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Folding and Unfolding
In Science

ILinkages
[JRobotic arms
[1Proteins

Paper
[1Airbags

[ ] SPGCQ 5-meter lens
deployment (2x Hubble)

[1Polyhedra
1Sheet metal




Folding and Unfolding In
Computational Geometry

[ILinkages
[IPreserve edge lengths
'JEdges cannot cross

Paper

1Preserve distances
[1Cannot cross itself

[1Polyhedra

[1Cut the surface while

keeping it connected




Folding and Unfolding Talks

Paper folding Tomorrow Erik Demaine
Folding polygons
info convex Friday Joe O'Rourke
polyhedra
Unfolding Saturday Joe O'Rourke

polyhedra
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Linkages / Frameworks

[1Bar / link / edge = line segment

[IVertex / joint = connection between
endpoints of bars

LUEFE

Closed chain
Or}en chain 7 eyl Tree General
arc

/ polygon



Configurations

JConfiguration = positions of the vertices
that preserves the bar lengths

[INon-self-intersecting = No bars cross

LS )

— S —— —vr

Non-self-intersecting configurations Self-intersecting




Configuration Space

Configuration space: One point per config.
Free space: Only non-self-intersecting configs.
Paths in these spaces = Motions of linkage




Some History

1An early quest: Converting circular motion
into linear motion ,

Watt parallel motion (1784) Peaucellie linkae (1864)

"IMany more in Kempe's
How To Draw A Straight Line (1877)
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Rigidity

[1Starting question: When can a config. of a
linkage move at al/? [excluding rigid motion]

[1Yes = Flexible; No = Rigid

X 22w

Rigid Rigid Flexible Rigid

(all triangulations) (all "pseudo-
triangulations”)



Generic Rigidity

generically rigid ™ generically flexible

[IWhether a linkage configuration is rigid is
almost always a combinatorial property of
the underlying graph structure:

[1Generically flexible = almost all realizations
of the graph are flexible

[1Generically rigid = almost all realizations rigid
q‘~ 0 Q O I
C— ‘\) @, O

Generically flexible Rarely rigid  Generically rigid Rarely flexible



Laman’s Characterization of
Generic Rigidity

1 Theorem: [Laman 1970]

] A graph with n joints and exactly 2n - 3 bars is
generically rigid in 2D precisely if every induced
subgraph on k joints has at most 2k - 3 bars

(] Such graphs are minimally generically rigid
Q o @ A ]

8 vertices
13 bars

)

5 vertices
6 bars

<

4 vertices
5 bars

minimally ge;erically rigid

8 vertices
12 bars

"

nhot



Laman’s Characterization of || T
Generic Rigidity

8 vertices

1 Theorem: [Laman 1970] 12 bars
1 A graph with n joints and exactly 2n - 3 bars is }

generically rigid in 2D precisely if every induced
subgraph on k joints has at most 2k - 3 bars

1 A graph with n joints and less than 2n - 3 bars is
never generically rigid in 2D

] A graph with n joints and more than 2n - 3 bars is
generically rigid in 2D precisely if it has a generically
rigid subgraph with 2n - 3 bars

] Intuitively, need 2n - 3 bars to be rigid, but
these bars cannot be too concentrated, else
another subgraph would have too few edges



Generic Rigidity In Higher
Dimensions

[1Open: Characterize the 3D
generically rigid graphs
[1Can these graphs be
recoghized in
polynomial time?
‘JLaman's theorem

generalizes to a
necessary condition

(3n-6)




Infinitesimal Rigidity

[1If a linkage is flexible, it is flexible by a
smooth motion = can take first derivative

I Infinitesimal motion defines a motion to
first order, from initial configuration x
]Suppose X; is the location of vertex A

Choose velocity vector v. for each i
Lengths of each bar {i, j} must stay Vi

constant to the first order: .
(Vi-v) - (X-x)=0 J%i

[1Constraints form rigidity matrix X




Rigidity and Infinitesimal Rigidity

[1Flexibility = Infinitesimal flexibility
[1Infinitesimal rigidity = Rigidity

[1So infinitesimal rigidity is a stronger condition
1 There is also second-order, etc. rigidity




