What is Ramsey Theory?

It might be described as the study of unavoidable regularity in large structures.

Complete disorder is impossible. T. Motzkin

Ramsey's Theorem (1930)

For any k < I and r, there exists R = R(k,I,r) so that for any r-coloring of the k-element sets of an R-element set, there is always some I-element set with all of its k-element subsets having the same color.

> Frank Plumpton Ramsey (1903-1930)

Euclidean Ramsey Theory

 $X \subset E^k$ - finite

Cong(X) - family of all $X \subset E^k$ which are congruent to X (i.e., "copies" of X up to some Euclidean motion)

X is said to be Ramsey if for all r there exists N = N(X,r) such that for every partition $\mathbf{E}^{N} = C_1 \cup C_2 \cup \dots \cup C_r$, we have $X' \in C_i$ for some $X' \in Cong(X)$ and some i.

$$\mathbf{E}^{\mathsf{N}} \xrightarrow{\mathsf{r}} \mathsf{X}$$

Compactness Principle

If $\mathbf{E}^{N} \xrightarrow{\mathbf{r}} X$ then there is a finite subset $Y \in \mathbf{E}^{N}$ such that $Y \xrightarrow{\mathbf{r}} X$

Example

For a given r, take $Y_r \subset \mathbf{E}^r$ to be the r+1 vertices of a unit simplex in \mathbf{E}^r .

Compactness Principle

If $\mathbf{E}^{N} \xrightarrow{\mathbf{r}} X$ then there is a finite subset $Y \in \mathbf{E}^{N}$ such that $Y \xrightarrow{\mathbf{r}} X$

Example

 $X = \bullet$ |X| = 2

For a given r, take $Y_r \subset \mathbf{E}^r$ to be the r+1 vertices of a unit simplex in \mathbf{E}^r . Then $Y_r \xrightarrow{r} X$. Let Q^n denote the set of 2^n vertices $\{(x_1, ..., x_n) : x_k = 0 \text{ or } 1\}$ of the n-cube. Then Q^n is Ramsey.

<u>Theorem.</u> For any k and r, there exists N = N(k,r) such that any r-coloring of Q^N contains a monochromatic $\sqrt{2}Q^k$.

 Idea of proof:
 (induction)
 k = 1 Choose N(1,r) = r + 1

 Consider the r + 1 points:
 (1,0,0,....,0)
 (0,1,0,....,0)
 (0,0,0,....,0)

 (0,0,0,....,0)
 (0,0,0,....,1)

Since only r colors are used then some pair must have the same color, say

This is a monochromatic $\sqrt{2}Q^{1}$.

So far, so good!

k = 2 Choose N(2,r) =
$$(r^{r+1}+1) + (r+1)$$

= N₂ + N₁

k = 2 Choose N(2,r) =
$$(r^{r+1}+1) + (r+1)$$

= N₂ + N₁

Consider the N_2N_1 points:

Since the N_2 points represented by the

can be r-colored in at most r^{N_1} ways, then the original r-coloring of $Q^{N_2+N_1}$ induces an r^{N_1} - coloring of Q^{N_2} .

Since $N_2 = r^{r+1} + 1 = r^{N_1} + 1$, some pair has the same coloring, say

For k = 3, we can take $N(3,r) = N_3 + N_2 + N_1$

where
$$N_3 = 1 + r^{N_2 N_1} = 1 + r^{(1+r^{1+r})(1+r)}$$
, etc.

For k = 3, we can take $N(3,r) = N_3 + N_2 + N_1$

where
$$N_3 = 1 + r^{N_2N_1} = 1 + r^{(1+r^{1+r})(1+r)}$$
, etc.

Continuing this way, the theorem is proved.

Note that by this technique, the bounds we get are rather large.

For example, it shows that $N(4,2) \le 2^{27} + 13$.

What is the true order of growth here?

With this technique, we can prove the:

<u>Product Theorem</u>. If X and Y are Ramsey then the Cartesian product $X \times Y$ is also Ramsey.

<u>Corollary:</u> (Any subset of) the vertices of an n-dimensional rectangular parallelepiped is Ramsey.

