Folding & Unfolding: Unfolding Polyhedra

Joseph O'Rourke Smith College

Folding and Unfolding Talks

Linkage folding	Tuesday	Erik Demaine
Paper folding	Wednesday	Erik Demaine
Folding polygons into convex polyhedra	Saturday ₁	Joe O'Rourke
Unfolding polyhedra	Saturday ₂	Joe O'Rourke

Outline

Edge-Unfolding Polyhedra
 Geodesics & Closed Geodesics
 Unrestricted Unfoldings

Outline₁

Edge-Unfolding Polyhedra
 History (Dürer) ; Open Problem; Applications
 Evidence For
 Evidence Against
 Ununfoldable Polyhedra

Outline₂

Geodesics & Closed Geodesics Lyusternick-Schnirelmann Theorem Gage-Hamilton-Grayson Curve Shortening Exponential Number of Closed Geodesics

Outline₃

 Unrestricted Unfoldings
 Vertex Unfolding
 Orthogonal Polyhedra
 Open: Nonoverlapping Unfolding for Nonconvex Polyhedra

Unfolding Polyhedra

Cut along the surface of a polyhedron

Unfold into a simple planar polygon without overlap

Edge Unfoldings

Two types of unfoldings: Edge unfoldings: Cut only along edges General unfoldings: Cut through faces too

Commercial Software

Lundström Design, http://www.algonet.se/~ludesign/index.html

Albrecht Dürer, 1425

Albrecht Dürer, 1425

Snub Cube

Open: Edge-Unfolding Convex Polyhedra

Does every convex polyhedron have an edgeunfolding to a simple, nonoverlapping polygon?

[Shephard, 1975]

Cut Edges form Spanning Tree

Lemma: The cut edges of an edge unfolding of a convex polyhedron to a simple polygon form a spanning tree of the 1-skeleton of the polyhedron.

spanning: to flatten every vertex
forest: cycle would isolate a surface piece
tree: connected by boundary of polygon

Cut Edges (revisited)

Lemma: The cut edges of an edge unfolding of a convex polyhedron to a simple polygon form a spanning tree of the 1-skeleton of the polyhedron.

Nonsimple Polygons

Andrea Mantler example

Cut edges: strengthening

Lemma: The cut edges of an edge unfolding of a convex polyhedron to a single, connected piece form a spanning tree of the 1-skeleton of the polyhedron.

[Bern, Demaine, Eppstein, Kuo, Mantler, O'Rourke, Snoeyink 01]

Outline₁

Edge-Unfolding Polyhedra
 History (Dürer) ; Open Problem; Applications
 Evidence For
 Evidence Against
 Ununfoldable Polyhedra

Archimedian Solids

Nets for Archimedian Solids

Successful Software

Nishizeki Hypergami -> Javaview Unfold

Convex top A and bottom B, equiangular. Edges parallel; lateral faces quadrilaterals.

Overlapping Unfolding

Splay Unfolding (top view)

Splay Unfolding

Outline₁

Edge-Unfolding Polyhedra
 History (Dürer) ; Open Problem; Applications
 Evidence For
 Evidence Against
 Ununfoldable Polyhedra

Cube with one corner truncated

"Sliver" Tetrahedron

Percent Random Unfoldings that Overlap [O'Rourke, Schevon 1987]

Sclickenrieder₁: steepest-edge-unfold

"Nets of Polyhedra" TU Berlin, 1997

Sclickenrieder₂: flat-spanning-tree-unfold

Sclickenrieder₃: rightmost-ascending-edge-unfold

Sclickenrieder₄: normal-order-unfold

Open: Edge-Unfolding Convex Polyhedra (revisited)

Does every convex polyhedron have an edgeunfolding to a net (a simple, nonoverlapping polygon)?

Open: Fewest Nets

For a convex polyhedron of *n* vertices and *F* faces, what is the fewest number of nets (simple, nonoverlapping polygons) into which it may be cut along edges?

≤ F
Simplicial polyhedra: ≤ F/2
Simple polyhedra: ≤ (2/3)(F-2)

Outline₁

Edge-Unfolding Polyhedra
 History (Dürer) ; Open Problem; Applications
 Evidence For
 Evidence Against
 Ununfoldable Polyhedra
Edge-Ununfoldable Orthogonal Polyhedra

Biedl, Demaine, Demaine, Lubiw, O'Rourke, Overmars, Robbins, Whitesides [CCCG98]

Topologically Convex Polyhedra (Bern, Demaine, Eppstein, Kuo '99)

A polyhedron is topologically convex if its 1-skeleton is that of a convex polyhedron Steinitz's theorem: iff 3-connected and planar Natural question: Can all topologically convex polyhedra be edge unfolded? Subclass: Convex-faced polyhedra (every face is convex) Schevon (1987): Are they all edge-unfoldable?

