Packing Equal Discs in the Plane

Object: To maximize the density p, of the covered region

Theorem: (Thue - 1892)

Hexagonal is optimal, with p, =A\/§



Packing Equal Discs in the Plane

Object: To maximize the density p, of the covered region

Theorem: (Thue - 1892, 1910) (Fejes Toth - 1940)

(Lagrange - 1773)
Hexagonal is optimal, with p, =A\/§



The next simplest case

Packing an infinite strip of width w with equal discs.

(We will always assume that our discs have diameter 1.)

For example, fake w = 2:

88%% trivial --- center density = 1/2

W Fejes Téth (1971)---center density =
1 1 —
(V2 + / (j3)=0:49789..

%&9) RLG (1971)---center density =
L1+43 -3)=0.49699..



Conjecture:(J. Molndr -- 1970's)

The "alternating triangles” packing of discs is optimal
for every value of w.

Theorem: (Fliredi—1992)

Conjecture is true for w <1+ J3

and also for w =1+k+/3 for any positive integer k.



What if the strip is finite (but very long)?

For example, what is the length L, of the shortest rectangle
of width 2 for which a non-trivial packing of units discs is
optimal?

If L =164.992765.., then 332 units discs can be non-
trivially packed into a 2-by-L rectangle. The trivial
packing requires a 2-by-165 rectangle.

What is the correct value of L, ??

How far into the interior do the irregularities penetrate in
on optimal packing?
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PERSPECTIVES: LIQUIDS

SCIENCE'S COMPASS

Putting Liquids Under
Molecular-Scale Confinement

Jacob Israelachvill and Delphine Gourdan

er ef al. () sddress the question of

whil hoppens when a liquid is con-
lined within a small volume, for example,
in an ultrathin capillary or in 4 thin film
between two surfaces. The physical prop-
erties of liguids are known o change dm-
matically as the degree of confinement ap-
proaches molecular dimensions. For exam-
ple, a liquid's viscosity can increase by
several orders of magnitude in films with
mobecular or “nanoscale” dimensions, The
“structure” of a liquid can also change, be-
coming more ordered, solidlike, or even
ervstalling or bess ordered and more fluid-
like than the bulk liguid, depending on
how the micrescopic

On page 905 of this issue, Heuberg-

ligpuid film undergo o succession of lig-
wid-to-solid-to-liguid phase transitions (B
— C — D — H), does the film collapse in
an ordered fashion {C = E = H), or do
individual lnyers get forced out through
dislocations (C — G — H)? And are there
both cwt-of-plane and in-plane {loteral)
heterogencitics, such os two-dimensionl
:I.umlmi.mﬂumnu{FﬂrlI'."Tﬂmmn
these questions experimentally requires u
technigue that can probe both siructure
and Interactions in real time at the sub-
molecular level (<0.1 nmj, This is wha
Heuberper er al. (1) have achieved.

The SFA (6) is traditionally used o
measure the normal and lateral (rheologi-
cal and friction) forces between surfaces in
liquids at precisely controllable and mea-
surable separations at the angstrom level.
or film thickness is achieved optically with
multiple beam imerferometry. Heuberger
ef gl (1) hove designed and built 4 new
type of surface force-measuring appartus
that they call an extended surface forces

appariatus (e5FA). Using

shape and stomic struc-
ture of the walls D
match that of the liguid
molecules (2}, Many as-

~  [ast spectral correlation
spectroscopy 0 recond the
interference fringes, they
were ghle to measure sor-
face separation 1 and film
refractive index o ot least
s 10 times more accurately

er et al. (!) report un-
precedentedly detailed

imeasurements of the forces and densities
of thin films of cvelohexane confined
between two mica surfaces and propose
new explanations for their unexpected
ohservations.

The properties of confined liquids (and
solids} are of great interest and impor-
nce in preas as diverse as materials sci-
ence, microfabrication, adhesion and lu-
bricotion. biology ecoloeyv and ihe Bl

How doas the confined liguld respond? The

shart-range “sobvation” force (also
known & the patential of mean force] be-
tween twa surfaces [ a lquid varles between
attraction and repulsion with a perladicity

than i conventional SEA
messurements. This enabled them to si-
multanecusly measure both the interaction
forces and the refrective index (and hence
the density and, indirectly, the structure) of
the films. This allows for the first time a
direct correlation between these two inti-
mately related fectors.
Using the eSFA, Heuberger er al. mea-
sured the oscillatory force profile between
bwo minl smooth surfaces of micn

T R [ (o T 1 Pue——— s [

-, 'I"tllrlh_



Packing bounded domains

Let T(s) denote an equilateral triangle of side s.

