Folding & Unfolding: Folding & Unfolding: Origami Origami

Erik Demaine Erik Demaine M.I.T.

edemaine@mit.edu http://theory.lcs.mit.edu/~edemaine/folding

Folding and Unfolding Talks Folding and Unfolding Talks

Outline Outline

] **History and Definitions**] Foldability **I** Crease patterns **Map folding**] Origami design **Silhouettes and gift wrapping I** Tree method **I** One complete straight cut \ Flattening polyhedra

History of Paper in Asia History of Paper in Asia

] **Origami** believed to have followed shortly after making of paper (not papyrus)] **Paper**

- \ Believed to have been invented by Ts'ai Lun, Chinese court official, 105 AD, following the 250 BC invention of the camel hair brush
- \ Spread by Buddhist monks through Korea to Japan from 538 AD to 610 AD
- \ Spread by Arabs occupying Samarkand, Uzbekistan from 751 AD to Egypt in 900's and continued west

History of Paper in Europe History of Paper in Europe

] Moors brought paper (and mathematics) to Spain during their invasion in 700's $\,$ Established paper making in 1100's in Jativa, Spain] Arab occupation of Sicily brought paper to Italy] Paper mills built in Fabriano, Italy in 1276, in Troyes, France in 1348, and in Hertford, England in 1400's

-] By ~1350, paper was widespread for literary work in Europe
-] First paper mill in North America built in 1690 in Roxboro, Pennsylvania

Modern History of Origami Modern History of Origami

I Origami popular throughout the world **North America: mainly U.S.** \ Europe: particularly England, Spain, Italy $\,$ Asia: particularly Japan, China, Korea] Until recently, most origami models were relatively simple—e.g., most animals had just 4 "limbs" (head and three legs, etc.)] In the last ~25 years, **complex origami** has evolved to attain incredible feats

Modern Artistic Origami Modern Artistic Origami

Foldings Foldings

] **Piece of paper** = 2D surface \ Square, or polygon, or polyhedral surface] **Folded state** = isometric "embedding" \ **Isometric** = preserve intrinsic distances (measured along paper surface) \ **"Embedding"** = no selfintersections except that multiple surfaces can "touch" with infinitesimal separation Nonflat folding

Foldings Foldings

] **Configuration space** of piece of paper = uncountable-dim. space of all folded states] **Folding motion** = path in this space = continuum of folded states] Fortunately, configuration space of a rectangular piece of paper is pathconnected [Demaine & Mitchell 2001] $\textsf{I}\ \Rightarrow$ Focus on finding interesting folded states] **Open:** Nonrectangular paper?

Structure of Foldings Structure of Foldings

] **Creases** in folded state = discontinuities in the derivative

] **Crease pattern** = planar graph drawn with straight edges (creases) on the paper,

corresponding to unfolded creases

] **Mountain-valley assignment** = specify crease directions as ∧ or ∨

Nonflat folding

What Can You Fold? What Can You Fold?

] **Universality result:** Everything is foldable, and there is an efficient algorithm to find the foldings] **Efficient decision result:** Efficient algorithms for deciding whether something is foldable, and when it is, exhibiting a folding] **Hardness result:** Deciding foldability is computationally intractable

Outline Outline

I History and Definitions] **Foldability** \ **Crease patterns Map folding**] Origami design **Silhouettes and gift wrapping I** Tree method **I** One complete straight cut \ Flattening polyhedra

Single-Vertex Origami Single-Vertex Origami

] Consider a disk surrounding a lone vertex in a crease pattern (**local foldability**)] When can it be folded flat?

 \blacksquare Depends on \ Circular sequence of angles between creases: $\Theta_1 + \Theta_2 + ... + \Theta_n = 360^{\circ}$ Mountain-valley assignment

Single-Vertex Origami Single-Vertex Origami without Mountain-Valley Assignment without Mountain-Valley Assignment

] **Kawasaki's Theorem:** Without a mountain-valley assignment,
a vertex is flat-foldable precisely if sum of alternate angles is 180° $(\Theta_1 + \Theta_3 + ... + \Theta_{n-1} = \Theta_2 + \Theta_4 + ... + \Theta_n)$ $\,$ Tracing disk's boundary along folded arc moves Θ_1 - Θ_2 + Θ_3 - Θ_4 + … + Θ_{n-1} - Θ_n \blacksquare Should return to starting point \Rightarrow equals 0

Single-Vertex Origami Single-Vertex Origami with Mountain-Valley Assignment with Mountain-Valley Assignment

] **Maekawa's Theorem:** For a vertex to be flat-foldable, need $|\#$ mountains - $\#$ valleys = 2 \blacksquare Total turn angle = $\pm 360^\circ$ = $180^\circ \times \#$ mountains - $180^\circ \times \#$ valleys

Single-Vertex Origami Single-Vertex Origami with Mountain-Valley Assignment with Mountain-Valley Assignment

] **Another Kawasaki Theorem:** If one angle is smaller than its two neighbors, the two surrounding creases must have opposite direction $\,$ Otherwise, the two large angles would collide

