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Folding and UnfoldingFolding and Unfolding
in Sciencein Science

❚ Linkages
❙ Robotic arms
❙ Proteins

❚ Paper
❙ Airbags
❙ Space

deployment
❚ Polyhedra

❙ Sheet metal

Canadarm

5-meter lens
(2x Hubble)

Hyde

Touch-3D

BRL



Folding and Unfolding inFolding and Unfolding in
Computational GeometryComputational Geometry

❚ Linkages

❚ Paper

❚ Polyhedra

❙ Preserve edge lengths
❙ Edges cannot cross

❙ Preserve distances
❙ Cannot cross itself

❙ Cut the surface while
keeping it connected



Folding and Unfolding TalksFolding and Unfolding Talks

Joe O�RourkeSaturdayUnfolding
polyhedra

Joe O�RourkeFriday
Folding polygons

into convex
polyhedra

Erik DemaineTomorrowPaper folding

Erik DemaineTodayLinkage folding



Outline: LinkagesOutline: Linkages

❚ Definitions and History
❚ Rigidity
❚ Locked chains in 3D
❚ Locked trees in 2D
❚ No locked chains in 2D
❚ Algorithms
❚ Connections to protein folding



Linkages / FrameworksLinkages / Frameworks

❚ Bar / link / edge = line segment
❚ Vertex / joint = connection between

     endpoints of bars

Closed chain
   / cycle
   / polygon

Open chain
   / arc

Tree General



ConfigurationsConfigurations

❚ Configuration = positions of the vertices
that preserves the bar lengths

Non-self-intersecting configurations Self-intersecting

❚ Non-self-intersecting = No bars cross



Configuration SpaceConfiguration Space

❚ Configuration space: One point per config.
❚ Free space: Only non-self-intersecting configs.
❚ Paths in these spaces = Motions of linkage

Θ1

Θ2
Θ2

Θ1



Some HistorySome History

❚ An early quest: Converting circular motion
into linear motion

❚ Many more in Kempe�s
How To Draw A Straight Line (1877)
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Watt parallel motion (1784) Peaucellier linkage (1864)



Outline: LinkagesOutline: Linkages

❚ Definitions and History
❚ Rigidity
❚ Locked chains in 3D
❚ Locked trees in 2D
❚ No locked chains in 2D
❚ Algorithms
❚ Connections to protein folding



RigidityRigidity

❚ Starting question: When can a config. of a
linkage move at all ?  [excluding rigid motion]

❚ Yes � Flexible;   No � Rigid

(all triangulations) (all �pseudo-
triangulations�)

Flexible RigidRigid Rigid



Generic RigidityGeneric Rigidity

Generically flexible Rarely rigid Generically rigid Rarely flexible

generically rigid generically flexible

❚ Whether a linkage configuration is rigid is
almost always a combinatorial property of
the underlying graph structure:
❙ Generically flexible = almost all realizations

of the graph are flexible
❙ Generically rigid = almost all realizations rigid



Laman’sLaman’s Characterization of Characterization of
Generic RigidityGeneric Rigidity

❚ Theorem: [Laman 1970]
❙ A graph with n joints and exactly 2n − 3 bars is

generically rigid in 2D precisely if every induced
subgraph on k joints has at most 2k − 3 bars

❚ Such graphs are minimally generically rigid

8 vertices
13 bars

5 vertices
6 bars= < 4 vertices

5 bars = 8 vertices
12 bars <

minimally generically rigid not



Laman’sLaman’s Characterization of Characterization of
Generic RigidityGeneric Rigidity

❚ Theorem: [Laman 1970]
❙ A graph with n joints and exactly 2n − 3 bars is

generically rigid in 2D precisely if every induced
subgraph on k joints has at most 2k − 3 bars

❙ A graph with n joints and less than 2n − 3 bars is
never generically rigid in 2D

❙ A graph with n joints and more than 2n − 3 bars is
generically rigid in 2D precisely if it has a generically
rigid subgraph with 2n − 3 bars

❚ Intuitively, need 2n − 3 bars to be rigid, but
these bars cannot be too concentrated, else
another subgraph would have too few edges

8 vertices
12 bars <



Generic Rigidity in HigherGeneric Rigidity in Higher
DimensionsDimensions

❚ Open: Characterize the 3D
generically rigid graphs
❙ Can these graphs be

recognized in
polynomial time?