What does the densest packing of n unit discs in T(s) look like?

m
If n= (2) , the answer is "obvious”.

For example, for n = 10:

Conjecture (Zassenhaus) This is always optimal for n = (2)

Theorem (Oler--1961) This conjecture is true.



One of the simplest proofs is based on the following result.

Let K denote a simplicial complex in the plane, and let

a.(K) denote the number of i-simplices of K,i=0,1, 2.

As usual, let x(K) = a,(K) - a,(K) + a,(K)
denote the Euler characteristic of K

Let A(K) and P(K) denote the area and perimeter of K, respectively

Theorem (Folkman, RL6—1969)

If Kis a simplicial complex in the plane, and d(x,y)>1 for x # y in K,

then | g (K) < 2 A(K) + 1P(K) + x(K)




Let X be a compact convex subset of the plane.

By a packing of X, we mean a subset S of X such that
x,yO0S=d(x,y)=1

The packing number p(X) is defined to be max {|S|: S is a packing of X}

Corollary (Oler - 1961)
p(X) < %A(K) +3P(K) +1

Example: X = T(n), an equilateral triangle of side n.

Then, A(T(n)) = 2n? and P(T(n)) =3n

Thus, p(T(n)) < 283n% +3n+1=1(n° +3n+2) = ("°)

2
3



Conjecture (D. J. Newman) - $100

The smallest equilateral triangle into which (n-ZrZ)_l

points can be packed is (still) n|

This is no longer true for‘(”zz)— 2 points.



Two different optimal packings of 7 discs in an equilateral triangle



Optimal packings for n = 8, 11, and 12 (H. Melissen - 1995)

Packing for n = 13 is conjectured to be optimal.

n =12 is the last known optimal value when n # A



Two equally good packings for n = 16, conjectured to be optimal.

Especially hard cases seem to be whenn = A + 1.



Three equally good conjectured optimal packings of 17 discs

Note the "rattler” in the first packing



O
OAGA

23

Conjectured optimal packings of 23 and 24 discs.

Which is nicer?  Any conjectures??
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Four packings of 31 discs. Which is the best?
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Conjectured optimal packings when n






Which is better ??



0.142869646754496 84 bonds 0.142867647681844 83 bonds

Which is better ??

(radius of discs if reduced triangle has side 1)
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h=260

h=258

Part of general patterns?
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Packings were generated by an "event driven” billiards simulation
algorithm written by Boris Lubachevsky (formerly of Bell Labs).
They were designed in part to understand crystal growth in the
presence of irregularities.

We start with very small discs with random positions and velocities
and them let bounce around elastically while slowing increasing in
size, until after many millions of bounces, they become "stuck".

You then repeat this process thousand of times!

Stillinger, Frank H.; Lubachevsky, Boris D. Crystalline-
amorphous interface packings for disks and spheres.
J. Statist. Phys. 73 (1993), no. 3-4, 497--514
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H. Melissen, Densest packings of congruent circles in an
equilateral triangle, Amer. Math. Monthly 100 (1993), 916-925

B. D. Lubachevsky and RLG, Dense packings of equal discs in
an equilateral triangle: from 22 to 34 and beyond, Electronic
J. Combinatorics 2 (1995), #Al

H. Melissen, Packing and covering with circles, Ph.D. dissertation,
Utrecht University, 1997, viii + 180 pp.



Packing discs into squares

This is one of the classic disc packing problems.

2. Old Results

The problem of packing circles into different geometrical shapes has received much
attention since the seminal work of Fejes Toth [7]. A recent survey of results and problems
still open can be found in [3]. One of the most natural and most studied of these problems
1s that of packing circles in a square.

This problem was solved for up to nine circles in the 1960s by Graham, Meir and
Schaer; the proofs of these cases have been reported in [12], [18], [20], and [22]. The
proofs for n < 5 are easy, whereas the cases 6 < n < 9 require more elaborate
mathematical tools. For example, forn = 5 we can divide the square into four subsquares
as indicated in Fig. 1. Now at least one square must contain two points due to the pigeon-
hole principle, so the length of the diagonals in the subsquares (+/2/2) upper-bounds ds.
This is also a lower bound, since in the solution in Fig. 1 (which is the only possible
optimal solution), this is the smallest distance between two points. Thereby ds = +/2/2.

Forn > 10, only the optimal packings of 14 [26], 16 [24], 25 [25], and 36 [10] circles
have been proved by hand.
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Why is the packing for 120 discs so good?

