What is **Ramsey Theory**?

It might be described as the study of **unavoidable regularity in large structures.**

Complete disorder is impossible. T. Motzkin

Ramsey's Theorem (1930)

For any k **<** l and r, there exists R = R(k,l,r) so that for any r-coloring of the k-element sets of an R-element set, there is always some l-element set with all of its k-element subsets having the same color.

> Frank Plumpton Ramsey (1903-1930)

Euclidean Ramsey Theory

 $\bm{\mathsf{X}} \subset \mathbf{E}^\mathsf{k}$ - finite

 \mathcal{C} ong(X) - <code>family</code> of all $\mathsf{X} \subset \mathbf{E}$ k $\breve{} \subset \mathop{\hbox{\rm E}}\nolimits^\mathsf K$ which are congruent to $\mathsf X$ $(i.e., "copies"$ of X up to some Euclidean motion)

 N = $\mathsf{N}(\mathsf{X}, \mathsf{r})$ such that for every partition $\mathbf{E}^{\mathsf{r}\mathsf{v}}$ = $\mathcal{C}_{\mathsf{1}} \cup \mathcal{C}_{\mathsf{2}} \cup ... \cup \mathcal{C}_{\mathsf{r}}$, X is said to be Ramsey if for all r there exists $N = C_1 \cup C_2 \cup \cup C_r$ we have $\mathsf{X}^{\mathsf{\prime}}\! \in \boldsymbol{\mathcal{C}}_{{\mathsf{i}}}$ for some $\mathsf{X}^{\mathsf{\prime}}\! \in\ \mathsf{Cong}(\mathsf{X})$ and some i.

$$
E^N \stackrel{r}{\longrightarrow} X
$$

Compactness Principle

If **E**N $f \rightarrow X$ then there is a finite subset $Y \in E$ N such that $\begin{array}{ccc} \mathsf{y} & \xrightarrow{\mathsf{r}} & \mathsf{X} \end{array}$

Example

$$
X = \bullet
$$
 1 |X| = 2

For a given r, take Y $_{\mathsf{r}} \mathsf{C} \mathbf{\,E}^{\mathsf{r}}$ to be the r+1 vertices of a unit simplex in ${\bf E}^{\text{r}}$.

Compactness Principle

If **E**N $f \rightarrow X$ then there is a finite subset $Y \in E$ N such that $\begin{array}{ccc} \mathsf{y} & \xrightarrow{\mathsf{r}} & \mathsf{X} \end{array}$

Example

$$
X = \bullet
$$
 1 |X| = 2

For a given r, take Y $_{\mathsf{r}} \mathsf{C} \mathbf{\,E}^{\mathsf{r}}$ to be the r+1 vertices of a unit simplex in \mathbf{E}^{r} . Then $\mathsf{Y}_\mathsf{r}\stackrel{\mathsf{r}}{\longrightarrow}\mathsf{X}$.

Let Qⁿ denote the set of 2ⁿ vertices $\{(x_1,...,x_n): x_k = 0 \text{ or } 1\}$ of the n-cube. Then Q^n is Ramsey.

<u>Theorem.</u> For any k and r, there exists $N = N(k,r)$ such that any r-coloring of Q^N contains a monochromatic $\sqrt{2} Q^k$.

<u>Idea of proof:</u> (induction) $k = 1$ Choose N(1,r) = r + 1 \leftarrow r+1 \rightarrow Consider the $r + 1$ points: $(1,0,0,......,0)$ $(0,1,0, \ldots, 0)$ $(0,0,1, \ldots, 0)$ $(0,0,0,......,1)$

Since only r colors are used then some pair must have the same color, say

This is a monochromatic $\sqrt{2} \mathsf{Q}^1$.

So far, so good!

$$
\frac{k=2}{2} \text{ Choose } N(2,r) = (r^{r+1}+1) + (r+1) = N_2 + N_1
$$

$$
\frac{k=2}{2} \text{ Choose } N(2,r) = (r^{r+1}+1) + (r+1) = N_2 + N_1
$$

Consider the N_2N_1 points:

Since the N_2 points represented by the

$$
\begin{array}{|c|c|}\n\hline\n\end{array}
$$

can be r-colored in at most $r^{\prime\prime}$ 1 ways, then the original r-coloring of $\textsf{Q}^{\textsf{N}}\textsf{2}^{\textsf{N}-1}$ induces an r $^{\textsf{N}}$ 1- coloring of $\textsf{Q}^{\textsf{N}}\textsf{2}$. N N 2 $\frac{N_2+N_1}{N_1}$ induces an r $\frac{N_1}{N_1}$ N 1- coloring of O^{N} 2 N

Since N $_2$ = $\,$ r $\rm ^{r+1_+}$ 1 = $\rm r^{\,N_1}$ + 1, some pair has the same coloring, say N

For $k = 3$, we can take $N(3,r) = N_3 + N_2 + N_1$

where
$$
N_3 = 1 + r^{N_2 N_1} = 1 + r^{(1+r^{1+r})(1+r)}
$$
, etc.

