubin’'s proof of Theorem 5 for
these cases,

e some results by Bourguignon-Gauduchon,
e new material and

e Mmany calculations in which many terms vanish
in the limit.



Conformally flat manifolds
Now, let (M, g) be conformally flat, x a spin struc-
ture.

For p € M choose a metric g € [g] that is flat
in a neighborhood of p, take normal coordinates,
defined on an open set U.

Let G be the Green function for D, i.e. G(z,y) €
Hom(SyM, Sz M) is defined for z,y € M, x # y de-
pends smoothly on = and y, for any ¢ € SyM

D(G( -iy)se) = (z,y)e
er(Ss)

G(-,y)p L kerD

Expansion in above coordinates vields
1 Tr—vy
G(z,y)p =

(n—1Dwy_1 |z—y|"
where B(z,y) € Hom(SyM, SzM) is smooth on U X
U.

o+ B(x,y)p




Definition. The mass endomorphism is defined as

my = B(x, ).

mq 1S selfadjoint, smooth in z. If n = dimM is
even, then the spectrum of my IS symmetric.

Examples:
mz 7= 0 on RP4+3,
my, = 0 on flat tori T™.

Theorem 7 (AHM 2003). Ifn is even and if
m Z 0 or ker D = {0},
then (4) holds.

Remark. Until now all statements for Ai" also hold
for |A{].

Theorem 8 (AHM 2003). Ifn is odd and if

m Z 0 or ker D # {0},
then (4) or (=) holds.



Here (=) is (4) with A] replaced by A7.

Any compact Riemann surface of genus > 1 has
a spin structure with non-vanishing a-genus (n =
2 mod 8 generalization of A(M)). Hence, for this
spin structure ker D # {0}.

Corollary 9. Any compact Riemann surface M of
genus > 1 has a spin structure such that (4+) holds.
AS a consequence we obtain a periodic odd-branched
conformal cmc immersion of M into R3 with

H? area(F(M)/P(x1)) < 4.



Example: The torus 72

Let T2 carry an arbitrary conformal structure. It
has 3 spin structures with a(7T2,x) = 0, and one
with a(T2,x) # 0 (this is the trivial covering of
SO(T2)).

One obtains solution to Dy = pulp|%¢ and confor-
mal cmc immersion of R? such that

[ LH2 = [Pl = 1ug(T2)2 < 4.

Lemma 10. There are no branching points, i.e.
o(x) #= 0 Va € T?.

Proof. Applying Gauss-Bonnet to
(T2 \ 90_1<O)7 |90|4geucl) yields

47 - # {branch points} < /K = //-4;1/-4;2

< /(Klgm2)2=/fl2<4w




Conclusions for T2

Let x be the trivial spin structure on T2 (& ker D #
{0}). Fix a conformal class [g]. We assume g is
flat, i.e. (T2,g) is isometric to R2/I".

e T hen the infimum
a :ciien[];] AT (72,5, %) \/area(T2,3)

IS positive and smaller than v/4x. The infimum
IS attained by a smooth metric without singu-
larities.

e For many conformal structures (e.g. the square
torus) the infimum is not attained by a flat met-
ric.

e There is a conformal map F : R? — R3 and a
homomorphism P : I — R3 such that

F(z +~v) = F(z) + P(v),

such that F(R?) has constant mean curvature u,
and the area of a fundamental domain is 1.

e Similar immersions exist into S3 and HS3.



Addtional Information
On this page we want to add some references for readers of
the internet version of these slides:

The proof of Lemma 1 and Theorem 2 is contained in [1] and
[2]. There you will also find further references, in particular
to the spinorial Weierstrass representation, which underlies
the application to cmc surfaces.

For a good overview article over the Yamabe problem, we
refer to [3], the simplification for spin manifolds is explained
in [4].

Theorem 6 is proved in [5]. The results about conformally
flat manifolds will appear in [6].
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