=b/2

length

I

length = a/3/2

a+1 columns (an even #)

b+1 rows

number of points (= disc
centers) is (a+1)(b+1)/2

If b=a/3/2 - ¢ then can pack a slightly distorted copy
of this disc arrangement into a square.



So we need to have a/b slightly less than /3.

Use the (under-)convergents to /3.

These are: 2 19 71 265 E
3 !’ a,

1
1/3711+41+103 +°°

The corresponding values of the number of discs N = 3(a, +1)(b, +1)

are 2,12, 120, 1512, 13832,......

Conjecture: (Nurmela, Ostergdrd -- 1999)

For these values of N, the "near-hexagonal” packing of N discs is optimal.
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How about packing discs in circles?

Of course, people have been doing that, too,

for a long time (with even less success!)

N=3
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2. Earlier results

Kravitz [10] was, to our knowledge, the first to consider the problem of packing n
congruent circles in a circle. In [10] packings of up to 19 circles are given without
any optimality proofs.? Graham [6] and Pirl [17] independently proved optimality of
packings of up to 7 and 10 circles, respectively. Pirl also presented good packings of
up to 19 circles; some of these packings (for n = 14,16, 17) were later improved by
Goldberg [5], who also gave a packing of 20 circles. Goldberg’s packing of 17 circles
was further improved by Reis [18], who extended the range of n to 25. The packing
of n = 25 is improved in this paper. Recently, Melissen [13] proved the optimality for
the case n = 11.




A peculiarity of the 18-circle case i1s that the best known packings of 18 circles
have| the same r as the best known packing of 19 circles. |Three different, equally
dense packings of 18 circles can be obtained by removing a circle in the packing of
19 circles in Fig. 2; see packings 18(a)-18(c) in Fig. 3. (A packing obtained by a
congruence transformation, that is, by rotation or reflection, from another is consid-
ered the same.) In addition to these three packings, which apparently were the only
ones known before, there are at least 7 more equally good packings.| We suspect

that there is no 11th equally good packing| At least, if one circle is removed from

any of those 10 presumed best and then put back in the packing without overlaps
with other circles, then one of these 10 packings is obtained. Furthermore, starting
from any of these packings, all the others can be obtained with a series of such
transformations.



n =18 (b) n =18 (c)

n=18 (a)
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N=37° N =238 N =239
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N=41 N =42




N = 61° N = 62 N =63
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5 circles in the unit cimle




N =127° N =128 N = 129

127 mimmles im the uwndit oioele 122 gireles im the wndit oiole 129 mipeles in the wnits cioele

N =130 N =131 N=132

130 cimmles in the unit cimle 132 gircles in the wmit cimele
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N=169"

16% miveless 1 the wnit siozle

169=3-7-8+1=0 Too bad!
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Any conjectures??



Dense packings of 2 sizes of discs in the plane




Dense packings of discs of many sizes in the plane:

Apollonian circle packings

Apollonian circle packings arise by repeatedly filling the
interstices between mutually tangent circles with further
thagent circles. It is possible for every circle in such a packing
to have integer curvature. Such packings are called integral
Apollonian circle packings.

a,b,c and d are reciprocals of the
radii of the circles (also called the
"bends” of the circles).

Descartes Theorem

(a+b +c +d)* =2(a® +b® +c® +d?)







The integral
Apollonian circle
packing (-1,2,2,3) |




Fact: All bends in the packing (-1,2,2,3) must be
congruent to 2,3 6 or 11 (mod 12).

Conjecture ($500) All sufficiently large numbers satisfying

these congruence conditions occur as bends in the packing (-1,2,2,3)



Y e
127 127 Y127
A |
ar Tial L
L | L —
[ i B
i i |
I
| |
| ! ]
-4 | -4
i e | N |
] 4 f g o]
A ‘l'} | 9 L] 1I'I ] A 1.‘!"‘ P
- Ml Wil il P
i LY F i F )
F % -
L8 Ay
L - P F
" - P | [ . F 3 |
' 9 r:-.\.‘ ’ = | 9 .1. & 9 | S - o -_- 9 ' d
i e o a ™ = '.'- 18 & :ll.i"h . .1 & 16 = Tow o L imk L
ol e L WS aifl, il ok L il 1 b _dls i il . e e E a i T il L ke all i e e |

The Apollonian circle packing (0,0,1,1)

Fact: All bends occurring in (0,0,1,1) are congruent to 0,1,4,9,12 or 16 (mod 24)

Conjecture ($500) All sufficiently large numbers satisfying
these congruence conditions occur as bends in the packing (0,0,1,1)



Fact: For any m with g.c.d (m,30) = 1, every
congruence class modulo m occurs infinitely oftfen as a
bend in every integral Apollonian circle packing..