For k = 3, we can take $\mathsf{N}(3,\mathsf{r})$ = N_3 + N_2 + N_1

where
$$
N_3 = 1 + r^{N_2 N_1} = 1 + r^{(1+r^{1+r})(1+r)}
$$
, etc.

Continuing this way, the theorem is proved.

Note that by this technique, the bounds we get are rather large.

For example, it shows that $N(4,2) \leq 2^{27} + 13$.

What is the true order of growth here?

With this technique, we can prove the:

Product Theorem. If X and Y are Ramsey then the Cartesian product $X \times Y$ is also Ramsey.

Corollary: (Any subset of) the vertices of an n-dimensional rectangular parallelepiped is Ramsey.

For example, any acute triangle is Ramsey.

What about

How can we get obtuse Ramsey triangles?

Example.

Choose n = R(7, 9, r) and consider the set S of points \overline{x} in \overline{E}^n having all coordinates zero except for 7 coordinates which have in order the values 1, 2, 3, 4, 3, 2, 1.

 \overline{x} = (0 0 0 1 0 2 0 0 0 3 4 0 0 3 0 0 0 0 2 0 1 0 0 0 0)

There are $\binom{n}{7}$ such points in S.

Any r-coloring of S induces an r-coloring of the 7-sets of $\{1,2,\ldots,n\}$

By the choice of $n = R(7, 9, r)$, there exists some 9-set $\{i_1, i_2, ..., i_9\}$ with all its 7-sets having the same color.

$$
\overline{x} = (......x_{i_1}......x_{i_2}....x_{i_3}....x_{i_4}....x_{i_5}....x_{i_6}....x_{i_7}....x_{i_8}....x_{i_9}....)
$$
\nA = (......1....2....3....4....3....2....1....0....)
\nB = (......0....1....2....3....4....3....2....1....0....)
\nC = (......0....0....1....2....3....4....3....2....1....)
\ndist(A, B) = $\sqrt{8}$ dist(B, C) = $\sqrt{8}$ dist(A, C) = $\sqrt{26}$
\nThus, the $(\sqrt{8}, \sqrt{8}, \sqrt{26})$ -triangle is Ramsey.

In general, this technique shows that the triangle with side lengths $\sqrt{2t}$, $\sqrt{2t}$ and $\sqrt{8t-6}$ is Ramsey.

Note that the angle $\theta_{\scriptscriptstyle \dagger}$ between the short sides \rightarrow 180 $^{\rm o}$ as t \rightarrow ∞ .

By the product theorem, triangle $AB'C$ is also Ramsey.

<u>Theorem</u> (Frankl, Rödl) All triangles are Ramsey.

Theorem: (Frankl/Rödl - 1990)

For any (non-degenerate) simplex $S \in E^k$,

there is a $c = c(S)$ so that

 $E^{c \log r} \longrightarrow S$

Theorem (I. Kríz - 1991)

If $\mathsf{X} \subset \mathbb{E}^\mathsf{N}$ has a transitive solvable group of isometries then X is Ramsey.

Corollary. The set of vertices of any regular n-gon is Ramsey.

Theorem (I. Kríz - 1991)

If $\mathsf{X} \subset \mathbb{E}^\mathsf{N}$ has a transitive group of isometries which has a solvable subgroup with at most 2 orbits then X is Ramsey.

Corollary. The set of vertices of any Platonic solid is Ramsey.

Are there any non-Ramsey sets??

Proof that \bullet $\frac{1}{\bullet}$ $\frac{1}{\bullet}$ is not Ramsey.

<code>4-color</code> each $\mathbf{\overline{X}} \in \mathbf{E}^\mathsf{N}$ according to $\lfloor \overline{\mathsf{X}} \mathsf{s} \overline{\mathsf{X}} \rfloor$ (mod 4).

(alternating spherical shells about O with decreasing thickness)

.

Proof that \bullet $\frac{1}{\bullet}$ $\frac{1}{\bullet}$ is not Ramsey.

