Folding & Unfolding: Folding Polygons to Convex Polyhedra

Joseph O'Rourke Smith College

Folding and Unfolding Talks

Linkage folding	Tuesday	Erik Demaine
Paper folding	Wednesday	Erik Demaine
Folding polygons into convex polyhedra	Saturday ₁	Joe O'Rourke
Unfolding polyhedra	Saturday ₂	Joe O'Rourke

Outline

Reconstruction of Convex Polyhedra
Cauchy to Sabitov (to an Open Problem)
Folding Polygons
Algorithms
Examples
Questions

Outline₁

Reconstruction of Convex Polyhedra Cauchy to Sabitov (to an Open Problem) Cauchy's Rigidity Theorem Aleksandrov's Theorem Sabitov's Algorithm

Outline₂

Folding Polygons Algorithms Edge-to-Edge Foldings Gluing Trees; exponential lower bound Gluing Algorithm Examples Foldings of the Latin Cross Foldings of the Square Questions I Transforming shapes?

Reconstruction of Convex Polyhedra

graph face angles edge lengths face areas face normals dihedral angles inscribed/circumscribed

Steinitz's Theorem

Minkowski's Theorem

Minkowski's Theorem

Reconstruction of Convex Polyhedra

graph face angles edge lengths face areas face normals dihedral angles inscribed/circumscribed

Cauchy's Theorem

Cauchy's Rigidity Theorem

If two closed, convex polyhedra are combinatorially equivalent, with corresponding faces congruent, then the polyhedra are congruent;
in particular, the dihedral angles at each edge are the same.

Global rigidity == unique realization

Same facial structure, noncongruent polyhedra

Spherical polygon

Sign Labels: {+,-,0}

Compare spherical polygons Q to Q'
 Mark vertices according to dihedral angles: {+,-,0}.

Lemma: The total number of alternations in sign around the boundary of Q is ≥ 4 .

The spherical polygon opens.

(a) Zero sign alternations; (b) Two sign alts.

Sign changes -> Euler Theorem Contradiction

Flexing top of regular octahedron

Steffen's flexible polyhedron

14 triangles, 9 vertices

http://www.mathematik.com/Steffen/

The Bellow's Conjecture

- Polyhedra can bend but not breathe [Mackenzie 98] Settled in 1997 by Robert Connelly, Idzhad Sabitov, and Anke Walz Heron's formula for area of a triangle: $A^2 = s(s-a)(s-b)(s-c)$ Francesca's formula for the volume of a tetrahedron
- Sabitov: volume of a polyhedron is a polynomial in the edge lengths.

Outline₁

Reconstruction of Convex Polyhedra Cauchy to Sabitov (to an Open Problem) Cauchy's Rigidity Theorem Aleksandrov's Theorem Sabitov's Algorithm

Aleksandrov's Theorem (1941)

For every convex polyhedral metric, there exists a unique polyhedron (up to a translation or a translation with a symmetry) realizing this metric."

Pogorelov's version (1973)

For every convex polyhedral metric, there exists a unique polyhedron (up to a translation or a translation with a symmetry) realizing this metric."

Any convex polyhedral metric given ... on a manifold homeomorphic to a sphere is realizable as a closed convex polyhedron (possibly degenerating into a doubly covered plane polygon)."

Alexandrov Gluing (of polygons)

Uses up the perimeter of all the polygons with boundary matches: I No gaps. | No paper overlap. Several points may glue together. At most 2π angle at any glued point. Homeomorphic to a sphere.

Aleksandrov's Theorem ⇒ unique "polyhedron"

Folding the Latin Cross

Cauchy vs. Aleksandrov

Cauchy: uniqueness
 Aleksandrov: existence and uniqueness

Cauchy: faces and edges specified
 Aleksandrov: gluing unrelated to creases

Uniqueness

- Cauchy: combinatorial equivalence + congruent faces => congruent
- Aleksandrov: "Two isometric polyhedra are equivalent"
- The sphere is rigid [Minding]
- The sphere is unique given its metric [Liebmann, Minkowski]
- Closed regular surfaces are rigid [Liebmann, Blaschke, Weyl]
- Uniqueness of these w/in certain class [Cohn-Vossen]
- "Isometric closed convex surfaces are congruent" [Pogorelov 73]

Alexandrov Existence₁

- Induction on the number of vertices n of the metric:
 - from realization of n-1 vertex metric to n vertex metric
 - by continuous deformation of metrics
 - tracked by polyhedral realizations

curvature = $2\pi - \Sigma$ angs

There are two vertices a and b with curvature less than π .

- Connect by shortest path γ .
- Cut manifold along γ and insert double Δ that leaves curvature unchanged.
- Adjust shape of ∆ until a and b both disappear: n-1 vertices.
- Realize by induction, introduce nearby pseudovertex, track sufficiently close metrics.

(a) a flattened; (b) b flattened.

D-Forms

 C_1

Smooth closed convex curves of same perimeter. Glue perimeters together. → D-form

C₂

Helmut Pottmann and Johannes Wallner. *Computational Line Geometry*. Springer-Verlag, 2001.