Triangulated Hat

9 triangles

6 base triangles, lying just above a plane
 3 spike triangles, with base angle > 60° so that middle vertices have negative curvature (tip)

Spiked Tetrahedron

Place a hat on each face of a regular tetrahedron

Spiked Tetrahedron

Unfoldability of Spiked Tetrahedron

(BDEKMS '99)

Theorem: Spiked tetrahedron is edge-ununfoldable

Outline₂

Geodesics & Closed Geodesics Lyusternick-Schnirelmann Theorem Gage-Hamilton-Grayson Curve Shortening Exponential Number of Closed Geodesics

Geodesics & Closed Geodesics

Geodesic: locally shortest path; straightest lines on surface
Simple geodesic: non-self-intersecting
Simple, closed geodesic:

Closed geodesic: returns to start w/o corner
Geodesic loop: returns to start at corner

(closed geodesic = simple, closed geodesic)

Lyusternick-Schnirelmann Theorem

Theorem: Every closed surface homeomorphic to a sphere has at least three, distinct closed geodesics.

Birkoff 1927: at least one closed geodesic

- LS 1929: at least three
- "gaps" filled in 1978 [BTZ83]
- Pogorelov 1949: extended to polyhedral surfaces

Quasigeodesic

- Aleksandrov 1948
- Define left(p) and right(p) turn angle at point p on curve
- Ieft(p) = π total incident face angle from left
- quasigeodesic: curve s.t.
 left(p) ≥ 0
 right(p) ≥ 0
 at each point p of curve.

Closed Quasigeodesic

Open: Find a Closed Quasigeodesic

Is there an algorithm polynomial time or efficient numerical algorithm for finding a closed quasigeodesic on a (convex) polyhedron?

Exponential Number of Closed Geodesics

Theorem: $2^{\Omega(n)}$ distinct closed quasigeodesics.

Aronov & O'Rourke 2002

Gage & Hamilton Curve Shortening

Each point p evolves along normal to curve, at speed proportional to curvature at p.

Grayson Curve Shortening

Lysyanskaya, O'Rourke 1996

Faces Crossed by Closed Geodesic

Geodesic Overlap

Quasigeodesics

Open: Nonoverlapping Faces crossed by Closed Quasigeodesic

For a given closed quasigeodesic γ, is it true that the set of faces whose interior is touched by γ unfold along γ without overlap?

Outline₃

 Unrestricted Unfoldings
 Vertex Unfolding
 Orthogonal Polyhedra
 Open: Nonoverlapping Unfolding for Nonconvex Polyhedra

General Unfoldings of Convex Polyhedra

Theorem: Every convex polyhedron has a general nonoverlapping unfolding (a net).

- Source unfolding (Sharir & Schorr '86, Mitchell, Mount, Papadimitrou '87)
- Star unfolding (Aronov & O'Rourke '92)

Star-unfolding of 30-vertex convex polyhedron

Overlapping Source Unfolding

[Kineva, O'Rourke 2000]

Overlapping Star-Unfolding

Vertex Unfolding (Eppstein, Erickson, Hart, O'Rourke 2002)

Cube:

Vertex unfolding:

Algorithm Overview

2-Manifold → Facet-Path → Strip Layout of Triangles : Vertex-Unfolding

Vertex Unfolding (Eppstein, Erickson, Hart, O'Rourke 2002)

Theorem: Every triangulated manifold has a vertex-unfolding.

Open: Vertex-Unfolding

Does every convex polyhedron have a nonoverlapping vertex-unfolding?

Does every (perhaps nonconvex) polyhedron have a nonoverlapping vertex-unfolding?

Orthogonal Polyhedra

 Orthostack: stacking of extrusions of orthogonal polygons
 Orthotube: orthogonal "corkscrews" with rectangular cross-sections.

Biedl, Demaine, Demaine, Lubiw, O'Rourke, Overmars, Robbins, Whitesides CCCG98

Orthostacks

Orthostack w.r.t. z

Non-Orthostack

Unfolding of Orthostack

Orthotubes

Orthotube Unfolding

Open: A Net for Every Polyhedron?

Can every polyhedron (without boundary) be cut along its surface and unfolded into one piece in the plane without overlap?

Fewest Nets version: What is the fewest number of non-self-overlapping pieces into which a polyhedron may be cut, say, as a function of the number of negative-curvature vertices?