<code>4-color</code> each $\mathbf{\overline{X}} \in \mathbf{E}^\mathsf{N}$ according to $\lfloor \overline{{\mathbf{X}}}_\mathbb{E} \overline{{\mathbf{X}}}\rfloor$ (mod 4). Then

which is impossible since $-2 < 2 \varepsilon_{\sf b} - \varepsilon_{\sf a} - \varepsilon_{\sf c} < 2$.

Call X spherical if X is a subset of some sphere $S^d(\rho)$ in E^k

<u>Theorem</u> (Erdős, Graham, Montgomery, Rothschild, Spencer, Straus)

 X is Ramsey \implies X is spherical.

Corollary.

In fact, $E^N \downarrow 6$ X for any N.

Is 16 best possible??

Definition: X is called sphere-Ramsey if for all r, there exist $N = N(X,r)$ and $p = p(X,r)$ such that for all partitions $S^{N}(\rho) = C_1 \cup C_2 \cup ... \cup C_r$, some C_i contains a copy of X.

Note: sphere-Ramsey \implies Ramsey \implies spherical

<u>Theorem</u> (Matoušek/Rödl)

If $X \subset S^d(1)$ is a simplex then for all r and all $\varepsilon > 0$,

there exists $N = N(X, r, \varepsilon)$ such that

$$
S^{N}(1+\epsilon) \stackrel{\Gamma}{\longrightarrow} X
$$

Thus, X is sphere-Ramsey.

Is the ε really needed? $Yes!$

Theorem (RLG)

Suppose
$$
X = {\overline{x}_1, ..., \overline{x}_k} \subset S^d(1)
$$
 is unit-sphere-Ramsey
(i.e., $S^N(1) \xrightarrow{r} X$, $N = N(X,r)$)

Then for any linear dependence $\sum C_i \overline{X}_i = \overline{0}$, ∈ $\sum \mathsf{c}_\mathsf{i} \mathsf{\overline{x}}_\mathsf{i} =$ i \in $\mathrm I$ $\mathsf{c}_\mathsf{i} \mathsf{x}_\mathsf{i} = \mathsf{0}$

there must exist a nonempty set
$$
J \subseteq I
$$
 with $\sum_{j \in J} c_j = 0$.

Corollary. If X above has $\overline{O} \in conv(X)$ then X is not unit-sphere-Ramsey.

(since
$$
\overline{0} = \sum_{i \in I} c_i \overline{x}_i
$$
 with all $c_i > 0$).

Suppose that we fix the dimension of the space E^n .

What is true in this case?

The simplest set: $\frac{1}{2}$

Define $\chi(E^2)^2$ the chromatic number of E^2 , to be

the least r such for some r-coloring $\mathbf{E}^{\mathbf{2}}$ = $\mathcal{C}_{\!_1}\, \mathrm{U}\, \mathcal{C}_{\!_2}\, \mathrm{U}$ $\mathrm{U}\, \mathcal{C}_{\!_r}$,

<mark>no C</mark> contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(\mathbf{E}^2)^2$? \hat{P} \hat{P} \leq \mathcal{A} \leq $\chi(\mathbf{E}^2)$ \leq 7

Mosers' graph M

 $\chi(E^2) \geq \chi(M) = 4$

Define $\chi(E^2)^2$ the chromatic number of E^2 , to be

the least r such for some r-coloring $\mathbf{E}^{\mathbf{2}}$ = $\mathcal{C}_{\!_1}\, \mathrm{U}\, \mathcal{C}_{\!_2}\, \mathrm{U}$ $\mathrm{U}\, \mathcal{C}_{\!_r}$,

<mark>no C</mark> contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(\mathbf{E^2})^2$?? $\qquad \quad \mathbf{4}\leq \chi(\mathbf{E^2})\leq \mathbf{7}$

$$
6 \leq \chi(E^{33}) \leq 15
$$

Nechustan (2000)
Radiočić/Tóth (2002)

Define $\chi(E^2)^2$ the chromatic number of E^2 , to be

the least r such for some r-coloring $E^2 = C_1 U C_2 U ... U C_n$.

no C contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(E^2)^2$?? $4 \leq \chi(E^2) \leq 7$

For E^n it is known that:

$$
(1+o(1))(\frac{6}{5})^n \leq \chi(\mathbf{E}^n) \leq (3+o(1))^r
$$

Theorem (OíDonnell ñ 2000)

For every g, there is a 4-chromatic unit distance graph G in E^2 having girth greater than g.

This is perhaps evidence supporting the conjecture that: $\gamma(E^2) \geq 5$

<u>Problem</u>: (\$1000) Determine the value of $\chi(\textbf{E}^2)$.