Pottmann & Wallner

When is a D-form is the convex hull of a space curve? Always

When is it free of creases? Always

Outline₁

Reconstruction of Convex Polyhedra Cauchy to Sabitov (to an Open Problem) Cauchy's Rigidity Theorem Aleksandrov's Theorem Sabitov's Algorithm

Sabitov's Algorithm

Given edge lengths of triangulated convex polyhedron,

- computes vertex coordinates
- in time exponential in the number of vertices.

Sabitov Volume Polynomial

 $V^{2N} + a_1(I)V^{2(N-1)} + a_2(I)V^{2(N-2)} + ... + a_N(I)V^0 = 0$

Tetrahedron: $V^2 + a_1(l) = 0$ l = vector of six edge lengths $a_1(l) = \sum \delta_{ijk} (l_i)^2 (l_j)^2 (l_k)^2 / 144$ Francesca's formula

Volume of polyhedron is root of polynomial

2^N possible roots

(b)

Generalized Polyhedra

Polynomial represents volume of generalized polyhedra
 any simplicial 2-complex homeomorphic to an orientable manifold of genus ≥ 0
 mapped to R³ by continuous function linear on

each simplex.

Need not be embeddable: surface can self-intersect.

Sabitov Proof₁

Sabitov Proof₂

vol(P) = vol(P') - δ vol(T), δ = ± 1 ... [many steps] ... polynomial = 0 unknowns: edge lengths vector l V = vol(P)unknown diagonal d

Sabitov Proof₃

unknowns:

edge lengths | [given] V = vol(P) ["known" from volume polynomial] unknown diagonal d Try all roots for V, all roots for d: candidates for length of d & dihedral at e. Repeat for all e. Check the implied dihedral angles for the convex polyhedron.

Open: Practical Algorithm for Cauchy Rigidty

Find either

- a polynomial-time algorithm,
- or even a numerical approximation procedure,

that takes as

- input the combinatorial structure and edge lengths of a triangulated convex polyhedron, and
- outputs coordinates for its vertices.

Outline₂

Folding Polygons Algorithms Edge-to-Edge Foldings Gluing Trees; exponential lower bound Gluing Algorithm Examples Foldings of the Latin Cross Foldings of the Square Questions I Transforming shapes?

Folding Polygons to Convex Polyhedra

When can a polygon fold to a polyhedron? Fold" = close up perimeter, no overlap, no gap : When does a polygon have an Aleksandrov gluing?

Unfoldable Polygon

Foldability is "rare"

Lemma: The probability that a random polygon of n vertices can fold to a polytope approaches 0 as $n \rightarrow 1$.

Perimeter Halving

Edge-to-Edge Gluings

Restricts gluing of whole edges to whole edges.

[Lubiw & O'Rourke, 1996]

New Re-foldings of the Cube

Metamorphosis of the Cube

Erik Demaine Martin Demaine Anna Lubiw Joseph O'Rourke Irena Pashchenko

[Demaine, Demaine, Lubiw, JOR, Pashchenko (Symp. Computational Geometry, 1999)]

Folding of nonconvex pentagon

Exponential Number of Gluing Trees

Exponential Number of Gluing Trees

General Gluing Algorithm

- No edge-to-edge assumption.
- Implementations: Anna Lubiw, Koichi Hirata (independently)
- Exponential-time, dynamic programming flavor.

Open: Polynomial-time Folding Decision Algorithm

Given a polygon P of n vertices, determine in time polynomial in n if P has an Aleksandrov folding, and so can fold to some convex polyhedron.

Two Case Studies

The Latin CrossThe Square

Folding the Latin Cross

 85 distinct gluings
 Reconstruct shapes by ad hoc techniques
 23 incongruent convex polyhedra

The 23 convex polyhedra foldable from the Latin cross

Sasha Berkoff, Caitlin Brady, Erik Demaine, Martin Demaine, Koichi Hirata, Anna Lubiw, Sonya Nikolova, Joseph O'Rourke

Cube + Flat Quadrilaterals

Latin cross Tetrahedra

Latin cross Pentahedra

Latin cross Hexahedra

Latin cross Octahedra

23 Latin Cross Polyhedra

Reconstruction of Tetrahedron

Latin cross Hexahedra

Octahedron Reconstruction

Foldings of a Square

Infinite continuum of polyhedra.Connected space

As A varies in $[0, \frac{1}{2}]$, the polyhedra vary between a flat triangle and a symmetric tetrahedron.

Nine Combinatorial Classes of Polyhedra foldable from a Square

- Five nondegenerate polyhedra:
 - Tetrahedra.
 - Pentahedra: 5 vertices and a single quadrilateral face,
 - Pentahedra : 6 vertices and three quadrilateral faces (and all other faces triangles).
 - Hexahedra: 5-vertex, 6-triangle polyhedra with vertex degrees (3,3,4,4,4).
 - Octahedra: 6-vertex, 8-triangle polyhedra with all vertices of degree 4.
- Four flat polyhedra:
 - A right triangle.
 - A square.
 - $A \ 1 \times \frac{1}{2}$ rectangle.
 - A pentagon with a line of symmetry.

<u>Dynamic</u> Web page

Question due to Joseph Malkevitch , Feb 2002

Open: Fold/Refold Dissections

Can a cube be cut open and unfolded to a polygon that may be refolded to a regular tetrahedron?

[M. Demaine 98]

