Minimal and Normal Surfaces

Joel Hass, UC Davis




General questions:

1. How hard are the problems of 3-
dimensional topology?
lassify knots

. ) Classify 3-manifolds

2. Can the techniques of 3-dimensional
topology say something about the
relationships between various complexity
classes?

(As with applications of the Jaco-Shalen-
Johannson decomposition of 3-manifolds to
general finitely generated groups).

( Mojhe )
3. Do the techniques developed in studying
the computational complexity of numerous
problems have implications in 3-
dimensional topology and geometry?
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Some motivating questions in topology:

1. Can we find a procedure to decide if a
knot is trivial? UNKNOT RECOGNITION or

UNKNOTTING

= 77

Can we find an algorithm to determine 1if
these knots are the same? (Dehn, 1915)



What about
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Closely related:

Can we tell apart any two knots?
(Knot Recognition)

Can we classify all knots?

(Knotplot)

Classification is a consequence of
recognition. It is easy to generate all
possible knots. The tricky part 1s to
determine if two pictures represent the same
knot, leading to duplication.
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Knot Complements are special cases of
Manifolds

*When are two manifolds the same?
(homeomorphic)

Dimension 1 & 2: Easy.

ga ‘ Agbﬁ{&\;’&

g e Q L

Connectel
C§ 4’&@? r;\”\'@ h‘“ﬁ
— -+ f“a:éiwijdfﬁ_-{_@i

Dimension 3: Special cases can be done.
3-sphere, Haken, Lens spaces, ... AlL?
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Dimensions > 4: Many problems are
undecidable. No algorithm or procedure can

be found that can

a. Classity 4-manifolds (Markov)

»~ b. Recognize S° (Novikov)

Dimension 3 seems the most interesting.
* Problems are just barely solvable.

* Computational complexity of central
problems seems to be on the edge between
polynomial and exponential.

* Computer programs are already a major
tool for 3-manifold research.

(SNAPPEA by Jeff Weeks, Regina (Ben
Burton), Knot Simplifier (Dynnikov,
Polthier,..)

How far can they go?



Current status of some of these problems:

UNKNOTTING PROBLEM:

Haken (1961): The problem is decidable.
Algorithm based on Normal Surfaces.

Other algorithms exist based on
geometrization or on variations of Haken’s
approach. (Thurston, Epstein-Holt-
Patterson, Sela, Birman-Hirsch).

‘... Hass-Lagarias-Pippenger (1997):

1. An algorithm which determines 1f a knot
diagram with n crossings is unknotted runs
in time O(c")

2. The Unknotting Problem is in NP.
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KNOT EQUIVALENCE PROBLEM:
Can we tell if two knots are the same?

Haken, Hemion, Matveev (1964-2000): A
rather complicated procedure, with many
cases, will recognize knots. A complexity
bound is not currently known. (Partial
results by Mijatovic, 2002).

This problem 1s much harder to analyze then
Unknot Recognition. To determine if a knot
1s equivalent to the unknot, 1t suffices to
check if it is the boundary of an embedded
disk.
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There 1s no such shortcut to test if two knots
are equivalent. Knot equivalence algorithms
go deeply into 3-manifold theory.
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Closely related to Knot Recognition:

3-DIMENSIONAL HOMEOMORPHISM
PROBLEM:

Instance: A pair of triangulated 3-manifolds,
K and L.

Question: Are K and L. homeomorphic?

A procedure was discovered by: Haken (&
Hemion, Matveev, Thurston, 1965-78). (If
the manifold 1s Haken).

Haken manifolds are a broad class,
including all knot complements.
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Normal curves in surfaces

Definition: An embedded arc in a triangle is
elementary 1f its endpoints lie on distinct
edges of the triangle.

Elementary and non-elementary arcs

There are three types of elementary arcs in a
triangle, up to an 1sotopy preserving the
edges of the triangle.

These arcs are the same up to a normal
isotopy. There are three types of elementary
arc in a triangle.



A curve 1n a triangulated surface is normal if
its intersection with every triangle is a
collection of elementary arcs.
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Example: The 2-sphere can be triangulated
with four triangles.




The 2-sphere also admits a pseudo-
triangulation with only two triangles.

This time there are only six normal curves
possible, three triangles and three
quadrilaterals.

This 1s not a true triangulation, since the
structure 1s not that of a simplicial complex.
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Normal surface theory applies equally well
to such “pseudo-triangulations”. They have
the advantage of containing fewer triangles.

A torus triangulated with two triangles
(pseudo-triangulation) has infinitely many
distinct normal curves.
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Theorem Any simple closed curve I"on a
surface can be 1sotoped until it is either
normal or lies in a single triangle.