∨

∧

∨ ∨

These theorems essentially characterize all flat foldings

Local Flat Foldability Local Flat Foldability

] **Locally flat-foldable** crease pattern = each vertex is flat-foldable if cut out = flat-foldable except possibly for nonlocal self-intersection] Testable in linear time [Bern & Hayes 1996] \ Check Kawasaki's Theorem $\,$ Solve a kind of matching problem to find a valid mountain-valley assignment, if one exists **Barrier:** =

Global Flat Foldability Global Flat Foldability

] Testing (global) flat foldability is strongly NP-hard [Bern & Hayes 1996]] Wire represented by "crimp" direction:

T

Not-all-equal 3-SAT clause

Outline Outline

I History and Definitions] Foldability **I** Crease patterns \ **Map folding**] Origami design **Silhouettes and gift wrapping I** Tree method **I** One complete straight cut \ Flattening polyhedra

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

 $1:6:7$

 $2:5:8$

 $3:4:9$

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

1

2

 $1:6:7$

 $2:5:8$

 $3:4:9$

 L ; 9; L

 $1 \setminus 9 \setminus 2$

 $3:4:9$

 \mathbf{r}

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

 \mathbf{r}

 $\ddot{9}$

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

 I $|9$ $|2$

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line

] Motivating problem: \ Given a **map** (grid of unit squares), each crease marked mountain or valley \ Can it be folded into a **packet** (whose silhouette is a unit square) via a sequence of simple folds? \blacksquare Simple fold = fold along a line] More generally: Given an arbitrary crease pattern, is it flat-foldable by simple folds?

6

Models of Simple Folds Models of Simple Folds

] A single line can admit several different simple folds, depending on # layers folded $\, \blacksquare$ Extremes: one-layer or all-layers simple fold \ In general: some-layers simple fold] Example in 1D:

Simple Foldability [Arkin, Bender, Demaine, Demaine, Mitchell, Sethia, Skiena 2001]

Open Problems Open Problems

] **Open:** Pseudopolynomial-time algorithms?] **Open:** Orthogonal creases on non-axisaligned rectangular piece of paper?] **Open** (Edmonds): Complexity of deciding whether an m × n grid can be folded flat (has a flat folded state) with specified mountain-valley assignment \ Would strengthen Bern & Hayes result] **Open:** What about orthogonal polygons with orthogonal creases, etc.?

Outline Outline

I History and Definitions] Foldability **I** Crease patterns **Map folding**] **Origami design** \ **Silhouettes and gift wrapping I** Tree method **I** One complete straight cut \ Flattening polyhedra

The Problems The Problems

-] **Silhouette question** (Bern & Hayes 1996): Is every polygon the silhouette of a flat origami?
-] **2-color origami problem**: Construct a given 2-color pattern with bicolor paper
	- \ **2-color pattern** = polygonal region partitioned into subregions, each assigned one of 2 colors
	- \ **Bicolor paper** has different color on each side

Flat Foldings of Flat Foldings of Single Sheets of Paper Single Sheets of Paper

The Problems The Problems

] **Silhouette question** (Bern & Hayes 1996): Is every polygon the silhouette of a flat origami? 12-color origami problem: Construction given 2-color pattern with bicol **1 2-color pattern** = polygonal region partition into subregions, each assigned one $\sqrt{}$ **Bicolor paper** has different color on fach side] **Gift wrapping question**: Can every polyhedron be "wrapped" (folded) by a sufficiently large piece of paper?

General Theorem General Theorem (Demaine, Demaine, Mitchell 1999)

] Given a polyhedron, each face assigned one of two colors, there is a folding of a sufficiently large piece of bicolor paper into the colored surface] Can optimize: **I** Paper usage (area of paper = e + surface area) \ "Strip width" \ Visible "seams" (creases/paper edges)

] Basic idea: Use a **strip** = a long rectangle] Several gadgets for "navigating" strips:

Hiding excess paper under a convex polygon

Color-reversal gadget

Navigating a Triangulation Navigating a Triangulation

 \blacksquare Zig-zag to cover each triangle T $_i$ **I** Parallel to edge e_i adjacent to next triangle $\mathsf{T}_{\mathsf{i}+1}$ **I** Choose initial direction to end at vertex v_{i+1} opposite next edge e_{i+1}

Minimizing Paper Usage Minimizing Paper Usage

] Triangulate polyhedron so that dual graph has Hamiltonian cycle

 \blacksquare Paper wastage \rightarrow 0 with strip width

What If We Start from a Square? What If We Start from a Square?