Conjecture: The above statement is true for all m with g.c.d. (m,6) = 1.

Conjecture: All congruential restrictions on bends in integral
Apollonian circle packings can be expressed modulo 24.




An equivalent number theory problem

Starting with some multiset S = {a,b,c,d} of integers,
repeatedly perform the following transformation:

Replace any element, say d, in S, by d' = 2(a+b+c) - d,
forming S' = {a,b,c,d’}

Question: Which integers can ever be generated by this process?

For example, if we start with {0,0,1,1}, is it true that all sufficiently
large integers congruent to0 0,1,4,9,12 and 16 (mod 24) occur?



{12,4,33,97} :
%33,I< (12,2473}

{64,4,33,1}

{12411} :
\ {12,88,33,1) :

/ (122410, o4
0011} == (0411 /'{28 4.981)

{28,491 (28,72,9.1}

{28,457 1}
{76,4.9,25)
{0,4,9,1)/4/0,4,9,254{0,64,9,25}
\ \{0,4,49,25}
(521691

0169 h— {0,16,9,49)

{0,16,25,1}
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Now for something completely different......

Packing squares in squares.

Let s(n) denote the side length of the smallest square into

which n non-overlapping unit squares can be packed.

Of course, s(m?) = m, for any integer m.

n| 2|3|5]|6|7]8]|14[1524|3
s)| 2] 2+4 33|34 4] 5]

5
6

All currently known optimal values of s(n) for n #00
S(5) =2+



Some other currently best known packings
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It starts getting harder...




87

Could this really be "the truth” ?



Old conjecture: s(ré¢ - n) = n

(New) counterexample:

2
s(17 -17) <17 (L. Cleemann)



Define the wasted space W(s) in a packing of an sxs square by:

W(s) :=s% - max(n: s(n) <s)

1000

W(m) = O if m is an integer.

What is W(m + t5) ?

W(m + 1o05) * 500 7




Define the wasted space W(s) in a packing of an sxs square by:

W(s) :=s% - max(n: s(n) <s)

W(m) = O if m is an integer.

What is W(m + 1555) ?

A non-obvious packing!

Theorem (Erdds-RLG - 1975)

W(s) = O(s'")




Theorem: (H. Montgomery)

For any € >0,

W(s) = O(s

303 )

Note: 353 =0,63397... < 0.63636... = %

What about a lower bound?



Theorem: (K. F. Roth-R. C. Vaughan - 1978)

Suppose s(s—[s]) > <.

Then

W(s)>107® Js|s —|s +1 |l

Thus, W(s) ? s%'8 for any £ >0, (for s bounded away from integers)

Conjecture: ($1000)

1
For some € > O, W(s) > 52+8 (for s bounded away from integers)



E. Friedman, Packing unit squares in squares: a survey and new results,
Electronic J. Combinatorics 7 (2000) DS #7

P. Erdos and R. L. Graham, On packing squares with equal squares,
J. Combin. Theory Ser. A 19 (1975) 119-123

K. F. Roth and R. C. Vaughan, Inefficiency in packing squares
with unit squares, J. Combin. Theory Ser. A 24 (1978) 170-186



What next?




What next?

A different metric

The Minkowski plane — unit ball determined by a
compact convex centrally symmetric domain B.

/ 9B
</




Theorem (Folkman, RLG—1969)

If K is a simplicial complex in the plane, and d(x,y)>1 for x # y in K,

then a(K) = 2 AKK) + 2P(K) + x(K)

Theorem (RLG, H. Witsenhausen, H. Zassenhaus - 1972)

For any Minkowski plane, and any finite simplicial complex K
in the plane, we have

a,(K) < 555 AK) + P(K) + x(K)

where AD is the minimum (by compactness) over all areas of

triangles with unit side lengths.



Instead of packings, we consider the same questions for coverings.

In general, these seem to be more difficult.

For example, 6. Fejes Toth (2003) has managed to find the
thinnest covering of a strip of width w by unit circles where

J3<sws< 3 +¢

for a suitable (very small) positive «
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for a suitable (very small) positive € .



Instead of packings, we consider the same questions for coverings.

In general, these seem to be more difficult.

For example, 6. Fejes Toth (2003) has managed to find the
thinnest covering of a strip of width w by unit circles where

J3<sws< 3 +¢

for a suitable (very small) positive €.



Finally, how about all of these questions

in three (or more) dimensions |

Even the first question we started with, namely
determining the densest packing of Euclidean 3-space

with unit balls still seems to be rather challenging!

(Kepler conjecture, Hales/Ferguson, Hsiang, ......... )

To be continued......