Tensegrities

[1Tensegrity = generalization of linkage,
where each edge can be one of

Bar —

Strut —
........ Cable —

“\Plain/ gene

Flexible

ength must stay equa
ength must stay equa

ength must stay equa

or grow
or shrink

ric/infinitesimal rigidity similar

Flexible Flexible




Infinitesimal Flexibility iIs
Linear Programming

[1Infinitesimal flexibility can be expressed
as a linear feasibility problem
(special linear program)
[1Objective: Minimize O
[1Constraints:
(vi-v))- (x-x))=0 for each bar {i, j}
(vi=v;) - (x;=-%x)20 for each strut {i, j}
(vi-v;) - (x;=%x) <0 for each cable {i, j}
v, variable; x: given




Dual of Infinitesimal Motions:
Equilibrium Stresses [Roth & Whiteley 1981]

[IPrimal LP infeasible =
dual LP infeasible or unbounded

[JEquilibrium stress = assignment of weights

RL edges {i, j} satisfying o /
wy y 20 for all struts {i, j} g
L] Wy ) < O for all cables {i, j} ./AY’N‘
JEquilibrium: For each vertex i, f

> { Wy j) (X; - XJ') | edge {i, j}} =0
[1Any infinitesimally rigid framework has an
equilibrium stress that's not everywhere O



Dual of Infinitesimal Motions:
Equilibrium Stresses [Roth & Whiteley 1981]

[JEquilibrium stresses do not imply rigidity
[1Do imply “local rigidity" where nonzero:

[INo infinitesimal motion can change the length
of a strut or cable with nonzero weight in
some equilibrium stress

1 Tensegrity is infinitesimally rigid iff
[1There is an equilibrium stress that is
nonzero on all struts and cables

[JUnderlying linkage (all edges — bars)
is infinitesimally rigid



Maxwell-Cremona Relation:
Stresses and Liftings

[1Polyhedral lifting = assignment of z
coordinates to vertices such that faces of
framework remain planar

[1Can assume z = O on boundary face I~
I Maxwell-Cremona Theorem: 47
A framework has a nonflat lifting *

precisely if it has a nonzero stress

Valleys < positive weights w ;
(struts and bars) 1{
[JMountains ~ negative weights w

(cables and bars)
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Locked Question

1 Can a linkage be moved between any two
non-self-intersecting configurations?

] Can any hon-self-intersecting configuration be
unfolded, i.e., moved to "canonical” configuration?

1 Equivalent by reversing and concatenating motions




Canonical Configurations

[JArcs: Straight configuration

® L —e ®

[1Cycles: Convex configurations

>

[1Trees: Flat configurations
—teS] e,




What Linkages Can Lock?

[Schanuel & Bergman, early 1970's; Grenander 1987
Lenhart & Whitesides 1991; Mitchell 1992]

Can every arc be straightened?
Can every cycle be convexified?
Can every tree be flattened?

Arcs | Cycles | Trees
2D Yes Yes No
3D N[o) No N[o)

4D & Yes Yes Yes
higher




Locked 3D Chalins [Cantarella & Johnston

1998; Bied|, Demaine, Demaine, Lazard, Lubiw, O'Rourke,
Overmars, Robbins, Streinu, Toussaint, Whitesides 1999]

[1Cannot straighten some chains

/ﬁ%\ Sphere separates
turns from ends
N
[1Idea of proof:
Ends must be far away from the turns
Turns must stay relatively close to each other

— Could effectively connect ends together
Hence, any straightening unties a trefoil knot




Locked 3D Chains [Cantarella & Johnston

1998; Biedl, Demaine, Demaine, Lazard, Lubiw, O'Rourke,
Overmars, Robbins, Streinu, Toussaint, Whitesides 1999]

1 Double this chain:

T—

[1This unknotted cycle cannot be
convexified by the same argument

[1Several locked hexagons are also known

Q7>
({/ /Z;r'ella & Oij;l Toussaint

Johnston 1998 1999



Locked 2D Trees

[Bied|, Demaine, Demaine, Lazard, Lubiw, O'Rourke,
Robbins, Streinu, Toussaint, Whitesides 1998]

1 Theorem: Not all trees can be flattened

INo petal can be opened unless all others are
closed significantly

[INo petal can be closed more than a little
unless it has already opened




Converting the Tree Into a Cycle

[1Double each edge:

b
AR




Converting the Tree Into a Cycle

[JBut this cycle can be convexified:

*




Converting the Tree Into a Cycle

[JBut this cycle can be convexified:

g

|




One Key ldea for 2D Cycles:
Increasing Distances

(1A motion is expansive if no inter-vertex
distances decreases

[TLemma: If a motion is expansive, the
framework cannot cross itself




Theorem
[Connelly, Demaine, Rote 2000]