For example, any acute triangle is Ramsey.

What about

2

How can we get obtuse Ramsey triangles?

Example.

Choose n = R(7, 9, r) and consider the set S of points \overline{x} in \mathbb{E}^{n} having all coordinates zero except for 7 coordinates which have in order the values 1, 2, 3, 4, 3, 2, 1.

 $\overline{x} = (0\ 0\ 0\ 1\ 0\ 2\ 0\ 0\ 0\ 3\ 4\ 0\ 0\ 3\ 0\ 0\ 0\ 0\ 2\ 0\ 1\ 0\ 0\ 0)$

There are $\binom{n}{7}$ such points in S.

Any r-coloring of S induces an r-coloring of the 7-sets of {1,2,....,n}

By the choice of n = R(7, 9, r), there exists some 9-set $\{i_1, i_2, ..., i_9\}$ with all its 7-sets having the same color.

$$\overline{x} = (\dots x_{i_1} \dots x_{i_2} \dots x_{i_3} \dots x_{i_4} \dots x_{i_5} \dots x_{i_6} \dots x_{i_7} \dots x_{i_8} \dots x_{i_9})$$

$$A = (\dots1 \dots ...2 \dots ...4 \dots ...3 \dots ...0 \dots ...0 \dots ...)$$

$$B = (\dots0 \dots ...1 \dots ...2 \dots ...3 \dots ...4 \dots ...3 \dots ...2 \dots ...0 \dots ...)$$

$$C = (\dots0 \dots ...0 \dots ...1 \dots ...2 \dots ...3 \dots ...4 \dots ...3 \dots ...2 \dots ...1 \dots ...)$$

$$dist(A, B) = \sqrt{8} \qquad dist(B, C) = \sqrt{8} \qquad dist(A, C) = \sqrt{26}$$
Thus, the $(\sqrt{8}, \sqrt{8}, \sqrt{26})$ -triangle is Ramsey.

In general, this technique shows that the triangle with side lengths $\sqrt{2t}$, $\sqrt{2t}$ and $\sqrt{8t-6}$ is Ramsey.

Note that the angle θ_{+} between the short sides $\rightarrow 180^{\circ}$ as t $\rightarrow \infty$.

By the product theorem, triangle AB'C is also Ramsey.

Theorem (Frankl, Rödl) All triangles are Ramsey.

Theorem: (Frankl/Rödl - 1990)

For any (non-degenerate) simplex $S \in \mathbf{E}^k$,

there is a c = c(S) so that

<u>Theorem (I. Kríz - 1991)</u>

If $X \subset E^N$ has a transitive solvable group of isometries then X is Ramsey.

<u>Corollary</u>. The set of vertices of any regular n-gon is Ramsey.

<u>Theorem (I. Kríz - 1991)</u>

If $X \subset E^N$ has a transitive group of isometries which has a solvable subgroup with at most 2 orbits then X is Ramsey.

<u>Corollary.</u> The set of vertices of any Platonic solid is Ramsey.

Are there any non-Ramsey sets??

Proof that -1 is not Ramsey.

4-color each $\mathbf{X} \in \mathbf{E}^{\mathsf{N}}$ according to $\lfloor \overline{\mathbf{X}}_{\mathsf{g}} \overline{\mathbf{X}} \rfloor$ (mod 4).

(alternating spherical shells about O with decreasing thickness)

٠

Proof that • 1 • 1 • is not Ramsey.

4-color each $\overline{\mathbf{X}} \in \mathbf{E}^{\mathsf{N}}$ according to $\lfloor \overline{\mathbf{X}}_{g} \overline{\mathbf{X}} \rfloor$ (mod 4). Then

Call X spherical if X is a subset of some sphere $S^{d}(\rho)$ in E^{k}

<u>Theorem</u> (Erdős, Graham, Montgomery, Rothschild, Spencer, Straus)

X is Ramsey \implies X is spherical.

Corollary.

In fact,
$$\mathbf{E}^{\mathsf{N}} \stackrel{16}{\dashrightarrow} \mathsf{X}$$
 for any $\mathsf{N}.$

Is 16 best possible??