A little set theory:

Most of us work in ZFC, that is, the usual Zermelo-Fraenkel axioms together with the Axiom of Choice:

AC: Every family F of nonempty sets has a choice function, i.e., there is a function f such that $f(S)$ ε S for every S in F

A weaker form of **AC** is **DC**, the principle of dependent choices:

DC: If E is a binary relation on a nonempty set A, and for every a ^ε A, there exists b ε B with aEb, then there is a sequence $\mathbf{a}_{\!_1},\mathbf{a}_{\!_2},...,\mathbf{a}_{\!_n},...$ such that ⁿ ⁿ ¹ ^a Ea ⁺ for every n **<** ^ω.

Another useful axiom in set theory is:

LM: Every set of real numbers is Lebesgue measurable.

<u>Theorem</u> (Solovay - 1970):

Assuming the existence of an inaccessible cardinal, the system of axioms **ZF** ⁺**DC** ⁺**LM** is consistent.

Theorem (Shelah-Soifer ^ñ 2003):

Assume that any finite unit distance plane graph has chromatic number not exceeding 4. Then:

(i) In **ZFC** the chromatic number of the plane is 4;

(ii) In **ZF** ⁺**DC** ⁺**LM** the chromatic number of the plane is 5, 6 or 7.

The beginnings

(E.Klein)

Any set X of 5 points in the plane in general position must contain the vertices of a convex 4-gon.

For each n, let $f(n)$ denote the least integer so that any set X of f(n) points in the plane in general position must contain the vertices of a convex n-gon.

Does f(n) always exist?

If so, determine or estimate it.

Erdős and Szekeres showed that f(n) always exists and, in fact,

$$
2^{n-2}+1 \le f(n) \le \binom{2n-4}{n-2}+1
$$

Erdős and Szekeres showed that $\mathsf{f}(\mathsf{n})$ always exists and, in fact ,

$$
2^{n-2}+1 \le f(n) \le \binom{2n-4}{n-2}+1
$$

They gave several proofs that f(n) exists, one of which used their independent discovery of **Ramsey's Theorem**.

$$
2^{n-2}+1 \le f(n) \le \binom{2n-4}{n-2}+1
$$

$$
f(n) \leq \binom{2n-4}{n-2}
$$

Chung/Graham (1997)

$$
f(n) \leq {2n-4 \choose n-2} - 2n + 7
$$
 Kleitman/Pachter (1997)

$$
f(n) \leq {2n-5 \choose n-2}+2
$$

G. Tóth/Valtr (1997)

Conjecture (\$1000)

$$
f(n) = 2^{n-2} + 1
$$
, for $n \ge 2$

More beginnings

van der Waerden's Theorem (1927)

In any partition of $N = \{1,2,3,.....\}$ in finitely many classes $C_1 \cup C_2 \cup ... \cup C_r$, some C_i must contain k-term arithmetic progressions for all k.

$k-AP$

Erdös and Turán ask in 1936 which C_i has k-AP's ?

They conjectured that if C_i is "dense enough" then this should imply that C_i has k -AP's.

Define $r_k(n)$ to be the least integer such that any set $X \subseteq \{1,2,...,n\}$ with $|X| \ge r_k(n)$ must contain a k-AP.

Erdős and Turán conjectured that $r_k(n) = o(n)$.

 $r_3(n) \ge n \exp(-c\sqrt{\log n})$ Behrend (1946) 3 $\eta_{\scriptscriptstyle 3}(\mathsf{n})$ = O($\mathcal{D}\!\bigl(\mathcal{D}\bigl(\mathsf{loglog\,n}\bigr)^{\mathsf{c}}$) \qquad Roth (1954) =r₄(n) = o(n) Szemerédi (1969) = $r_{\bf k}({\sf n})$ = 0(n) for all k $-$ Szemerédi (1974)

(\$1000 and the **regularity lemma regularity lemma**)

Progress is now accelerating

r₃(n) ≥ n exp(-c
$$
\sqrt{\log n}
$$
) Behrend (1946)
\nr₃(n) = O($\frac{n}{(\log \log n)^c}$) Roth (1954)
\nr₄(n) = o(n) Szemerédi (1969)
\nr_k(n) = o(n) for all k Szemerédi (1974)
\nr₃(n) = O $\left(\frac{n}{(\log n)^{\frac{1}{3}}}\right)$ Heath-Brown (1987), Szemerédi (1990)
\nr₄(n) = O($\frac{n}{(\log \log n)^c}$) Gowers (1998)
\nr_k(n) = O($\frac{n}{(\log \log n)^c}$) Gowers (2000)

Define W(n) to be the least integer W (by van der Waerden) so that every 2-coloring of $\{1,2,...,W\}$ has an n-AP in one color.