[1For any family of chains and cycles,
there is a motion that

IMakes the arcs straight

IMakes the cycles convex

JIncreases most pairwise distances (and area)

] Except: Arcs or cycles contained within a cycle
might not be straightened or convexified

] Furthermore:
Motion preserves symmetries and
is piecewise-differentiable (smooth)



Transforming Linkage into Tensegrity

[1In addition to bars of the framework,
add struts between each pair of vertices
not in a common convex cycle




Planarizing the Tensegrity

[1Subdivide edges at intersection points

[JRemove multiple overlapping edges
[IReplace with a bar if there is a bar
[IReplace with a strut otherwise




Proof of Existence of an
Infinitesimal Motion

[10riginal framework infinitesimally flexible
O (duality)

[JOriginal framework has only the zero
equilibrium stress
M (planarization lemma)

[JPlanar framework has only the zero
equilibrium stress
01 (Maxwell-Cremona Theorem)

[IPlanar framework has only the flat
polyhedral lifting



Proof of Existence of an
Infinitesimal Motion

1 Consider the top extreme M of some polyhedral
lifting of the planar framework

[1One case: A vertex and
none of its surroundings
are at the top

[1Slice JUST below the vertex

/' . ‘.

[ polygon has reflex vertices for
valleys, convex for mountains

[1Must be at least three convex vertices




Proof of Existence of an
Infinitesimal Motion

[1Consider the top extreme M of some
polyhedral lifting of the planar
framework

AL
[ILet v be a vertex of OM DY
[1Consider a small disk / /<

around v

[1Suppose there is a reflex
portion of the disk between

two consecutive bars [ [
[1Claim this portion must (¢
be contained in M




Existence of Global Motion

[1Quadratic program defines a unique
ordinary differential equation on an
open subset of the configuration space,
defined by the conditions:

No vertex has angle 180°

No vertex touches a bar

Some vertex is reflex

[JContinuity = There is a path to infinity or
the boundary of the open set
[JPath is bounded because of bars' limited reach
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Algorithms for 2D Chains

LYY

Connelly, Demaine, Rote (2000) — ODE + convex programming

VD A N N

Streinu (2000) — pseudotriangulations + piecewise-algebraic motions

AAAAVASE®

Cantarella, Demaine, Iben, O'Brien (2003) — energy







An

w”! Energy-Driven Approach
. to

Linkage Unfolding

| Jason Cantarella .
Erik Demaine
Hayley lben

James O'Brien
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Protein

Primary protein structure
is sequence of a chain of aming #ids

Alpha helix

Secondary protein structure
ocours whan tha saguance of amino acids
are linkad by hydrogen bonds

Pleated sheet

Tertiary protein structure

occurs whan cartain atractions are presant
betwasn alpha helicas and pleatad shaate.

Quaternary protein structure
ie B protein conssting of mons than ona
BMind a8c1 d chain:




Folding

Protein




Motivation

[JGeometry of a protein folding is an
important aspect of its behavior

[1Prediction of protein folding, and
synthesis of proteins with desired
foldings, are central problems in
computational biology

[1Drug design

[IPreventing diseases (e.g., Alzheimer's,
mad-cow disease, cystic fibrosis,
some forms of cancer)

‘IUnderstanding genomes



Linkage problems arising In
protein folding

[1Fixed-angle linkages (in 3D):
[1In addition to bar lengths,
joint angles remain fixed
[JProtein is roughly a fixed-angle tree
[IWhen are all flat states connected via
motions? [Aloupis, Demaine, Dujmovié,

Erickson, Langerman, Meijer, O'Rourke,
Overmars, Soss, Streinu, Toussaint 2002x2]

[INonacute chains; equal-angle acute chains
[INot general planar graphs

[10Open: All chains? All trees?




Linkage problems arising In
protein folding

[1Equilateral chains

]
]

1O

All bar lengths (roughly) equal
Protein backbone is roughly such a chain

nen: Can all 3D equilateral chains be

straightened?

[1Open: Can all 3D equilateral trees be
flattened?



Hydrophobic-Hydrophilic /
H-P Model [Dill 1990]

[1Nodes (20 amino acids)
categorized into two types:
O [Hydrophobic (H):
Afraid of surrounding water
© UOHydrophilic (P): Like surrounding water
[1Model: Proteins fold on 2D or 3D lattice to
maximize number of bonds = lattice
connections between nonadjacent H nodes

[INP-hard to find optimal protein folding

[1Open: Design protein with a desired shape
as (roughly) its unique optimal folding