] Strip folding extremely inefficient; used paper \rightarrow 0 with strip width] **Open:** What is the largest k × k checkerboard foldable from a unit square? \ **Conjecture:** ~ 2/k × 2/k] **Open:** What is the largest regular tetrahedron/octahedron/dodecahedron/ icosahedron foldable from a unit square? $\,$ Only the cube has been solved

Origami Bases Origami Bases

] Concentrate on one type of polyhedron: **origami base**] 6 standard origami bases, with limited numbers of flaps for shaping into limbs, …

Tree Method Tree Method [Lang]

I What if we want more limbs?] **Uniaxial origami base:** Projection = intersection with xy plane = tree] Can represent any "stick figure" with such ^a**shadow tree**

Tree Lemma Tree Lemma

I Consider two points of paper that fold to two points on the shadow tree **I** Draw line segment on unfolded piece of paper (assuming convex polygon) **I** Line segment folds to a continuous path] Path at least as long as direct path in tree **I** Distance between two points on the shadow tree is a lower bound on the distance between corresponding points on the unfolded piece of paper

Tree Conditions Conditions

I Consider an assignment of points on paper to leaves of shadow tree] Tree lemma says when paper is too small: \blacksquare unfolded-distance (p, q) = tree-distance (p, q)] **Conjecture:** Tree conditions are sufficient] **Theorem:** If tree conditions are satisfied, "slight modifications" make it feasible] **Goal:** Find paper size and point assignment satisfying tree conditions

Scale Optimization Optimization

] Allow tree to scale by factor ? > 0 **Thee condition becomes** \blacksquare unfolded-dist. (p, q) = ? × tree-dist. (p, q)] Now almost all point assignments are valid: \blacksquare ? = min {unfolded-dist. (p, q) / tree-dist. (p, q)}] **Goal:** Maximize ? among point assignments for leaves of shadow tree **I** Difficult nonlinear optimization **| Approximate/heuristic solutions OK**

Scale Optimization is as Hard as Disk Packing Disk Packing

] Consider unit star tree:

I Tree constraints: \blacksquare unfolded-dist (leaf $_{\sf i}$, leaf $_{\sf j}$) = 2 ? $\blacksquare\Rightarrow$ Equal-radius disk packing in square

Scale Optimization for Lizard Scale Optimization for Lizard

Finding Other Vertices of the **Shadow Tree Shadow Tree**

I When tree constraint is tight (unfolded distance = shadow distance), must correspond to path in shadow tree

Convex Decomposition Convex Decomposition

] These **active paths** "often" decompose the paper into convex regions \blacksquare If not, can modify the tree "somewhat" to fix

$Convex$ Subproblems

] Solve each convex region separately] **Key property:** Because shared boundaries are active paths, creases at these interfaces will always match up

Universal Molecule Universal Molecule

] Shrink convex polygon, tracing vertices **Two types of events arise:**

Crease Pattern for Lizard Crease Pattern for Lizard

Outline Outline

I History and Definitions] Foldability **I** Crease patterns **Map folding**] Origami design **Silhouettes and gift wrapping I** Tree method \ **One complete straight cut** \ Flattening polyhedra

Fold-and-Cut Problem Fold-and-Cut Problem

] Fold a sheet of paper flat] Make one complete straight cut **I** Unfold the pieces

] What shapes can result?

History of Fold-and-Cut History of Fold-and-Cut

] Recreationally studied by \ Kan Chu Sen (1721) \ Betsy Ross (1777) \ Houdini (1922) \ Gerald Loe (1955) \blacksquare Martin Gardner (1960)

General Problem General Problem

I Given any plane graph (the **cut graph**)] Can you fold the piece of paper flat so that one complete straight cut makes the graph? **I** Equivalently, is there is a flat folding that lines up precisely the cut graph?

Theorem Theorem [Demaine, Demaine, Lubiw 1998] [Demaine, Demaine, Lubiw 1998] [Bern, Demaine, Eppstein, Hayes 1999]

T Any plane graph can be lined up by folding flat

Straight Skeleton Straight Skeleton

] Shrink as in Lang's universal molecule, but \blacksquare Handle nonconvex polygons \Rightarrow new event when vertex hits opposite edge \ Handle nonpolygons \Rightarrow "butt" vertices of degree 0 and 1 \ Don't worry about active paths

]Behavior is more complicated than tree method

A Few Examples A Few Examples

A Final Example A Final Example

Generalization Generalization [Demaine, Hayes, Lang 2001]

] Can fold a piece of paper flat and have a choice between several cut lines, each making a different shape

Outline Outline

I History and Definitions] Foldability **I** Crease patterns **Map folding**] Origami design **Silhouettes and gift wrapping I** Tree method **I** One complete straight cut \ **Flattening polyhedra**

Flattening Polyhedra Flattening Polyhedra [Demaine, Demaine,

I Intuitively, can $\sum_{\text{Flat}+}$ collapse/flatten a p model of a polyhedron] Problem: Is it possible without tearing? Flattening a cereal box

Connection to Fold-and-Cut Connection to Fold-and-Cut

] 2D fold-and-cut \blacksquare Fold a 2D polygon I through 3D flat, back into 2D \ so that 1D boundary lies in a line

] 3D fold-and-cut \blacksquare Fold a 3D polyhedron I through 4D flat, back into 3D \ so that 2D boundary lies in a plane

Flattening Results Flattening Results

] All polyhedra homeomorphic to a sphere can be flattened (have flat folded states) [Demaine, Demaine, Hayes, Lubiw] $\, \blacksquare\, \sim$ Disk-packing solution to 2D fold-and-cut] **Open:** Can polyhedra of higher genus be flattened?] **Open:** Can polyhedra be flattened using 3D straight skeleton? \blacksquare Best we know: thin slices of convex polyhedra