❙ Laman�s theorem
generalizes to a
necessary condition
(3n − 6)



vj

x i − xj

vi

Infinitesimal RigidityInfinitesimal Rigidity

❚ If a linkage is flexible, it is flexible by a
smooth motion � can take first derivative

❚ Infinitesimal motion defines a motion to
first order, from initial configuration x
❙ Suppose xi is the location of vertex
❙ Choose velocity vector vi for each i
❙ Lengths of each bar {i, j} must stay

constant to the first order:
(vi − vj) ·  (xi − xj) = 0

❙ Constraints form rigidity matrix
xi

xj



Rigidity and Infinitesimal RigidityRigidity and Infinitesimal Rigidity

❚ Flexibility � Infinitesimal flexibility
❚ Infinitesimal rigidity � Rigidity

❙ So infinitesimal rigidity is a stronger condition
❚ There is also second-order, etc. rigidity



TensegritiesTensegrities

❚ Tensegrity = generalization of linkage, 
where each edge can be one of

❙ Bar � length must stay equal
❙ Strut � length must stay equal or grow
❙ Cable � length must stay equal or shrink

❚ Plain/generic/infinitesimal rigidity similar

Flexible RigidFlexible Flexible



Infinitesimal Flexibility isInfinitesimal Flexibility is
Linear ProgrammingLinear Programming

❚ Infinitesimal flexibility can be expressed
as a linear feasibility problem
(special linear program)

❚ Objective: Minimize 0
❚ Constraints:

❙ (vi − vj) ·  (xi − xj) = 0    for each bar {i, j}
❙ (vi − vj) ·  (xi − xj) ≥ 0    for each strut {i, j}
❙ (vi − vj) ·  (xi − xj) ≤ 0    for each cable {i, j}

❚ vi variable; xi given



Dual of Infinitesimal Motions:Dual of Infinitesimal Motions:
Equilibrium StressesEquilibrium Stresses    [Roth & [Roth & WhiteleyWhiteley 1981] 1981]

❚ Primal LP infeasible �
dual LP infeasible or unbounded

❚ Equilibrium stress = assignment of weights
ω{i,j} to edges {i, j} satisfying
❙ ω{i,j}  ≥ 0 for all struts {i, j}
❙ ω{i,j}  ≤ 0 for all cables {i, j}
❙ Equilibrium: For each vertex i,
∑ { ω{i,j} (xi − xj) | edge {i, j} } = 0

❚ Any infinitesimally rigid framework has an
equilibrium stress that�s not everywhere 0

i



Dual of Infinitesimal Motions:Dual of Infinitesimal Motions:
Equilibrium StressesEquilibrium Stresses    [Roth & [Roth & WhiteleyWhiteley 1981] 1981]

❚ Equilibrium stresses do not imply rigidity
❚ Do imply �local rigidity� where nonzero:

❙ No infinitesimal motion can change the length
of a strut or cable with nonzero weight in
some equilibrium stress

❚ Tensegrity is infinitesimally rigid  iff
❙ There is an equilibrium stress that is

nonzero on all struts and cables
❙ Underlying linkage (all edges → bars)

is infinitesimally rigid



Maxwell-Cremona Relation:Maxwell-Cremona Relation:
Stresses and LiftingsStresses and Liftings
❚ Polyhedral lifting = assignment of z

coordinates to vertices such that faces of
framework remain planar
❙ Can assume z = 0 on boundary face

❚ Maxwell-Cremona Theorem:
A framework has a nonflat lifting
precisely if it has a nonzero stress
❙ Valleys ↔ positive weights ω

   (struts and bars)
❙ Mountains ↔ negative weights ω

   (cables and bars)



Outline: LinkagesOutline: Linkages

❚ Definitions and History
❚ Rigidity
❚ Locked chains in 3D
❚ Locked trees in 2D
❚ No locked chains in 2D
❚ Algorithms
❚ Connections to protein folding



Locked QuestionLocked Question

❚ Can a linkage be moved between any two
non-self-intersecting configurations?

