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Enumerating normal surfaces

Haken noticed that normal surfaces can be
used for solving algorithmic problems 1n 3-
manifolds.

There are four kinds of triangle and three
kinds of quadrilateral in each tetrahedron.
There are four kinds of triangle and three
kinds of quadrilateral in each tetrahedron. A
normal surface 1s completely determined by
specifying how many of each type there are
in each tetrahedron.
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A normal surface is determined by a vector
of 7t non-negative integers

(Vi5Vy, V3, oot Vo)

9. o i &r @g‘k w@‘&”ﬁf@s‘w

Of the seven types of triangle and
quadrilateral 1n this tetrahedron, three
appear. The vector corresponding to this
normal surface looks like

(VisVasVsy on Vo) = (0s4,2,0,1,0,0,0 ...)
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Not all vectors give normal surfaces. We
now ask which non-negative integer vectors
in Z,” give rise to a normal surface. A
single condition must be met.

The pieces must match up across tetrahedra
with common faces.
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This leads to linear equations for the
coordinates of the vector (v,,v,,v;, ... V,) of
the form

Vi+V, = VitV

v; here counts the number of one elementary
triangle in a tetrahedron, while v; counts the
number of one type of quadrilateral. These
have parallel edges on a triangle of the
tetrahedron.

Also have : v.,>0

P
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Normal surfaces give rise to integer vectors
subject to linear equations and inequalities.

Finding normal surfaces can now be
formulated algebraically as problem in
integer linear programming.

oy s b Fhey s
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Normal surfaces correspond to integer
vectors (V,V,,V3, ... V,) satisfying linear
equations.

RN I ! fe o~
i+ = U eV Vi z o

w o % é

Two normal vectors can be added to get a
new normal vector, still satistying the

. normal surface equations. [

This would not be very useful if there were
not an amazing occurrence. Normal vector
addition has a natural geometric
interpretation.
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Sums of normal vectors corresponds to
“regular cut and paste” of normal surfaces.

Two intersecting normal curves give a new
embedded normal curve.

ANAN

This'irregular cut and paste leads to a non-
normal surface.
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Regular exchange of two intersecting

normal surfaces., /A a~ A

all
Note beth surfaces remain normal after the

exchange. The normal vector representing
A+B 1s the sum of those of A and B.

(a,+b,, a,+b,, a;+b;, ... a,, +b,) =
(31,32,33, PP a7t)+ (bl,b2,1b3, see b7t)
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Furthermore, the Euler characteristic 1s
linear under this sum.

xA(V) + X (W) =x(V+W)

This follows because exchange preserves the
number of vertices, edges, faces.

This allows us to control the genus when we
work with normal surfaces.
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A finite Hilbert basis*’
Fundamental Normal Surfaces

A normal surface F is fundamental 1f 1ts
associated vector is not the sum of two
normal curve vectors.

F#A + B,

whereA and B satisfy normal equations

Since the entries of normal vectors are non-
negative integers, it is immediate that any
normal vector is a sum of fundamental
vectors.

Less obvious, but well known in linear
programming, is that there are only finitely
many fundamental vectors. (Hilbert basis.)
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Finiteness is the key to constructing
algorithms.

CONCLUSION:

We have found a class of surfaces that are
sufficiently constrained that there are only
finitely many, yet rich enough to contain
representatives of many interesting classes
of surfaces, giving useful algorithms.



32

Some classes of surfaces that have
representatives among the fundamental
eumes Ve ctoers.

Example 1: Unknotting disks —= “% e o Hig

A;‘gg@?( e

Start with an n-crossing knot diagram.
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Make everything PL: triangulate a ball so
that the knot lies on its 1-skeleton.

Y/ ANV VAN

In the complexity analysis, a typical 1ssue
that arises 1s

Question. How many tetrahedra are needed?

Open Problem:
If K is a polygonal knot in R’ with n edges,
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how many tetrahedra are needed to
triangulate B> so that K lies on the 1-
skeleton? (Allow non-linear tetrahedra).

Best at present is O(n?).
Linear?
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Outline of Haken’s Unknotting Algorithm

Step 1: K 15 unknotted < K is the boundary
of an embedded disk

A disk spanning an unknot.

oo

The disk 1s less obvious for this unknot.
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Step 2: If M is triangulated and K is
unknotted then K bounds a normal disk:

K 1s unknotted < K is the boundary of a
normal disk D
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Step 3: Analyze how surfaces sum:

If D = A+B, then one of A and B is a disk of
smaller weight that spans the curve K. We
can continue until we arrive at a
fundamental disk with boundary K.

o
&\w

K is unknotted < K is the boundary of a
fundamental normal disk
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Step 4: To see if K is unknotted, check the
(finitely many) fundamental normal surfaces
one by one, to see if any is a disk with
boundary K. (If F is a fundamental surface

and y(F) =1, then F1s a disk)
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To obtain complexity bounds, (bounds on

the running time of this algorithm), we need
to explicitly bound the size of a fundamental
normal disk in terms of the number of (£no™
crossings n and the number of tetrahedra t.

Lemma (H-Lagarias-Pippenger)
Any fundamental surface has normal
coordinates (v,v,,V3, ... V,) with

L L 7t+3
i < Té <)
Corollary Lt gatient
There are at most 8] fundamental

surfaces.