Proof: A non-elementary arc of I', if one
exists, starts and ends on the same edge of
some triangle T. Such an arc, together with
a segment of the edge between its endpoints
bounds a disk in T.

APAY

The arc is innermost if this subdisk contains
no other arcs of I'NT.
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If there is a non-elementary arc, then there is
an innermost such arc. Isotop an innermost
arc across the innermost subdisk, reducing
the number of intersections with the
boundary by two.

2

Continue until the curve is normal or all
intersections are eliminated.



Compare this with the following result from
differential geometry.

Theorem A connected simple closed curve
on an orientable Riemannian surface can be
1sotoped to a simple geodesic or to a point.
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The proof of this result 1s much harder. The
existence of a geodesic in the homotopy
class 1s not easy, and embeddedness of this
geodesic 1s also a difficult problem.

This suggests a connection between
geodesics and normal curves. We will
pursue this, and the corresponding
connection between minimal and normal
surfaces.



Geodesics have the property of minimizing
length locally.
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Meridian of a distorted torus. Any metric on
a torus gives a length minimizing geodesic
in each homotopy class.
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In a triangulated surface, we can take
metrics that are concentrated at the edges of
a triangulation. Along the edges the metric
looks like a wall that must be crossed. At
vertices the metric has towers. Shortest
geodesics cross these “walls” in as few
points as possible.
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Result: Shortest geodesics in these special
metrics are much like normal curves:
“Normal curves are the geodesics (locally
shortest curves) of triangulated (or PL)

surfaces.
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Riemannian Surface Triangulated Surface

Length - Weight

Geodesic +~7 Normal Curve
Shortest geodesic 7 Least weight curve
The weight of a curve is the number of times
it crosses the edges of a triangulation.

Minimizing weight by isotopies gives a
normal curve.
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Excessive weight
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Normal Surfaces in 3-Manifolds

A Key Tool for algorithms in 3-dimensions:
Normal Surfaces (Kneser 1929, Haken
1961)

In triangulated 3-manifolds, an attempt to
push the surface around until 1t becomes as
simple as possible gives rise to normal
surfaces. Normal surfaces are the discrete
versions of minimal surfaces. They again
form surfaces that minimize intersection
with the edges of a triangulation.
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Definition: Normal surfaces are surfaces that

intersect each tetrahedron of a triangulation
in elementary disks.

No tubes or nonelementary disks are
allowed.
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Theorem (Kneser) Any embedded surface F
in a triangulated 3-manifold can be isotoped
(pushed around) and compressed (surgered)
until it 1s either normal or lies in a single
tetrahedron.

N
(=

A compression

Proof: Start with any surface and look at
how it intersects triangular faces of the
triangulation of M.

We can push a surface around in M to do
two things:
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1. Simplify curves of intersection of the
surface with edges of triangulation.
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The number of intersections with the edges
decreases. When we stop, we either get
elementary disks or pieces lying within a

tetrahedron. T
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First important application:

A 3-manifold is prime if it cannot be split
into two 3-manifolds by cutting along a 2-
sphere (except for a trivial 2-sphere, one
bounding a ball).
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Theorem (Kneser Finiteness)
A 3-manifold can be split along 2-spheres
into prime pieces.

In other words, 3-manifolds have prime
decompositions.

Idea of proof: Cut along a 2-sphere. Look at
the pieces. Is there another non-trivial 2-
sphere in each, not parallel to the first 2-
sphere? How many times can this repeat?

If we have a collection of K non-parallel 2-
spheres, we can normalize the entire
collection simultaneously. The question
reduces to,

How many non-parallel 2-spheres can be
simultaneously embedded in M? F

e
o iﬁ’gﬁb

The answer is that if M has t tetrahedra, we
cannot have more than 10t normal surfacese
without having two surfaces parallel.
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We will prove something simpler: there are
at most 6t non-parallel normal curves on an
oriented surface made of t triangles.
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Suppose we have a collection of k non-
parallel normal curves.

1
3 .
= 4

The arcs of these normal curves in a triangle
it into many small quadrilaterals, and four
“bad regions”. If two curves share a
quadrilateral they are parallel in a triangle.
If these quadrilaterals continue to form a
loop of quadrilaterals, the curves are

parallel.
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If the curves are not parallel, then they have
a bad region between them.

Conclusion: Each curve meets at least one of
the 4t bad regions.

In each triangle, the bad regions meet at
most 6 curves. Therefore the bad regions
meet at most 6t curves. Therefore if there
are 6t+1 curves then one does not meet a
bad region, and is parallel to a second curve.
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Similar reasoning in a 3-manifold shows that
there are at most 10t normal surfaces, no
pair of which is parallel.

There can be at most@ bad regions in a
tetrahedron. These touch at most 10
surfaces.