?

❚ Can any non-self-intersecting configuration be
unfolded, i.e., moved to �canonical� configuration?
❙ Equivalent by reversing and concatenating motions



Canonical ConfigurationsCanonical Configurations

❚ Arcs: Straight configuration

❚ Cycles: Convex configurations

❚ Trees: Flat configurations



What Linkages Can Lock?What Linkages Can Lock?
[[SchanuelSchanuel & Bergman, early 1970�s;  & Bergman, early 1970�s; GrenanderGrenander 1987; 1987;
Lenhart & Whitesides 1991; Mitchell 1992]Lenhart & Whitesides 1991; Mitchell 1992]

❚ Can every arc be straightened?
❚ Can every cycle be convexified?
❚ Can every tree be flattened?

YesYesYes4D &
higher

NoNoNo3D

NoYesYes2D

TreesCyclesArcs



Locked 3D Chains Locked 3D Chains [[CantarellaCantarella & Johnston & Johnston
1998; 1998; BiedlBiedl, Demaine, Demaine, Lazard, Lubiw, O�Rourke,, Demaine, Demaine, Lazard, Lubiw, O�Rourke,
Overmars, Robbins, Streinu, Toussaint, Whitesides 1999]Overmars, Robbins, Streinu, Toussaint, Whitesides 1999]

❚ Cannot straighten some chains

❚ Idea of proof:
❙ Ends must be far away from the turns
❙ Turns must stay relatively close to each other
❙ � Could effectively connect ends together
❙ Hence, any straightening unties a trefoil knot

Sphere separates
turns from ends



Locked 3D Chains Locked 3D Chains [[CantarellaCantarella & Johnston & Johnston
1998; 1998; BiedlBiedl, Demaine, Demaine, , Demaine, Demaine, LazardLazard, , LubiwLubiw, O�Rourke,, O�Rourke,
OvermarsOvermars, Robbins, , Robbins, StreinuStreinu, Toussaint, , Toussaint, WhitesidesWhitesides 1999] 1999]

❚ Double this chain:

❚ This unknotted cycle cannot be
convexified by the same argument

❚ Several locked hexagons are also known

Cantarella &
Johnston 1998

Toussaint
1999



Locked 2D TreesLocked 2D Trees
[[BiedlBiedl, Demaine, Demaine, Lazard, Lubiw, O�Rourke,, Demaine, Demaine, Lazard, Lubiw, O�Rourke,
Robbins, Streinu, Toussaint, Whitesides 1998]Robbins, Streinu, Toussaint, Whitesides 1998]

❚ Theorem: Not all trees can be flattened
❙ No petal can be opened unless all others are

closed significantly
❙ No petal can be closed more than a little

unless it has already opened



Converting the Tree into a CycleConverting the Tree into a Cycle

❚ Double each edge:



Converting the Tree into a CycleConverting the Tree into a Cycle

❚ But this cycle can be convexified:



Converting the Tree into a CycleConverting the Tree into a Cycle

❚ But this cycle can be convexified:



One Key Idea for 2D Cycles:One Key Idea for 2D Cycles:
Increasing DistancesIncreasing Distances
❚ A motion is expansive if no inter-vertex

distances decreases

❚ Lemma: If a motion is expansive, the
framework cannot cross itself



TheoremTheorem
[Connelly, Demaine, Rote 2000][Connelly, Demaine, Rote 2000]

❚ For any family of chains and cycles,
there is a motion that
❙ Makes the arcs straight
❙ Makes the cycles convex
❙ Increases most pairwise distances (and area)

❚ Except: Arcs or cycles contained within a cycle
might not be straightened or convexified

❚ Furthermore:
Motion preserves symmetries and
is piecewise-differentiable (smooth)



Transforming Linkage into Transforming Linkage into TensegrityTensegrity

❚ In addition to bars of the framework,
add struts between each pair of vertices
not in a common convex cycle



PlanarizingPlanarizing the  the TensegrityTensegrity

❚ Subdivide edges at intersection points
❚ Remove multiple overlapping edges

❙ Replace with a bar if there is a bar
❙ Replace with a strut otherwise



Proof of Existence of anProof of Existence of an
Infinitesimal MotionInfinitesimal Motion
❚ Original framework infinitesimally flexible