This is how many surfaces need to be
checked to see if any is an unknotting disk.
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Corollary An algorithm for the
UNKNOTTING PROBLEM runs in tim
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To show that Unknotting is in NP, we need
to give a certificate of the triviality of a knot
that can be checked in time polynomial in
the number of crossings of the knot.

This can be done by giving the normal
coordinates of a fundamental normal disk
that spans the knot. All properties
demonstrating that this 1s a disk spanning
the knot are verifiable in polynomial time.

The hardest property to verify is the
following:

Given a normal vector (v,,V,,V3, ... V)
satisfying the normal surface equations, 1S
the corresponding surface connected?

If yes, then it is easy to compute the Euler
characteristic and thus the genus.

For the Unknotting problem, Jaco and
Tollefson showed that there 1s a vertex
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solution to the normal surface equations,
which is a disk. This vertex solution must be
connected, and this is easily verified. This
allowed the proof that Unknotting is NP.
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Recognition problems old and new
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Recognizing the 3-sphere

Problem: given a description of a 3-manifold
as a union of tetrahedra, how can we decide
whether it 1s the 3-sphere?

Novikov: Don’t bother trying for the 5-
sphere — no algorithm exists to recognize it.

Solution: There is an algorithm to recognize
the 3-sphere. (Rubinstein-Thompson, 1993)

The key idea in this algorithm lies in the
connection between minimal and normal
surfaces. It was inspired by a study of
minimal 2-spheres in 3-manifolds.



Minimal surfaces

1. A surface with mean curvature zero
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2. A surface that locally minimizes area:
Each point lies in a small disk on the surface
that has the least area among all surfaces
with the same boundary as that disk.
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3. Conformal, harmonic mappings

etc



A diversion to some differential geometry.

Lusternik-Schnirelmann studied geodesics
on the 2-sphere. They showed

Theorem: (LS, 1929) There are always at
least three simple closed geodesics on a 2-
sphere, no matter what shape (Riemannian
metric) 1t has.
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We distinguish between stable and unstable
geodesics.

With ANY metric, a 2-sphere always has an
unstable geodesic.

Other surfaces may or may not have
unstable geodesics.
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We can use these observations to make a
(‘rather uselesgrecognition algorithm for the
“2-sphere:

Take a mystery surface F. Is it the 2-sphere?

1. Find a maximal family of stable disjoint
geodesics in F. If none, then we have a 2-

sphere.




2. If there 1s a complementary region X
bounded by exactly one stable geodesic,
then X 1s a disk 1f and only if 1t contains an
unstable geodesic.
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Minimal 2-spheres in the 3-sphere

The Lusternik-Schnirelmann theorem has an
analog in dimension three.

Theorem: In any Riemannian metric on the
3-sphere, there 1s always an embedded
unstable minimal 2-sphere (in fact four).
(Pitts, Rubinstein, Smith, Stmon, Jost).

Such unstable minimal 2-spheres are found
by pulling down the area of a whole family
of spheres, and showing that at least one
gets stuck on a bulge.




This gives us a seemingly unuseful way of
recognizing the 3-sphere.
Suppose we have a mystery 3-manifold M.

1. Find a maximal collection of disjoint,

stable minimal 2-spheres in M.
(How? We’ll see shortly).
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M is a 3-sphere if and only 1if each piece 1s a
punctured ball (ball with holes).



3. Pieces like X, with a single boundary
component, may or may not be balls. They
are balls if and only if they contain an
unstable 2-sphere.
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This idea was pursued by Rubinstein, who
defined Almost Normal Surfaces

An almost normal surface intersects each
tetrahedron in triangles and quadrilaterals
except for one. In one tetrahedron it
intersects m an octogon.




If we could somehow get hold of stable and
unstable minimal 2-spheres, we could decide
whether each piece 1s a punctured ball, and
whether the whole manifold 1s the 3-sphere.

At first this seems harder than the
recognition problem. Finding minimal
surfaces 1s very difficult. Doesn’t lend itself
to an algorithm.

BUT, we have seen that minimal surfaces
have discrete analogs, normal surfaces, with
triangulations replacing metrics,. Normal
surfaces can be found by a finite procedure.
What remains is to find the analog in the
discrete setting of the 1dea of stable and
unstable minimal surfaces.



Like an equatorial 2-sphere of a 3-sphere,
these can be pushed slightly in two different
directions to decrease their area (or weight).

(Technically, an unstable minimal 2-sphere
has a single Jacobi field up to scaling. This
means that in each direction there 1s one way
to push the 2-sphere off itself to decrease
area, to first order.)
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Some highlights of the algorithm:

1. Take a triangulated mystery 3-manifold
M.

7 Find a maximal family of disjoint, non-

parallel normal 2-spheres.
(Look among the fundamental surfaces)
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3. Check complementary pieces.
a. Those with more than one boundary

component are punctured balls.
(No—H\m@ Ao do. ALWAYS Punctured @@ik}

Ty — Tube together
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b. Those with exactly one boundary
component are balls if and only if they
contain an almost normal 2-sphere.
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The running time of this algorithm was
analyzed by Casson (2000).

He showed that if the manifold M has t
tetrahedra, we can decide it is the 3-sphere
in time O(3").