<u>Definition</u>: X is called sphere-Ramsey if for all r, there exist N = N(X,r) and $\rho = \rho(X,r)$ such that for all partitions $S^{N}(\rho) = C_1 \cup C_2 \cup \dots \cup C_r$, some C_i contains a copy of X.

Note: sphere-Ramsey \implies Ramsey \implies spherical

Theorem (Matoušek/Rödl)

If $X \subset S^{d}(1)$ is a simplex then for all r and all $\varepsilon > 0$,

there exists $N = N(X, r, \epsilon)$ such that

$$S^{N}(1+\varepsilon) \xrightarrow{r} X$$

Thus, X is sphere-Ramsey.

Is the ε really needed? Yes!

Theorem (RLG)

Suppose
$$X = {\overline{x}_1, ..., \overline{x}_k} \subset S^d(1)$$
 is unit-sphere-Ramsey
(i.e., $S^N(1) \xrightarrow{r} X$, $N = N(X,r)$)

Then for any linear dependence $\sum_{i \in I} c_i \overline{x}_i = \overline{0}$,

there must exist a nonempty set $J \subseteq I$ with $\ \sum_{j \in J} c_j = 0.$

<u>Corollary</u>. If X above has $\overline{0} \in \text{conv}(X)$ then X is not unit-sphere-Ramsey.

(since
$$\overline{0} = \sum_{i \in I} c_i \overline{X}_i$$
 with all $c_i > 0$).

Suppose that we fix the dimension of the space \mathbf{E}^{n} .

What is true in this case?

The simplest set:

Define $\chi(\mathbf{E}^2)^2$, the chromatic number of \mathbf{E}^2 , to be

the least r such for some r-coloring $\mathbf{E}^2 = C_1 \cup C_2 \cup \dots \cup C_r$,

no C_i contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(E^2)^2$? $4 \le \chi(E^2) \le 7$

Mosers' graph M

 $\chi(\mathbf{E}^2) \geq \chi(\mathbf{M}) = 4$

Define $\chi(\mathbf{E}^2)^2$, the chromatic number of \mathbf{E}^2 , to be

the least r such for some r-coloring $\mathbf{E}^2 = C_1 \cup C_2 \cup \dots \cup C_r$,

no C_i contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(E^2)^2$? $4 \le \chi(E^2) \le 7$

$$6 \le \chi(E^{33}) \le 15$$

Nechustan (2000) Radoičić/Tóth (2002)

Define $\chi(\mathbf{E}^2)^2$, the chromatic number of \mathbf{E}^2 , to be

the least r such for some r-coloring $\mathbf{E}^2 = C_1 \cup C_2 \cup \dots \cup C_r$,

no C_i contains 2 points at a distance of 1 from each other.

In other words, no unit distance occurs monochromatically

What is the value of $\chi(E^2)^2$? $4 \le \chi(E^2) \le 7$

For \mathbf{E}^{n} it is known that:

$$(1 + o(1))(\frac{6}{5})^n \le \chi(\mathbf{E}^n) \le (3 + o(1))^n$$

<u>Theorem</u> (O'Donnell - 2000)

For every g, there is a 4-chromatic unit distance graph G in \mathbf{E}^2 having girth greater than g.

This is perhaps evidence supporting the conjecture that: $\chi(\mathbf{E}^2) \stackrel{?}{\geq} 5$

<u>Problem</u>: (\$1000) Determine the value of $\chi(E^2)$.

A little set theory:

Most of us work in ZFC, that is, the usual Zermelo-Fraenkel axioms together with the Axiom of Choice:

AC: Every family F of nonempty sets has a choice function, i.e., there is a function f such that $f(S) \in S$ for every S in F

A weaker form of AC is DC, the principle of dependent choices:

DC: If E is a binary relation on a nonempty set A, and for every a ε A, there exists b ε B with aEb, then there is a sequence $a_1, a_2, ..., a_n, ...$ such that $a_n E a_{n+1}$ for every $n < \omega$. Another useful axiom in set theory is:

LM: Every set of real numbers is Lebesgue measurable.