❙ ����  (duality)
❚ Original framework has only the zero

equilibrium stress
❙ ����  (planarization lemma)

❚ Planar framework has only the zero
equilibrium stress
❙ ����  (Maxwell-Cremona Theorem)

❚ Planar framework has only the flat
polyhedral lifting



Proof of Existence of anProof of Existence of an
Infinitesimal MotionInfinitesimal Motion
❚ Consider the top extreme M of some polyhedral

lifting of the planar framework
❙ One case: A vertex and

none of its surroundings
are at the top

❘ Slice just below the vertex

❘ Red polygon has reflex vertices for
valleys, convex for mountains

❘ Must be at least three convex vertices



Proof of Existence of anProof of Existence of an
Infinitesimal MotionInfinitesimal Motion

v

❚ Consider the top extreme M of some
polyhedral lifting of the planar
framework
❙ Let v be a vertex of  ∂ M
❙ Consider a small disk

around v
❙ Suppose there is a reflex

portion of the disk between
two consecutive bars

❙ Claim this portion must
be contained in M



Existence of Global MotionExistence of Global Motion

❚ Quadratic program defines a unique
ordinary differential equation on an
open subset of the configuration space,
defined by the conditions:
❙ No vertex has angle 180°
❙ No vertex touches a bar
❙ Some vertex is reflex

❚ Continuity � There is a path to infinity or
the boundary of the open set
❙ Path is bounded because of bars� limited reach



Outline: LinkagesOutline: Linkages
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Algorithms for 2D ChainsAlgorithms for 2D Chains

Connelly, Demaine, Rote (2000) � ODE + convex programming

Streinu (2000) � pseudotriangulations + piecewise-algebraic motions

Cantarella, Demaine, Iben, O�Brien (2003) � energy





AnAn
Energy-Driven ApproachEnergy-Driven Approach

toto
Linkage UnfoldingLinkage Unfolding

Jason Jason CantarellaCantarella
Erik DemaineErik Demaine
HayleyHayley  IbenIben

James O’BrienJames O’Brien
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ProteinProtein
FoldingFolding



Protein FoldingProtein Folding



MotivationMotivation

❚ Geometry of a protein folding is an
important aspect of its behavior

❚ Prediction of protein folding, and
synthesis of proteins with desired
foldings, are central problems in
computational biology
❙ Drug design
❙ Preventing diseases (e.g., Alzheimer�s,

mad-cow disease, cystic fibrosis,
some forms of cancer)

❙ Understanding genomes



Linkage problems arising inLinkage problems arising in
protein foldingprotein folding

❚ Fixed-angle linkages (in 3D):
❙ In addition to bar lengths,

joint angles remain fixed
❙ Protein is roughly a fixed-angle tree

❚ When are all flat states connected via
motions?  [Aloupis, Demaine, Dujmović,
Erickson, Langerman, Meijer, O�Rourke,
Overmars, Soss, Streinu, Toussaint 2002x2]
❙ Nonacute chains; equal-angle acute chains
❙ Not general planar graphs

❚ Open: All chains?  All trees?



Linkage problems arising inLinkage problems arising in
protein foldingprotein folding

❚ Equilateral chains
❙ All bar lengths (roughly) equal
❙ Protein backbone is roughly such a chain

❚ Open: Can all 3D equilateral chains be
straightened?

❚ Open: Can all 3D equilateral trees be
flattened?



Hydrophobic-Hydrophilic /Hydrophobic-Hydrophilic /
H-P Model H-P Model [Dill 1990][Dill 1990]
❚ Nodes (20 amino acids)

categorized into two types:
❙ Hydrophobic (H):

Afraid of surrounding water
❙ Hydrophilic (P): Like surrounding water

❚ Model: Proteins fold on 2D or 3D lattice to
maximize number of bonds = lattice
connections between nonadjacent H nodes

❚ NP-hard to find optimal protein folding
❚ Open: Design protein with a desired shape

as (roughly) its unique optimal folding