Define W(n) to be the least integer W (by van der Waerden) so that every 2-coloring of $\{1,2,...,W\}$ has an n-AP.

Corollary (Gowers 2000)

$$
W(n) \leq 2^{2^{2^{2^{2^{n+9}}}}}, \text{for all } n.
$$

Conjecture (\$1000): $W(n) \le 2^{n^2}$ for all n.

Best current lower bound is W(n+1) \geq n \cdot 2ⁿ, n prime (Berlekamp 1968)

What can be true for partitions of \mathbf{E}^{c} if we allow an arbitrary finite number of colors? 2

What can be true for partitions of \mathbf{E}^{c} if we allow an arbitrary finite number of colors? 2

Theorem. (RLG) For every r, there exists a least integer T(r) so that for any partition of **Z** 2 = C_{1} U C_{2} U U C_{r} , some \mathcal{C}_{i} contains the vertices of a triangle of area $\mathsf{exactly}$ T(r).

How large is T(r)?

 \bf{I} t can be shown that T(r) > $\left(\frac{1}{2}\right)$ l.c.m (2,3,…,r) = $\boldsymbol{e}^{(1+o(1))r}$.

The best known upper bound grows much faster than the (infamous) van der Waerden function W.

For example, let $W(k,r)$ denote the least value W so that in any r-coloring of the first W integers, there is always formed a monochromatic k-term arithmetic progression.

Then T(3) < 725760 1725761. W(725761. +1,3).

Actually, $T(3) = 3$.

What is the truth here??

What if you allow **infinitely many** colors?

Theorem (Kunen)

Assuming the Continuum Hypothesis, it is possible to partition $\mathbf{E}^{\textsf{2}}$ into countably many sets, none of which contains the vertices of a triangle with rational area.

<u>Theorem</u> (Erdős/Komjáth)

The existence of a partition of $\textbf{E}^{\textbf{2}}$ into countably many sets, none of which contains the vertices of a **right** triangle is equivalent to the Continuum Hypothesis.

Edge-Ramsey Configurations

A finite configuration L of line segments in $\, {\bf E}^\text{\tiny\bf C} \,$ is said to be edge-Ramsey if for any r there is an N = N(L,r) so that in any r-coloring of the line segments in $\, {\bf E}^{\sf \prime} \! {\bm \lambda} \! {\bf }$ there is always a monochromatic copy of L. k N

Edge-Ramsey Configurations

A finite configuration L of line segments in $\, {\bf E}^\text{\tiny\bf C} \,$ is said to be edge-Ramsey if for any r there is an $N = N(L,r)$ so that in any r-coloring of the line segments in $\, {\bf E}^{\sf \prime} \! {\bm \lambda} \! {\bf }$ there is always a monochromatic copy of L. k N

What do we know about edge-Ramsey configurations?

Theorem (EGMRSS)

If L is edge-Ramsey then all the edges of L must have the same length.

Theorem (RLG)

If L is edge-Ramsey then the endpoints of the edges of E must lie on two spheres.

Theorem (RLG)

If the endpoints of the edges of L do not lie on a sphere and the graph formed by L is not bipartite then L is not edge-Ramsey. **Theorem** (Cantwell)

The edge set of an n-cube is edge-Ramsey.

Theorem (Cantwell)

The edge set of a regular n-gon is not edge-Ramsey if $n = 5$ or $n > 6$.

<u>Question</u>: Is the edge set of a regular hexagon edge-Ramsey?

(Big) Problem: Characterize edge-Ramsey configurations.

There is currently no plausible conjecture.

We know:

sphere-Ramsey \Rightarrow Ramsey \Rightarrow spherical \Rightarrow rectangular

What about the **other direction?**

sphere-Ramsey
$$
\underset{\text{1000}}{\overset{?}{\rightleftharpoons}}
$$
 Ramsey $\underset{\text{1000}}{\overset{?}{\rightleftharpoons}}$ spherical

Iíll close with some easier(?) problems:

<u>Question</u>: What are the unit-sphere-Ramsey configurations?

Conjecture (\$50)

For any triangle T, there is a 3-coloring of E^2

with no monochromatic copy of T.

Conjecture (\$100):

Every 2-coloring of $\mathbf{E}^{\mathbf{2g}}$ ontains a monochromatic copy of every triangle, except possibly for a single equilateral triangle.

Conjecture (\$100)

Any 4-point subset of a circle is Ramsey.

Conjecture (\$1000)

Every spherical set is Ramsey.