Theorem (Solovay - 1970):

Assuming the existence of an inaccessible cardinal, the system of axioms ZF + DC + LM is consistent.

Theorem (Shelah-Soifer - 2003):

Assume that any finite unit distance plane graph has chromatic number not exceeding 4. Then:

(i) In ZFC the chromatic number of the plane is 4;

(ii) In ZF + DC + LM the chromatic number of the plane is 5, 6 or 7.

The beginnings

(E.Klein)

Any set X of 5 points in the plane in general position must contain the vertices of a convex 4-gon.

For each n, let f(n) denote the least integer so that any set X of f(n) points in the plane in general position must contain the vertices of a convex n-gon.

Does f(n) always exist?

If so, determine or estimate it.

Erdős and Szekeres showed that f(n) always exists and, in fact,

$$2^{n-2}+1 \leq f(n) \leq {\binom{2n-4}{n-2}}+1$$

Erdős and Szekeres showed that f(n) always exists and, in fact,

$$2^{n-2}+1 \leq f(n) \leq {\binom{2n-4}{n-2}}+1$$

They gave several proofs that f(n) exists, one of which used their independent discovery of Ramsey's Theorem.

$$2^{n-2}+1 \leq f(n) \leq {\binom{2n-4}{n-2}}+1$$

$$f(n) \leq \begin{pmatrix} 2n-4 \\ n-2 \end{pmatrix}$$

Chung/Graham (1997)

$$f(n) \leq \binom{2n-4}{n-2} - 2n + 7$$

Kleitman/Pachter (1997)

$$f(n) \leq \binom{2n-5}{n-2} + 2$$

G. Tóth/Valtr (1997)

<u>Conjecture</u> (\$1000)

$$f(n) = 2^{n-2} + 1$$
, for $n \ge 2$

More beginnings

van der Waerden's Theorem (1927)

In any partition of $\mathbf{N} = \{1, 2, 3, \dots\}$ in finitely many classes $C_1 \cup C_2 \cup \dots \cup C_r$, some C_i must contain k-term arithmetic progressions for all k.

k-AP

Erdös and Turán ask in 1936 which C_i has k-AP's?

They conjectured that if C_i is "dense enough" then this should imply that C_i has k-AP's.

Define $r_k(n)$ to be the least integer such that any set $X \subseteq \{1,2,...,n\}$ with $|X| \ge r_k(n)$ must contain a k-AP.

Erdős and Turán conjectured that $r_k(n) = o(n)$.

$$\begin{split} r_{3}(n) &\geq n \exp\left(-c\sqrt{\log n}\right) \quad \text{Behrend (1946)} \\ r_{3}(n) &= O\left(\frac{n}{(\log \log n)^{c}}\right) \quad \text{Roth (1954)} \\ r_{4}(n) &= o(n) \quad \text{Szemerédi (1969)} \\ r_{k}(n) &= o(n) \quad \text{for all } k \quad \text{Szemerédi (1974)} \end{split}$$

(\$1000 and the regularity lemma)

Progress is now <u>accelerating</u>

$$r_{3}(n) \ge n \exp\left(-c\sqrt{\log n}\right) \quad \text{Behrend (1946)}$$

$$r_{3}(n) = O\left(\frac{n}{(\log \log n)^{c}}\right) \quad \text{Roth (1954)}$$

$$r_{4}(n) = o(n) \quad \text{Szemerédi (1969)}$$

$$r_{k}(n) = o(n) \quad \text{for all } k \quad \text{Szemerédi (1974)}$$

$$r_{3}(n) = O\left(\frac{n}{(\log n)^{\frac{1}{3}}}\right) \quad \text{Heath-Brown (1987), Szemerédi (1990)}$$

$$r_{4}(n) = O\left(\frac{n}{(\log \log n)^{c}}\right) \quad \text{Gowers (1998)}$$

$$r_{k}(n) = O\left(\frac{n}{(\log \log n)^{c_{k}}}\right) \quad \text{Gowers (2000)}$$

Define W(n) to be the least integer W (by van der Waerden) so that every 2-coloring of $\{1, 2, ..., W\}$ has an n-AP in one color.

Define W(n) to be the least integer W (by van der Waerden) so that every 2-coloring of {1,2,...,W} has an n-AP.

Corollary (Gowers 2000)

$$W(n) \le 2^{2^{2^{2^{n+9}}}}$$
 , for all n.

<u>Conjecture</u> (\$1000): $W(n) \le 2^{n^2}$ for all n.

Best current lower bound is $W(n+1) \ge n \cdot 2^n$, n prime (Berlekamp 1968)

What can be true for partitions of \mathbf{E}^2 if we allow an arbitrary finite number of colors?

What can be true for partitions of \mathbf{E}^2 if we allow an arbitrary finite number of colors?

<u>Theorem.</u> (RLG) For every r, there exists a least integer T(r) so that for any partition of $\mathbb{Z}^2 = C_1 \cup C_2 \cup \dots \cup C_r$, some C_i contains the vertices of a triangle of area exactly T(r).

How large is T(r)?

It can be shown that $T(r) > (\frac{1}{2})$ l.c.m (2,3,...,r) = $e^{(1+o(1))r}$.

The best known upper bound grows much faster than the (infamous) van der Waerden function W. For example, let W(k,r) denote the least value W so that in any r-coloring of the first W integers, there is always formed a monochromatic k-term arithmetic progression.

Then $T(3) < 725760 \cdot 1725761 W(725761 + 1,3)$

Actually, T(3) = 3.

What is the truth here??

What if you allow infinitely many colors?

Theorem (Kunen)

Assuming the Continuum Hypothesis, it is possible to partition \mathbf{E}^2 into countably many sets, none of which contains the vertices of a triangle with rational area.

Theorem (Erdős/Komjáth)

The existence of a partition of \mathbf{E}^2 into countably many sets, none of which contains the vertices of a right triangle is equivalent to the Continuum Hypothesis.

Edge-Ramsey Configurations

A finite configuration L of line segments in \mathbf{E}^{k} is said to be edge-Ramsey if for any r there is an N = N(L,r) so that in any r-coloring of the line segments in \mathbf{E}^{N} , there is always a monochromatic copy of L.

Edge-Ramsey Configurations

A finite configuration L of line segments in \mathbf{E}^{k} is said to be edge-Ramsey if for any r there is an N = N(L,r) so that in any r-coloring of the line segments in \mathbf{E}^{N} , there is always a monochromatic copy of L.

What do we know about edge-Ramsey configurations?

Theorem (EGMRSS)

If L is edge-Ramsey then all the edges of L must have the same length.

Theorem (RLG)

If L is edge-Ramsey then the endpoints of the edges of E must lie on two spheres.

Theorem (RLG)

If the endpoints of the edges of L do not lie on a sphere and the graph formed by L is not bipartite then L is not edge-Ramsey. Theorem (Cantwell)

The edge set of an n-cube is edge-Ramsey.

<u>Theorem</u> (Cantwell)

The edge set of a regular n-gon is not edge-Ramsey if n = 5 or n > 6.

<u>Question</u>: Is the edge set of a regular hexagon edge-Ramsey?

(Big) Problem: Characterize edge-Ramsey configurations.

There is currently no plausible conjecture.

We know:

sphere-Ramsey \Rightarrow Ramsey \Rightarrow spherical \Rightarrow rectangular

What about the other direction?

I'll close with some easier(?) problems:

<u>Question</u>: What are the unit-sphere-Ramsey configurations?

Conjecture (\$50)

For any triangle T, there is a 3-coloring of \mathbf{E}^2

with no monochromatic copy of T.

Conjecture (\$100):

Every 2-coloring of \mathbf{E}^{2} on tains a monochromatic copy of every triangle, except possibly for a single equilateral triangle.

Conjecture (\$100)

Any 4-point subset of a circle is Ramsey.

<u>Conjecture (</u>\$1000)

Every spherical set is Ramsey.